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Abstract
The k-core has garnered significant attention in re-
cent research as an effective measure of node im-
portance within a graph. A k-core is defined as the
maximal induced subgraph where each node has a
degree of at least k. This paper addresses the core
maximization problem: given a graph G, an inte-
ger k, and a budget b, the objective is to insert b
new distinct edges into G to maximize the size of
its k-core. This problem is theoretically proven to
be NP-hard and APX-hard. However, the exist-
ing heuristic methods often struggle to achieve a
good balance between efficiency and answer qual-
ity. In this paper, we propose a novel dynamic
approach that, for the first time, uncovers the dy-
namic changes in node degrees. We introduce a
new concept using the contribution of edges across
different λ-shell components to the final solution.
Based on these findings, we present the Dynamic
Seed-GrowthCM method. This method selects the
λ-shell component with the largest estimated bene-
fit as the initial seed. In each iteration, depending
on complete/partial growth, either a new seed is in-
corporated into the solution, or an existing seed un-
dergoes growth, becoming a larger seed by adding
connected components of the λ-shell component to
the solution. Experimental results on ten datasets
demonstrate that our algorithm significantly out-
performs state-of-the-art methods in terms of solu-
tion quality on large graphs, while achieving a high
computational efficiency.

1 Introduction
The k-core of a graph is widely applied across multiple dis-
ciplines due to its ability to simplify the analysis of com-
plex networks [Batagelj and Zaversnik, 2003]. Defined as
the maximal induced subgraph where each vertex maintains
at least k neighbors, k-core provides a clear view of the fun-
damental structure within networks [Seidman, 1983]. This
characteristic renders k-core particularly useful in various ap-
plications such as social network analysis [Govind and Lal,

∗Corresponding authors.

Figure 1: An example of k-core maximization in graph G.

2021; Li et al., 2018b], community detection [Malliaros et
al., 2016], biological research [Guo et al., 2022], financial
network analysis [Batagelj and Zaveršnik, 2011], and trans-
portation systems [Bruckner et al., 2015]. Building on this
foundation, the core maximization problem aims to maxi-
mize the size of the k-core by inserting a specified num-
ber of edges, a challenge that is recognized as NP-hard and
APX-hard [Chitnis and Talmon, 2018; Malliaros et al., 2020;
Zhou et al., 2019].

Motivation example. Consider a graph G with 13 vertices,
as illustrated in Figure 1(a). The entire graph G forms a 1-
core where every vertex has at least one neighbor. The core-
ness of a vertex, indicated by the number next to its label in
Figure 1, refers to the largest k such that the vertex belongs
to the k-core of the graph. For instance, the coreness of v6 is
2. The 3-core includes four vertices: {v1, v2, v3, v4}.

Core maximization has numerous practical applications in
real-world scenarios. In social network analysis, adding con-
nections can enhance information spread, making market-
ing campaigns more effective [Li et al., 2018a; Aral and
Walker, 2012]. In biology, strengthening protein-protein in-
teraction networks helps discover key functional modules and
drug targets [Yue et al., 2020]. In transportation networks,
adding routes increases robustness, reduces congestion, and
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improves connectivity [Sarıyüce et al., 2016].
Challenges and Contributions. Core maximization is a
challenging task due to its NP-hard and APX-hard nature
and high computational complexity, which makes it diffi-
cult to solve efficiently [Zhou et al., 2019]. Early methods
like EKC [Zhou et al., 2019] and VEK [Zhou et al., 2022]
adopt a greedy edge insertion approach, inserting edges one
by one to maximize the k-core size. EKC suffers from sig-
nificant computational complexity, making it impractical for
large graphs. VEK attempts to improve efficiency by using a
vertex-oriented heuristic, but it still encounters performance
bottlenecks. Later, FastCM/FastCM+ [Sun et al., 2022] im-
proved upon these methods by partitioning the graph and
adding nodes in groups, which provides greater flexibility.
However, all of the above methods directly insert edges in
each iteration, overlooking the changes in the degrees of the
nodes in the current solution during each iteration, which re-
duces the number of edges that need to be inserted.
Example-1. Consider Figure 1(a), where k = 3 and
b = 3. FastCM+ transforms the node set {v5, v6, v7, v8, v9}
into a k-core in the first iteration, inserting the edges
{(v6, v9), (v7, v8)}. However, when v10 and v11 are consid-
ered part of the solution, the degrees of v7 and v9 become
3, at which point no edge needs to be inserted that has one
endpoint as v7 or v9.

These limitations motivate the need for a more adap-
tive solution. In this paper, we propose Dynamic Seed-
GrowthCM, which addresses the shortcomings of these exist-
ing approaches by dynamically adjusting the estimated bene-
fit of each λ-shell component before each iteration using two
strategies—complete growth and partial growth. Experimen-
tal results demonstrate that Dynamic Seed-GrowthCM out-
performs state-of-the-art methods on a range of datasets. In
summary, we make the main contributions in this paper as
follows.

• We propose a novel algorithm, Dynamic Seed-
GrowthCM, which dynamically adjusts the estimated
benefit of each λ-shell component in each iteration to
effectively address the core maximization problem.

• We introduce two growth strategies—complete growth
and partial growth—that enable a flexible approach to
adding adjacent λ-shells, enhancing the adaptability of
the solution.

• We conduct extensive experiments on multiple datasets,
demonstrating that Dynamic Seed-GrowthCM signifi-
cantly outperforms existing state-of-the-art methods in
both solution quality and computational efficiency.

2 Related Work
K-Core Decomposition and Maintenance. K-core decom-
position is a fundamental technique in network analysis that
identifies cohesive subgraphs by iteratively removing nodes
with fewer than k connections. Initially proposed by Seid-
man [Seidman, 1983], and later optimized by Batagelj and
Zaveršnik [Batagelj and Zaversnik, 2003], this method effi-
ciently analyzes large-scale networks. Streaming algorithms
by Sarıyüce et al. [Sarı́yüce et al., 2013] further enable k-
core decomposition on dynamic graphs, allowing real-time

updates. For parallel core maintenance, Hua et al. [Hua et
al., 2019] and Jin et al. [Jin et al., 2018] developed faster ap-
proaches, improving the efficiency of updating k-core struc-
tures as graphs evolve. Zhang et al. [Zhang et al., 2017b] in-
troduced an order-based core maintenance approach, acceler-
ating the process by leveraging node sequence optimizations.
Core maintenance on edge-weighted graphs has also been ad-
dressed by Liu and Zhang [Liu and Zhang, 2020], and Zhou
et al. [Zhou et al., 2021], expanding its application to more
complex networks.

To handle large dynamic graphs, Zhang et al. [Weng et
al., 2021] developed distributed algorithms that efficiently
distribute the workload across multiple processors, ensur-
ing scalability. Additionally, Khaouid et al. [Khaouid
et al., 2015] proposed a method for k-core decomposition
on large networks using a single PC, while Bonchi et al.
[Bonchi et al., 2019] extended the k-core concept to distance-
generalized cores. The anchored k-core problem, introduced
by Bhawalkar et al. [Bhawalkar et al., 2015], stabilizes core
structures by anchoring specific nodes, ensuring resilience
even under node removal. A federated approach has also been
proposed for secure distributed k-core decomposition [Guo et
al., 2024].
Core Minimization and Maximization. Core minimization
and maximization are critical approaches in network analy-
sis, focusing on manipulating the k-core structure for various
objectives.

In core minimization, the goal is to reduce the k-core
size by weakening the connectivity. Zhu et al. [Zhu et
al., 2018] proposed edge manipulation techniques to remove
edges strategically, reducing the k-core and its influence in
the network. Liu et al. [Liu et al., 2021] tackled the anchored
k-core budget minimization problem, aiming to minimize the
k-core size while maintaining core stability within a defined
budget. Zhang et al. [Zhang et al., 2017a] addressed the col-
lapsed k-core problem, focusing on the removal of critical
users in social networks whose exit leads to a collapse of the
k-core structure, weakening the network significantly.

In contrast, core maximization focuses on enhancing the
k-core size. Laishram et al. [Laishram et al., 2020] intro-
duced residual core maximization to increase network stabil-
ity by expanding residual cores. Zhou et al. [Zhou et al.,
2019] used an edge addition approach to achieve a similar
goal, while Zhou et al. [Zhou et al., 2022] proposed a vertex-
oriented approach for edge k-core problems. Sun et al. [Sun
et al., 2022] developed scalable algorithms to efficiently max-
imize the k-core in large graphs. Medya et al. [Medya et al.,
2020] employed a game-theoretic approach to improve core
resilience, while Laishram et al. [Laishram et al., 2018] ex-
plored ways to measure and enhance the resilience of k-core
structures against node and edge removal.

3 Preliminaries
Consider an undirected and unweighted graph G = (V,E),
where V is the set of vertices and E is the set of edges. Let
n be the number of vertices and m be the number of edges,
with the assumption that m ≥ n−1. For any subgraph S, the
neighborhood of a vertex u is represented as N(u, S), and the
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degree of u in S, meaning the number of neighbors of u in S,
is denoted as deg(u, S) = |N(u, S)|.

Definition 1 (k-core). Given a graph G, a subgraph S is the
k-core of G, denoted by Ck(G), if: (i) ∀u ∈ S, deg(u, S) ≥
k; and (ii) ∄S′ ⊃ S that satisfies (i).

The k-core can be obtained by recursively removing every
vertex with a degree less than k in the graph, with a time
complexity of O(m) [Seidman, 1983]. This process reveals
a hierarchical structure, where each node is associated with
a λ-shell, representing the collection of nodes with the same
coreness. The coreness of a node is determined by the largest
k-core in which it exists.

Definition 2 (coreness). Given a graph G, the coreness of
a vertex u, denoted by cn(u), is defined as the largest integer
k such that u ∈ Ck(G) and u /∈ Ck+1(G).

Definition 3 (λ-shell). Given a graph G, a subgraph S is
the λ-shell of G, denoted by Hλ(G), if: (i) ∀u ∈ S, cn(u) =
λ; and (ii) ∄S′ ⊃ S that satisfies (i).

Based on the above definitions, we can formulate the prob-
lem of core maximization as follows.
Problem Statement. Given a graph G, an integer k, and a
budget b, the core maximization problem aims to insert b new
distinct edges into G to maximize the size of its k-core. The
nodes that are converted into the k-core are referred to as k-
core followers.

4 Dynamic Seed-GrowthCM
4.1 Method Overview
In this section, we introduce Dynamic Seed-GrowthCM, a
novel approach to core maximization that emphasizes dy-
namic adaptation. It consists of four phases as follows.

• Phase-I: λ-Shell Partition. In this phase, the λ-shell is
divided into several disjoint components. Each compo-
nent serves as the smallest unit for conversion within our
method, allowing for independent edge insertions aimed
at core conversion.

• Phase-II: Initialization. In this phase, the estimated
benefit of each λ-shell component is calculated and ini-
tialized. Estimated benefit measures the gain of convert-
ing a λ-shell component into part of the k-core.

• Phase-III: Iterative Dynamic Growth. In each itera-
tion, we either select a new seed to add to the current
solution or grow an existing seed—through either com-
plete or partial growth. Then, the estimated benefit of all
components is updated.

• Phase-IV: Offline Storage Phase. Given the pre-
dictable growth patterns of graphs, we store strategies
offline based on common graph behaviors. When the
same graph is encountered again, these pre-determined
strategies are quickly retrieved and applied, enhancing
efficiency and reducing the need for recalibration. This
approach accelerates the core maximization process by
instantly implementing effective strategies.

4.2 λ-Shell Partition
In processing large sparse graph data, the effective implemen-
tation of core maximization methods is crucial. The budget

b for inserting edges is inherently much smaller than the po-
tential edges, quantified as

∣∣∣ |V |×(|V |−1)
2 − |E|

∣∣∣, emphasizing
the need for an efficient search strategy to handle the vast
difference. The hierarchical structure formed by λ-shells is
an excellent choice for core maximization. However, since
λ-shells are not necessarily connected, we employ λ-Shell
Partition to divide them into several connected components,
which better facilitates solution generation.

Definition 4 (λ-Shell Partition). The λ-Shell Partition di-
vides Hλ(G) into its connected components, denoted as:

D(Hλ(G)) = {C1, C2, . . . , Ch}.

where each Ci is a connected component of Hλ(G), and sat-
isfies:

h⋃
i=1

Ci = Hλ(G) and Ci ∩ Cj = ∅ for all i ̸= j.

Theorem 1 (Local Insertion Closure for λ-Shell Compo-
nents). For any λ1-shell component C1 and λ2-shell compo-
nent C2, an edge insertion (u, v) where u, v ∈ C1 will not
change the coreness of any node in C2.

Proof. Assume that the coreness of w ∈ C2 has changed.
Since no edges have been deleted in the graph, it is obviously
true that cn(w) cannot decrease. If cn(w) increases to λ2+1,
according to the k-core maintenance rules [Sarı́yüce et al.,
2013], by setting k = λ2 + 1, it implies that λ1 = λ2 and
w is reachable from u or v via a path consisting of vertices
with coreness λ2. This means that w ∈ C1 ∩ C2. However,
this contradicts the definition of λ-shell components, as C1

and C2 are distinct, disconnected components. Therefore, the
theorem holds.

4.3 Initialization
λ-threshold. We first analyze the structure of the λ-shell
component and propose a new concept, the λ-threshold com-
ponent, to identify the nodes that play an important role in the
process of converting the λ-shell component into part of the
k-core.

Since the λ-shell component has a local insertion closure,
i.e., inserting edges in one component does not affect other
components, we focus on considering how to completely con-
vert the nodes in a component to part of the k-core. First,
we provide the definition of the dynamic solution for k-core
maximization and the dynamic degree of the node, allowing
the node’s degree to change with the solution, giving the node
better adaptability.

Definition 5 (Dynamic Solution) Given a graph G, an in-
teger k, and a budget b, the dynamic solution of the graph,
denoted as V (k, b, i), represents the k-core obtained after the
i-th iteration.

Definition 6 (Dynamic Degree) Given a graph G, an in-
teger k, and a budget b, the dynamic degree of a node u, de-
noted as deg(u, k, b, i), is the number of neighbors of u in the
k-core after the (i− 1)-th iteration, plus the number of nodes
in the same component as u. Formally, it is defined as:

deg(u, k, b, i) = |{v ∈ N(u) | v ∈ V (k, b, i− 1) ∪ Cu}| .
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Algorithm 1 Initialization
Input: a λ-shell component Ci

Output: the estimated benefit of the eb(Ci)

1: Obtain the λ-threshold component T (Ci, k, b, 0);
2: for all nodes u ∈ T (Ci, k, b, 0) do
3: Calculate deg(u, k, b, 1);
4: end for
5: Eneed(Ci) = 1/2

∑
u∈T (Ci,k,b,j)

(k − deg(u, k, b, 1));
6: eb(Ci) = |Ci|/Eneed(Ci);
7: Return eb(Ci);

Figure 2: An example of Effective Edges, Semi-Effective Edges,
and Ineffective Edges in G. The coreness of each vertex is indicated
by a number next to the vertex label.

where N(u) represents the set of neighbors of u in G, and Cu

denotes the λ-shell component to which u belongs.
Then, based on the following observation, we define the

λ-threshold to identify the nodes that play a key role in the
solution generation process.

Given a graph G, a λ-shell component Ci, the nodes in Ci

all have coreness λ, but deg(u, k, b, i) can be larger than λ
where u ∈ Ci. These nodes do not become part of the k-
core because the number of neighbors satisfying the k-core
requirement is less than k.
Example-2. Consider Figure 1(a), where k = 3 and b =
3, node v5 has deg(v5, 3, 3, 1) = 3 at the beginning of
the first iteration, but because its neighbors v6 and v8 have
deg(v6, 3, 3, 1) = 2 and deg(v8, 3, 3, 1) = 2, v5 does not be-
long to the k-core. After selecting the λ-shell component to
be converted into part of the k-core, we must carefully choose
which edges to add, rather than adding them randomly.

Definition 7 (λ-threshold component) Given a graph G,
an integer k, a budget b, and a λ-shell component Ci, at
the j-th iterationits, its λ-threshold component, denoted as
T (Ci, k, b, j), is defined as the set of nodes in Ci whose dy-
namic degree is less than or equal to k, denoted as:

T (Ci, k, b, j) = {u ∈ Ci | deg(u, k, b, j) ≤ k}.

Estimated benefit initialization. In this step, we use the
dynamic degree and λ-threshold component to initialize the
estimated benefit of each λ-shell component. First, we intro-
duce a method for determining the number of edges needed
to convert any λ-threshold component to part of the k-core.

Theorem 2. Given a graph G, an integer k, a budget b,
and a λ-shell component Ci, in the j-th iteration, Ci be-
comes part of a k-core if every node u in T (Ci, k, b, j) is
newly connected to other nodes within Ci or V (k, b, i) by
(k − deg(u, k, b, j)) edges.

We assume that the conversion of the λ-threshold compo-
nent Ci into a k-core can be achieved entirely by adding edges

Figure 3: An example to illustrate the advantages of partial growth
compared to complete growth.

between nodes with dynamic degrees less than k. The num-
ber of edges required to achieve this transformation is given
by:

Eneed(Ci) =
1

2

∑
u∈T (Ci,k,b,j)

(k − deg(u, k, b, j))

Then, we can define the estimated benefit of each λ-shell
component.

Definition 8 (Estimated benefit) For a λ-shell component
Ci, its estimated benefit, denoted as eb(Ci), is defined as

|Ci|
Eneed(Ci)

, where Eneed(Ci) represents the number of edges re-
quired to convert Ci into part of the k-core.

4.4 Iterative Dynamic Growth
By Theorem 2, we can deduce that within each λ-shell com-
ponent, edges can be inserted between the λ-threshold com-
ponents until the k-core requirement is met. The choice of
edges to insert is not unique. Furthermore, we observe that
within each λ-shell component, the difference between ap-
plying Complete Conversion and Partial Conversion, as pro-
posed in FastCM/FastCM+ [Sun et al., 2022], is minimal.
Therefore, this method focuses on the contribution of edges
that span across different λ-shell components, and introduces
Complete Growth and Partial Growth. We first introduce the
definitions of seed and growth.

Definition 9 (Seed) Given a graph G, an integer k, and a
budget b, after the i-th iteration,

V (k, b, i) = {S1, S2, . . . , Sn},
where each Sj is a connected component of V (k, b, i), we
refer to Sj as a seed.

Definition 10 (Growth) Given a seed Sj , the definition
of growth is to add some λ-shell components Cgrowth(Sj) =
{C1, C2, . . . , Cm} that are connected to the seed to the cur-
rent solution, such that the seed grows to S′

j = Sj ∪
Cgrowth(Sj). For complete growth and partial growth, we
record S′

j as CG(Sj) and PG(Sj), respectively.
Complete Growth. In this section, we present the complete
growth, which takes into account the dynamic relationships
between different λ-shell components. To begin, we classify
the edges connecting λ-shell components into the following
categories: effective edges, semi-effective edges, and ineffec-
tive edges.

Definition 11 (Effective Edges, Semi-Effective Edges,
and Ineffective Edges): When in the i-th iteration, we at-
tempt to convert the λ-shell component C1 into k-core fol-
lowers. Suppose C1 is connected to V (k, b, i − 1) through
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Algorithm 2 Complete Growth
Input: Graph G, Integer k, Budget b, estimated benefit for
all λ-shell components EB = {eb(C1), eb(C2), . . . , eb(Cn)}
Output: Set of inserted edges E

1: i← 0, SeedSet← ∅;
2: while b > Eneed(V (k, b, i)) do
3: Cj = argmax(eb(Ci)), Ci ∈ EB;
4: Sh = argmax(eb(CG(Si) \ Si)), Si ∈ SeedSet ;
5: if eb(Cj)>eb(Sh) then
6: SeedSet ← SeedSet ∪ Cj (Add Cj to SeedSet and

update it to Sj);
7: else
8: Completely grow Sh to S′

h;
9: SeedSet← SeedSet \ Sh ∪ S′

h;
10: end if
11: i← i+ 1;
12: for all nodes u ∈ SeedSet do
13: Calculate deg(u, k, b, i);
14: end for
15: end while
16: Insert edges in SeedSet such that each node’s degree

achieves k;
17: Return the inserted edges E;

edge e(u, v), where u ∈ C1 and v ∈ V (k, b, i − 1). Con-
sider the case where the edge does not exist, and calculate
deg(u, k, b, i) and deg(v, k, b, i). In this case:

(i) If deg(u, k, b, i) < k and deg(v, k, b, i) < k, then
e(u, v) is an effective edge.

(ii) If deg(u, k, b, i) ≥ k and deg(v, k, b, i) ≥ k, then
e(u, v) is an ineffective edge.

(iii) Else, e(u, v) is a semi-effective edge.
When both Cu and Cv are in the current solution, com-

pared to the case where the edge does not exist, a valid edge
reduces Eneed(Cu) and Eneed(Cv) by 0.5 each. A semi-valid
edge reduces Eneed(Cu) or Eneed(Cv) by 0.5, while an invalid
edge has no effect on Eneed(Cu) and Eneed(Cv). Here, Cu and
Cv represent the λ-shell components to which nodes u and v
belong, respectively.

In the i-th iteration, the complete growth of a seed means
adding all the λ-shell components connected to that seed into
the current solution. Then the dynamic degree of nodes is
updated. The growth process stops if the following condi-
tion holds: Eneed(V (k, b, i)) = 1

2

∑
u∈V (k,b,i) max(0, (k −

deg(u, k, b, i + 1))) > b. To accommodate the dynamic
change of node degrees, we perform edge insertion after the
iteration is completed.
Example-3. Consider Figure 2, where k = 3 and b =
6. In the first iteration, the algorithm attempts to convert
{v5, v6, v7, v8, v9} into k-core followers, e(v4, v5) is an semi-
effective edge. In the second iteration, the algorithm tries to
convert {v11, v12, v13, v14} into k-core followers, e(v9, v11)
is an ineffective edge. In the third iteration, the algorithm at-
tempts to convert {v10} into k-core followers, e(v7, v10) is an
effective edge.
Partial Growth. Complete growth effectively improves the
solution quality of the core maximization. However, the com-
plete growth strategy may be insufficient in certain situations.

Algorithm 3 Partial Growth
Input: Graph G, Integer k, Budget b, estimated benefit for
all λ-shell components EB = {eb(C1), eb(C2), . . . , eb(Cn)}
Output: Set of inserted edges E

1: i← 0, SeedSet← ∅;
2: while b > Eneed(V (k, b, i)) do
3: Cj = argmax(eb(Ci)), Ci ∈ EB;
4: Sh = argmax(eb(PG(Si) \ Si)), Si ∈ SeedSet ;
5: if eb(Cj)>eb(Sh) then
6: SeedSet← SeedSet ∪ Cj {(Add Cj to SeedSet and

update it to Sj)};
7: else
8: Partially grow Sh to S′

h;
9: SeedSet← SeedSet \ Sh ∪ S′

h;
10: end if
11: i← i+ 1;
12: for each edge e = (u, v), where u ∈ S′

h \ Sh and
v /∈ V (k, b, i) do

13: if edge e is effective then
14: Eneed(Cv)← Eneed(Cv)− 1;
15: else if edge e is semi-effective then
16: Eneed(Cv)← Eneed(Cv)− 0.5;
17: end if
18: Update eb(Cv) =

|Cv|
Eneed(Cv)

;
19: end for
20: end while
21: Insert edges in all λ-threshold components such that each

node’s degree achieves k;
22: Return the inserted edges E;

For instance, the number of edges required to convert all con-
nected components into the k-core might exceed the available
budget b, preventing further growth. To address this limita-
tion, we propose a more fine-grained partial growth strategy.
Example-4. Consider Figure 3, where k = 3 and b =
2. When using complete growth, in the first iteration,
{v5, v6, v7} is transformed into the k-core, requiring b =
1. In the second iteration, the algorithm attempts to grow
{v5, v6, v7} into {v5, v6, v7, v8, v9}, requiring b = 2.5. Since
the budget b is not sufficient, the growth fails, and the itera-
tion ends. The final k-core followers are {v5, v6, v7}, and the
inserted edges are e(v4, v6) and e(v4, v5). As we assume the
graph is unweighted, edges like e(v5, v6) cannot be recon-
nected if they already exist. However, this is clearly not the
optimal solution, as inserting e(v4, v8) and e(v5, v8) would
result in the k-core followers being {v5, v6, v7, v8}.

The above example demonstrates that by refining
the growth process and dividing it into more granular
steps—where each growth phase converts only one λ-shell
component—we can achieve superior results. This is the key
idea behind partial conversion. However, to implement partial
conversion, a critical issue must be addressed: how to dynam-
ically adjust the estimated benefit of each λ-shell component
to ensure that the optimal one is selected for growth.

We derive the following estimated benefit update rule: In
the i-th iteration, after the algorithm adds the λ-shell compo-
nent Ci to the k-core followers, all λ-shell components Cj

connected to Ci will be updated as follows: for each effective
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Dataset |V | |E| #Followers Running Time (s)
EKC VEK FastCM FastCM+ DSG CG DSG PG DSG PG+ EKC VEK FastCM FastCM+ DSG CG DSG PG DSG PG+

Facebook 4,039 88,234 39 77 77 198 333 373 373 0.53 0.28 0.003 0.01 0.023 0.131 0.007
email-Enron 36,692 183,831 112 140 140 241 323 337 337 3.13 0.66 0.026 0.051 0.007 2.325 0.018
Brightkite 58,228 214,078 93 218 218 518 539 597 597 18.8 1.03 0.044 0.247 0.006 1.821 0.023
Gowalla 196,591 950,327 571 571 671 671 788 879 879 1,071 15.17 0.155 0.177 0.014 9.197 0.054
Twitter 81,306 1,768,149 712 712 755 761 1,117 1,221 1,221 3,923 28.05 1.168 1.033 0.02 5.378 0.061

Stanford 281,903 2,312,497 - 508 734 747 929 948 948 - 193 0.292 0.326 0.05 8.223 0.064
Google 875,713 5,105,039 - 1,668 2,009 2,017 2,245 2,270 2,270 - 922 1.14 3.03 0.178 40.093 0.2
Youtube 1,134,890 2,987,624 734 665 831 838 903 905 905 9,472 35.38 0.941 1.017 0.023 45.516 0.223

Baidubaike 2,142,101 17,014,946 - 1,035 1,161 1,178 1,359 1,359 1,359 - 1,987 2.149 2.291 0.245 181.162 0.379
as-Skitter 1,696,415 11,095,928 - 1,618 1,739 1,809 1,856 1,915 1,915 - 716 2.412 2.578 0.276 54.661 0.301

Table 1: Comparison of methods in terms of Graph Statistics, #Followers, and Running Time across different datasets. ‘-’ denotes that the
algorithm cannot finish within 48 hours.

edge between Cj and Ci, the Eneed(Cj) is reduced by 1, and
for each semi-effective edge, the Eneed(Cj) is reduced by 0.5.
The estimated benefit of Cj is then recalculated based on the
updated Eneed(Cj) value.

The above update rule is based on the observation that
when Ci become k-core followers, all the edges connecting
Ci and Cj will still make the dynamic degree of the nodes in
Ci change, but since Ci has been added to the solution, the
eb(Ci) change has no effect on the subsequent iteration pro-
cess, therefore, we reflect this benefit in Cj . In addition, in the
i-th iteration, the partial growth of a seed means adding the λ-
shell components with largest estimated benefit connected to
that seed into the current solution. Then the estimated benefit
of the λ-shell component connected to the grown seed will be
updated according to the rules presented above.

4.5 Offline Storage
Compared to complete growth, partial growth offers advan-
tages in solution quality but requires more computational
time. However, we can still accelerate the process using of-
fline storage techniques. Due to the inherent invariability
of the underlying structure of the graph, certain properties
remain consistent across the same graph [Malliaros et al.,
2020]. In k-core maximization, the relative estimated ben-
efit order of the λ-shell components remains largely consis-
tent, even when faced with different parameters k and b. By
storing the relative estimated benefit order, the next time we
encounter the same graph, we can directly generate k-core
followers based on this order without recalculating the esti-
mated benefit of each λ-shell component.

5 Experiments
In this section, we present the results of evaluating our pro-
posed method on multiple public datasets. We detail the ex-
perimental setup, including the parameters used, and the eval-
uation metrics applied to assess performance. A comprehen-
sive comparison of the results is also provided, showing how
our method performs relative to state-of-the-art algorithms.
Datasets. We use 10 real-world network datasets in our ex-
periments, chosen for their diversity and relevance to the
task. Table 1 summarizes the key graph statistics for these
datasets. All datasets are obtained from two public repos-
itories: Network Repository (http://networkrepository.com)
and SNAP (http://snap.stanford.edu), and are treated as undi-
rected graphs to ensure consistency across experiments.

Compared methods. We compare the proposed method
against four other methods, described as follows.

• EKC [Zhou et al., 2019]: follows a greedy approach by
adding one edge between non-adjacent vertices per iter-
ation to maximize the k-core.

• VEK [Zhou et al., 2022]: adopts a greedy strategy fo-
cused on adding one vertex per iteration, optimizing the
process through a scoring function and efficient candi-
date pruning.

• FastCM [Sun et al., 2022]: performs complete con-
version and focuses on converting vertices within the
(k − 1)-shell.

• FastCM+ [Sun et al., 2022]: combines complete and
partial conversion strategies to convert vertices in the
(k − λ)-shell (λ ≥ 1), using DP-based node selection
methods.

• Dynamic Seed-GrowthCM CG: is our proposed algo-
rithm using complete growth, abbreviated as DSG CG.

• Dynamic Seed-GrowthCM PG: is our proposed algo-
rithm using partial growth, abbreviated as DSG PG.

• Dynamic Seed-GrowthCM PG+: is Dynamic Seed-
GrowthCM PG combined with an Offline Storage tech-
nique, abbreviated as DSG PG+.

Parameters and evaluation metrics. By default, We set the
parameter k to 20 and the budget b to 200. We use the number
of k-core followers and the algorithm running time as evalu-
ation metrics. Due to the previously demonstrated poor per-
formance of EKC [Zhou et al., 2019] and VEK [Zhou et al.,
2022] in terms of both runtime and solution quality, we di-
rectly refer to the results reported in [Sun et al., 2022] rather
than conducting the experiments again. All experiments were
conducted on a machine equipped with an AMD Ryzen 7
5800H CPU (3.2 GHz), 16 GB of RAM, and running Win-
dows 11. Each experiment was repeated ten times, and the
average results are reported.

5.1 Effectiveness and Efficiency Evaluations
As shown in Table 1, our proposed algorithms, Dy-
namic Seed-GrowthCM CG (DSG CG) and Dynamic Seed-
GrowthCM PG (DSG PG), consistently outperform all base-
line methods across various datasets by achieving a greater
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Figure 4: The number of followers of different algorithms varied by b.
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Figure 5: The running time of different algorithms varied by b.

number of k-core followers. The key to this superior perfor-
mance lies in our utilization of edges spanning across differ-
ent λ-shell components. On the other hand, it is evident that
the method employing complete growth, DSG CG, achieves
shorter running times compared to all previously proposed
methods, except on the Facebook dataset. While the par-
tial growth method, DSG PG+, incurs slightly longer running
times than DSG CG, it maintains the effectiveness of DSG
PG and achieves a higher number of k-core followers.

5.2 Evaluation by Varying b
Figure 4 reports that as b increases, the number of k-core fol-
lowers obtained by all methods increases. Among them, DSG
PG achieves the highest number of k-core followers. Addi-
tionally, as b increases, the gap between DSG PG/DSG CG
and FastCM+/FastCM becomes increasingly larger. This is
because the number of λ-shell components requiring conver-
sions increase with b, and the edges spanning different λ-shell
components increase accordingly, highlighting the growing
advantages of DSG PG/DSG CG. Figure 5 reports the run-
ning time of different algorithms as b increases. DSG PG+
maintains a comparable number of k-core followers to DSG
PG while significantly reducing its running time, demonstrat-
ing the feasibility of offline storage.

5.3 Case Study on Collaboration Network
We applied core maximization to a collaboration network,
which is a connected component comprising 14 nodes, ex-
tracted from the ca-GrQc dataset. The edges in the network
represent co-authorship between authors, indicating that they
have collaborated on a research paper.

Figure 6: Case Study on Collaboration Network. Here, k = 4 and
b = 4.By inserting 4 red edges, 6 4-core followers are gained, as
indicated by the blue nodes.

Our objective is to strengthen a specific k-core by inserting
new edges, thereby increasing interactions among authors.
We set k = 4 and b = 4. Initially, the size of the 4-core is 6.
By applying our algorithm, the size of the 4-core increases to
12, as illustrated in Figure 6.

6 Conclusion

In this paper, we propose Dynamic Seed-GrowthCM, which
employs complete/partial growth to address k-core maxi-
mization. The method accounts for dynamic changes in node
degrees and effectively leverages edges across different λ-
shell components, leading to improved performance. Experi-
mental results show that our method enhances both efficiency
and solution quality. This makes our method particularly suit-
able for large-scale, real-world networks.
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