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Abstract

The abstract visual reasoning (AVR) domain
presents a diverse suite of analogy-based tasks de-
voted to studying model generalization. Recent
years have brought dynamic progress in the field,
particularly in i.i.d. scenarios, in which models
are trained and evaluated on the same data distribu-
tions. Nevertheless, 0.0.d. setups that assess model
generalization to new test distributions remain chal-
lenging even for the most recent models. To ad-
vance generalization in AVR tasks, we present the
Pathways of Normalized Group Convolution model
(PoNG), a novel neural architecture that features
group convolution, normalization, and a parallel
design. We consider a wide set of AVR bench-
marks, including Raven’s Progressive Matrices and
visual analogy problems with both synthetic and
real-world images. The experiments demonstrate
strong generalization capabilities of the proposed
model, which in several settings outperforms the
existing literature methods.

1 Introduction

The abstract visual reasoning (AVR) domain encompasses
visual tasks requiring reasoning about abstract patterns ex-
pressed through image-based analogies. A classical AVR
task, Raven’s Progressive Matrices (RPMs) [Raven, 1936;
Raven and Court, 1998], illustrated in Fig. 1, consists of a
3 x 3 grid of panels with the bottom-right panel missing. Pan-
els in the first two rows are designed according to some num-
ber of abstract rules that govern objects and attributes in the
images. The task is to complete the grid by selecting the cor-
rect answer from the eight provided choices. Another AVR
task, visual analogies, shown in Fig. 2, involves two rows of
images. The top row presents an abstract relation that must
be instantiated in the bottom row by selecting one of the four
answer panels that correctly completes the analogy.

Solving AVR tasks involves detecting rule patterns across
images, abstracting them into crisp concepts, and applying
these concepts to novel scenarios. For example, matrices in
the visual analogy problems (VAP) dataset [Hill et al., 2019]
present different domains in matrix rows (e.g., shape type
(top) and 1ine type (bottom) in Fig. 2a), emphasizing the
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Figure 1: Raven’s Progressive Matrices (RPMs).
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Figure 2: Visual analogies.

importance of forming domain-independent concept repre-
sentations. Such analogy-making abilities are closely tied to
fluid intelligence [Snow et al., 1984; Carpenter et al., 1990;
Lake et al., 20171, a cornerstone of human cognition. Repli-
cating these capabilities in learning systems has been a
long-standing goal of research in the field [Gentner, 1980;
Hofstadter, 1995; French, 2002; Lovett et al., 2007; Gentner
and Forbus, 2011].

A key aspect of AVR tasks, central to our work, are their
systematic problem generation methods. Underneath each
AVR task design lies a precise definition of its abstract struc-
ture, which defines the rule patterns expressed in the matrices.
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Figure 3: A-I-RAVEN [Matkinski and Mandziuk, 2025a].
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Figure 4: I-RAVEN-Mesh [Malkiriski and Mandziuk, 2025a].

For instance, each PGM matrix [Barrett et al., 2018] has a
corresponding abstract structure S = {(r,0,a) | r € R,0 €
O,a € A}, where R = {progression, XOR, OR, AND,
consistent union}, O = {shape, line}, and A =
{size, type, color, position, number} are the sets
of rules, objects, and attributes, resp. This formal specifica-
tion facilitates defining dataset splits with varying feature dis-
tributions, enabling the evaluation of generalization by train-
ing models on matrices with specific abstract structures and
testing them on matrices with different structures.

Motivation. Several AVR studies have addressed the i.i.d.
problem formulation, where models are trained and tested on
matrices sampled from a shared feature distribution. Con-
tinuous improvements have produced methods that surpass
human performance on tasks like RPMs, given sufficient
amount of training data [Herndndez-Orallo er al., 2016;
Malkifiski and Mandziuk, 2025c]. Other research lines have
demonstrated the benefits of knowledge transfer [Maridziuk
and Zychowski, 2019; Tomaszewska et al., 2022] and multi-
task learning [Matkifiski and Maridziuk, 2024b]. Despite
these achievements, 0.0.d. problem formulations, where

models are evaluated on matrices sampled from a different
feature distribution than the one used for training, remain a
major challenge even for state-of-the-art (SOTA) deep learn-
ing (DL) models. Moreover, existing approaches in the AVR
domain primarily target synthetic tasks with simple 2D geo-
metric shapes, without considering their applicability to prob-
lems with real-world data. In this work, we strive to develop
a model architecture that not only performs well in i.i.d. tasks
but also excels in 0.0.d. settings. Additionally, we consider
both synthetic and real-world setups to broaden the applica-
bility of the proposed approach.

Contribution. To tackle these open challenges, we intro-
duce the following contributions:

* We propose Pathways of Normalized Group Convolution
(PoNG), a new neural model for AVR tasks that inte-
grates group convolution, normalization, and a parallel
design.

* We perform a comprehensive evaluation of PoNG
against a wide range of SOTA models. The experiments
show PoNG’s versatility in both i.i.d. and o0.0.d. prob-
lem setups, spanning RPMs and VAPs in synthetic and
real-world scenarios.

* We conduct an ablation study to analyze the contribu-
tions of PONG’s modules, providing deeper insights into
its design.

2 Related Work

AVR tasks. The AVR domain comprises a wide range
of challenges [Mitchell, 2021; van der Maas er al., 2021;
Stabinger et al., 2021, Malkifiski and Mandziuk, 2023].
Most relevant to our work are tasks involving RPMs and
visual analogies. After the introduction of early RPM
datasets [Matzen et al., 2010; Wang and Su, 2015; Hoshen
and Werman, 2017], two large-scale benchmarks were devel-
oped and broadly adopted in the DL literature. PGM [Bar-
rett et al., 2018] (Fig. 1a) introduced 8 regimes to measure
generalization of DL models. RAVEN [Zhang et al., 2019a]
presented matrices with hierarchical structures across 7 fig-
ure configurations. Subsequent works further expanded the
RAVEN dataset line: I-RAVEN [Hu er al., 2021] (Fig. 1b)
mitigated a bias in RAVEN’s answer generation method, A-
I-RAVEN [Malkiiski and Mandziuk, 2025a] (Fig. 3) de-
fined 10 generalization regimes of varying complexity, and
I-RAVEN-Mesh [Mafkiriski and Mandziuk, 2025a] (Fig. 4)
overlayed line-based patterns on top of the matrices. A par-
allel research stream introduced the VAP dataset [Hill et
al., 2019] (Fig. 2a), which similarly to PGM enables mea-
suring generalization on matrices with a different structure.
VASR [Bitton et al., 2023] (Fig. 2b) introduced analogies
with real-world images requiring understanding of rich vi-
sual scenes. A detailed description of the datasets used in this
work is provided in Section 4.1.

AVR solvers. Early attempts to solve AVR tasks with DL
models were prompted by the development of Relation Net-
work (RN) [Santoro et al., 2017]. WReN [Barrett et al.,
2018] applies RN to panel embeddings, CoPINet [Zhang et
al., 2019b] integrates RN with contrastive mechanisms, and
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Figure 5: PoNG. (a) The panel encoder embeds each input image x; independently, producing h;. Context panel embeddings {h;}5_;
together with the embedding of k£’th answer hy are stacked and processed with the reasoner, leading to zx. (b) The pathways block, a key
component of PONG, comprises four parallel pathways P1 — P4. (c) P3 and (d) P4 employ novel normalized group convolution operators.
PosEmb denotes position embedding, G-C the group convolution module used in P3, and GP-C the group-pair convolution module used in
P4. The red dashed line marks the point after which G-C and GP-C perform analogous computation.

MRNet [Benny et al., 2021] embeds RN into a multi-scale ar-
chitecture. Differently, SRAN [Hu et al., 2021] processes dis-
tinct panel groups with dedicated ResNet encoders, SCL [Wu
et al., 2020] splits embeddings into groups processed by
a shared neural layer, RelBase [Spratley et al., 2020] pri-
marily relies on convolutional layers, ARII [Zhang er al.,
2022b] learns robust rule representations via internal infer-
ences, CPCNet [Yang ef al., 2023b] utilizes a self-contrasting
learning process to align perceptual and conceptual input rep-
resentations, PredRNet [Yang et al., 2023a] mimics the pre-
diction and matching process, and DRNet [Zhao ef al., 2024]
merges panel representations of two independent encoders.
Other works develop neuro-symbolic approaches [Zhang et
al., 2021; Zhang et al., 2022a] or perform explicit ob-
ject recognition prior to reasoning [Mondal et al., 2023;
Mondal et al., 2024]. Neural Structure Mapping [Shekhar and
Taylor, 2022] decouples perception from reasoning to solve
visual analogies. Bitton et al. [2023] formulate several zero-
shot and supervised methods to solve real-world analogies us-
ing a frozen pre-trained Vision Transformer [Dosovitskiy et
al., 2021] as the panel encoder. Although diverse approaches
have been tried to tackle AVR benchmarks, contemporary
models continue to exhibit limitations in generalization. In
this context, we propose PONG, a new versatile AVR model
that performs well across diverse tasks.

3 Pathways of Normalized Group
Convolution (PoNG) Model
We introduce PoNG (Fig. 5), a novel model that outcompetes

baselines across a number of problem settings. The model
follows a typical two-stage design. Firstly, it generates an em-

bedding of each image panel. Then, it aggregates representa-
tions of matrix panels to predict the index of the correct an-
swer. The details are described in [Malkifiski and Mandziuk,
2025b, Appendix Al

Let (X, y,r) denote an AVR matrix, where X = {x;}!"
is the set of n image panels comprising n. context pan-
els {z;};<, and n, answer panels {z;};, ., #; €
[0,1)"*w i = 1,...,n is a grayscale image of height h
and width w, y € {0,1}"* is the one-hot encoded index
of the correct answer, 7 € {0,1}% is the multi-hot en-
coded representation of matrix rules of dimensionality d,. us-
ing sparse encoding [Malkiriski and Mandziuk, 2024a]. For
RPMs n. = n, = 8, for VAP n. = 5,n, = 4, and for VASR
ne = 3,n, = 4. In each experiment h = w = 80, while d,.
is determined by the number of different abstract structures
in the corresponding dataset (d, = 40 for -RAVEN and A-
I-RAVEN, d, = 48 for I-RAVEN-Mesh, d,, = 50 for PGM,
and d,- = 28 for VAP).

Panel encoder. The first component of the model has the
form £ : x — h, where h € R% is the input panel embed-
ding of dimensionality dj,. Following RelBase [Spratley et
al., 2020], the module comprises 2 blocks of the same archi-
tecture. Each block includes 2 parallel pathways that build
high-level and low-level features, resp. The first one contains
2 convolutional blocks, each with 2D convolution, ReLLU, and
Batch Normalization (BN) [loffe and Szegedy, 2015]. The
second one contains 2D max pooling followed by 2D con-
volution. The sum of both pathway results forms the block
output. Differently from RelBase, we flatten the height and
width dimensions of the resultant embedding, pass it through
a linear layer with ReL U, flatten the channel and spatial di-
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mensions, and pass the tensor through a feed-forward residual
block with Layer Normalization (LN) [Ba et al., 2016]. Fi-
nally, we concatenate the tensor with a position embedding (a
learned 25-dimensional vector for each panel in the context
grid), leading to h.

Reasoner. The second component of the model has the
form R : {h;}5_, U hy — zx, where hy, is the panel em-
bedding of k’th answer. For each answer panel, the reasoner
produces embedding z; that describes how well the consid-
ered answer fits into the matrix context. Panel embeddings
{hi}8_, U hy are stacked and processed by a sequence of 3
reasoning blocks interleaved with 2 bottleneck layers for di-
mensionality reduction. Each reasoning block comprises BN
and 4 parallel pathways, outputs of which are added together
to form the output of the block. Next, the latent represen-
tation is passed through adaptive average pooling, flattened,
processed with a linear layer with ReLU, passed through BN
and projected with a linear layer to z;, € R'2%,

Pathways. The key aspect of the reasoner module are its
pathways. Each takes an input tensor of shape (B,C, D),
where B is the batch size, C' is the number of channels, and D
is the feature dimension. In the first reasoning block D = dj,
and C corresponds to the number of panel embeddings in the
considered group (C = 9 for RPMs, C = 6 for VAP, and
C = 4 for VASR). Pathways are described as follows: P1 —
a pointwise 1D convolution layer that mixes panel features at
each spatial location; P2 — a sequence of 2 blocks, each com-
prising 1D convolution, ReLU, and BN, that builds higher
level features spanning neighbouring spatial locations; P3 —
analogous to P2, but 1D convolution is replaced with a group
1D convolution that splits the tensor into several groups along
the channel dimension, applies a 1D convolution with shared
weights to each group, and adds together the representations
of each group; P4 — analogous to P3, but groups are arranged
into pairs concatenated along the channel dimension and pro-
cessed with a 1D convolution with shared weights. In contrast
to [Krizhevsky et al., 20121, the proposed group convolution
layers in both P3 and P4 apply TCN [Webb er al., 2020] to
the outputs in each group. In the first layer P3 and P4 split the
input tensor into 3 groups for RPMs and visual analogies, and
into 2 groups for VASR, which allows for producing embed-
dings of each matrix row and each pair of rows, resp. Though
we apply the pathways block in the AVR context, we envis-
age it as a generic module, also applicable to other settings
involving a set of vector representations of shape (B, C, D).

Answer prediction. Representations of the context matrix
filled-in with the respective answer, {2z}~ ,, are processed
with three prediction heads. The target head PY : 2z, — Ui
employs two linear layers interleaved with ReL.U to produce
score g € R describing how well the answer k aligns with
the matrix context. The aggregate rule head Py : {z}}2, —
71 computes the sum of inputs and processes it with two linear
layers interleaved with ReLLU, producing a latent prediction
of matrix rules 7} € R%. We also introduce a novel target-
conditioned rule head Pj : {z;},*, — 72, which processes
its input through a linear layer and computes a weighted sum
of the resultant embeddings with weights given by the pre-
dicted probability distribution over the set of possible an-

swers o({yx}2,), where o denotes softmax. The model is
trained with a joint loss function £ = CE(o({yr}12,),v) +
BBCE(((r1,7))+vBCE(( (72, 1)), where ¢ denotes sigmoid,
CE cross-entropy, BCE binary cross-entropy, 5 = 25 and
~ = b are balancing coefficients.

4 Experiments

We employ a set of diverse AVR tasks to evaluate PONG’s
generalization capabilities. Section 4.1 introduces the se-
lected datasets, Section 4.2 details the experimental setup,
and Section 4.3 presents the results.

4.1 AVR Datasets

AVR models are typically evaluated on RPM benchmarks, a
problem set well-established in the literature. We utilize four
RPM datasets: PGM [Barrett et al., 2018], -RAVEN [Hu et
al., 2021], -RAVEN-Mesh and A-I-RAVEN [Mafkirski and
Marndziuk, 2025a]. We extend the evaluation of PONG be-
yond RPMs, to two benchmarks comprising visual analogies
with both synthetic [Hill ez al., 2019] and real-world [Bitton
et al., 2023] images.

PGM. The PGM dataset was the first large-scale RPM
benchmark designed to evaluate the AVR capabilities of deep
learning models. In PGM each matrix is defined by an ab-
stract structure encompassing its rules, objects, and attributes.
To assess generalization, the dataset is divided into 8 gener-
alization regimes. In the Neutral regime, the train, validation,
and test splits share the same feature distribution, constitut-
ing an i.i.d. learning challenge. In the remaining regimes, the
train and validation splits share a common distribution, while
the test split relies on a different distribution, enabling the
evaluation of generalization to unseen feature combinations.
Each regime contains 1.42M RPMs, where 1.2M, 20K, and
200K belong to the train, validation, and test splits, resp.

I-RAVEN. The RAVEN dataset [Zhang et al., 2019a] was
constructed to expand the range of visual configurations
in RPMs. It incorporates 7 configurations that define ob-
ject locations within the matrices. For instance, in the
Left—-Right configuration, each panel is divided into left
and right parts that can be governed by distinct rules. A sub-
sequent study identified a bias in the RAVEN’s answer gener-
ation method, enabling models to learn shortcut solutions [Hu
et al., 2021]. To alleviate this issue, the I-RAVEN dataset
was proposed, which employs an impartial answer genera-
tion method. We utilize [-RAVEN in the experiments to avoid
learning shortcut solutions. The benchmark consists of 10K
matrices per configuration, totaling 70K matrices, split into
the train, validation, and test with a 60/20/20 ratio.

I-RAVEN-Mesh. The I-RAVEN-Mesh dataset builds upon
I-RAVEN by rendering a grid of 1 to 12 lines on the underly-
ing matrices. The grid is defined by two attributes, the num-
ber of lines and their position. While the dataset was origi-
nally introduced to assess knowledge acquisition in transfer
learning settings, we use it for standard supervised learning.
In this setup, the model is trained directly on the dataset, anal-
ogously to I-RAVEN, to expand the scope of the considered
i.i.d. tasks.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

i.1i.d. tasks: I-RAVEN and I-RAVEN-Mesh

0.0.d. tasks: A-I-RAVEN

I-RAVEN' I-RAVEN I-RAVEN-Mesh  A/Color A/Position A/Size A/Type
ALANS - 27.0 (£8.4) 15.9 (£ 2.6) 15.2 (£1.4) 16.0 (£ 1.0) 23.3 (£6.5)  19.0 (£3.4)
CPCNet 98.5 70.4 (+6.4) 66.6 (+5.1) 51.2 (£3.8) 68.3 (+4.0) 43.5 (£3.5) 38.6 (£4.3)
CNN-LSTM 18.9 27.5 (£1.5) 28.9 (£0.4) 17.0 (£3.1) 24.0 (£2.9) 13.6 (£1.4) 14.5 (£0.8)
CoPINet 46.1 43.2 (£0.1) 41.1 (£0.3) 32.5 (£0.2) 41.3 (£1.6) 21.8 (£0.2) 19.8 (£0.9)
DRNet 97.6 90.9 (£1.1) 83.9 (£2.7) 70.0 (£1.6) 77.5 (£0.9) 54.3 (£3.0) 44.3 (£0.8)
MRNet 83.5 86.7 (£2.3) 79.5 (£2.0) 33.6 (£8.2) 62.6 (+2.6) 20.6 (£5.00 19.4 (+0.3)
PrAE 77.0 19.5 (£0.4) 33.2 (£0.4) 47.9 (£0.9) 68.2 (£3.3) 41.3 (£1.8) 37.0 (£1.7)
PredRNet 96.5 88.8 (+£1.8) 59.2 (£6.4) 59.4 (+£1.0) 73.7 (£0.7) 475 (£1.3) 40.2(£1.3)
RelBase 91.1 89.6 (£0.6) 84.9 (£4.4) 67.4 (£2.7) 76.6 (£0.3) 51.1 (£2.4) 44.1 (£1.0)
SCL 95.0 83.4 (£2.5) 80.9 (+1.5) 65.1 (£2.0) 76.7 (£7.1) 65.6 (£2.4) 49.5 (+1.8)
SRAN 60.8 58.2 (£1.6) 57.8 (£0.2) 38.3 (£1.0) 56.9 (£0.7) 34.4 (£3.00 30.7 (£2.2)
STSN 95.7 51.0 (4 24.8) 48.7 (£11.5) 39.3 (£6.9) 36.1 (£19.9) 38.4 (£16.6) 39.1 (£5.0)
WReN 23.8 18.4 (£0.0) 25.7 (£0.2) 16.9 (£0.5) 17.3 (£0.4) 12.4 (£0.5) 15.1 (£0.7)
PoNG (ours) 95.9 95.9 (+0.7) 89.3 (£2.4) 80.3 (+4.3) 79.3 (£0.7) 735 (£3.1) 594 (+6.9)

Table 1: RAVEN:-related datasets. Mean and standard deviation of test accuracy for three random seeds. Best dataset results are marked in
bold and the second best are underlined. I-RAVENT denotes results on I-RAVEN reported by model authors in the corresponding papers.

A/ColorSize A/ColorType A/SizeType A/Color-P A/Color-A A/Color-D3
ALANS 15.1 (£3.3) 17.7 (£3.2) 15.7 (£3.2) 24.8 (£18.8) 18.3 (£6.6) 22.4 (£7.7)
CPCNet 33.0 (£5.3) 25.0 (£0.9) 24.1 (£1.2) 50.5 (+0.6) 45.9 (£2.7) 37.8 (£0.9)
CNN-LSTM 13.4 (£0.9) 14.7 (£1.7) 13.0 (£0.1) 17.2 (£1.5) 17.1 (£3.7) 20.6 (£6.7)
CoPINet 18.3 (£0.3) 17.2 (£0.1) 19.7 (£0.7) 35.8 (£0.6) 35.2 (£0.5) 26.9 (£0.5)
DRNet 38.3 (£0.5) 29.5 (£0.5) 31.6 (£1.2) 72.8 (£1.3) 66.7 (£1.2) 63.2 (£0.3)
MRNet 18.7 (£1.1) 20.0 (£2.6) 28.2 (£0.9) 34.4 (£3.4) 35.7 (£5.9) 18.6 (£0.1)
PrAE 30.0 (£1.1) 26.7 (£0.7) 25.6 (£0.8) 62.3 (£0.9) 43.0 (£26.5) 55.1 (£0.8)
PredRNet 31.0 (£ 1.6) 28.0 (£0.7) 27.9 (£0.5) 62.3 (£2.2) 56.9 (£1.4) 48.5 (£0.9)
RelBase 36.6 (£0.8) 29.7 (£0.6) 31.1 (£1.0) 73.0 (£1.8) 66.2 (£1.0) 65.7 (£4.6)
SCL 40.8 (£3.2) 32.0 (£2.3) 33.5 (+0.7) 75.6 (£10.1)  60.0 (£4.1) 63.9 (+4.3)
SRAN 22.7 (£1.1) 20.9 (£0.9) 23.3 (£0.3) 42.1 (£2.3) 39.9 (£2.7) 34.6 (£3.6)
STSN 27.3 (£ 4.6) 21.9 (£4.6) 12.3 (£0.1) 39.9 (£14.7)  25.7 (£10.6) 20.7 (£7.7)
WReN 13.5 (£0.1) 13.8 (£0.7) 14.1 (£0.2) 18.0 (£0.4) 17.1 (£0.2) 17.7 (£0.6)
PoNG (ours) 44.7 (£2.1) 34.3 (£0.8) 32.1 (£2.1) 814 (£3.1) 70.0 (£4.1) 81.3 (£1.6)

Table 2: A-I-RAVEN extended regimes. P, A, and D3 denote Progression, Arithmetic, and Distribute Three, resp.

A-I-RAVEN. The A-I-RAVEN dataset was introduced
to combine the generalization assessment capabilities of
PGM with the broad adoption of RAVEN-like benchmarks.
Drawing from PGM, A-I-RAVEN defines 10 generalization
regimes. In each regime, a subset of attributes follows spe-
cific rules in the train and validation splits, while being gov-
erned by different rules in the test split. For example, in the
A/ColorsSize regime, the Color and Size attributes adhere
to the Constant rule in the train and validation splits and are
governed by a rule other than Constant in the test split. This
approach enables the evaluation of models on RPMs with
novel rule—attribute combinations that were not seen during
training. Each regime contains 70K matrices, analogously to
I-RAVEN.

VAP. The VAP benchmark was introduced to assess the
analogy-making capabilities of learning systems. Each VAP
matrix consists of a 2 x 3 grid of panels. The task is to iden-
tify a concept in the source domain (top row) and instantiate
it in the target domain (bottom row) by selecting the correct
answer panel to complete the matrix. The dataset defines five

generalization regimes: Novel Domain Transfer, Novel Tar-
get Domain: Colour of Shapes, Novel Target Domain: Type
of Lines, Novel Attribute Values: Interpolation, and Novel
Attribute Values: Extrapolation, which test the model’s gen-
eralization to novel domains or attribute values. Each regime
contains 710K matrices, with 600K, 10K, and 100K devoted
to the train, validation, and test splits, resp. In all experi-
ments we use the learning analogies by contrasting (LABC)
dataset variant, which constructs the answer set using seman-
tically plausible images that consistently complete the target
domain with some relation.

VASR. The VASR dataset features visual analogies involv-
ing real-world images, requiring the learner to understand
complex real-world scenes before solving the analogy prob-
lem. Each matrix consists of a 2 x 2 panel grid, with the
bottom-right image missing. The task is to complete the
matrix by selecting the correct image from the 4 provided
choices. VASR follows the classical analogy problem formu-
lation, which aims to complete the following relation: A is to
B, as Cis to D. We use Silver data for training, which includes
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Model Neutral Interpolation HO-AP HO-TP HO-Triples HO-LT HO-SC Extrapolation Average
SCL 87.1 56.0 79.6 76.6 23.0 14.1 12.6 19.8 46.1
MRNet 93.4 68.1 38.4 55.3 259 30.1 16.9 19.2 43.4
ARII 88.0 57.8 50.0 64.1 32.1 16.0 12.7 29.0 43.7
PredRNet 97.4 70.5 63.4 67.8 23.4 27.3 13.1 19.7 47.8
DRNet 99.1 83.8 93.7 78.1 48.8 279 13.1 22.2 58.3
Slot-Abstractor 91.5 91.6 63.3 78.3 20.4 16.7 14.3 39.3 51.9
PoNG (ours) 98.1 75.2 92.1 97.7 46.1 16.9 12.6 19.9 57.3

Table 3: PGM. Test accuracy of PONG in all regimes of the PGM dataset. The Held-out Attribute Pairs regime is denoted as HO-AP, Held-out
Triple Pairs as HO-TP, Held-out Triples as HO-Triples, Held-out Attribute line-type as HO-LT, and Held-out Attribute shape-colour as HO-
SC. For reference, we provide results of SCL [Wu et al., 2020; Matkiriski and Maridziuk, 2024a], MRNet [Benny er al., 2021], ARII [Zhang
et al., 2022b], PredRNet [Yang et al., 2023al, DRNet [Zhao et al., 2024], and Slot-Abstractor [Mondal et al., 2024].

ND Transfer =~ NTD LineType NTD ShapeColor NAV Interpolation = NAV Extrapolation  Average
LBC 0.87+£0.005 0.76 £ 0.020 0.78 £ 0.004 0.93 £ 0.004 0.62 £ 0.020 0.79
NSM 0.88 0.79 0.78 0.93 0.74 0.82
PredRNet 0.96 £0.003 0.82+0.010 0.80 £+ 0.010 0.97 £+ 0.002 0.72 £+ 0.060 0.85
PoNG (ours) 098 +0.001 0.78 £ 0.006 0.81 £ 0.006 0.98 + 0.000 0.68 £ 0.007 0.84

Table 4: Visual Analogy Problems [Hill et al., 2019]. Results of LBC, NSM, and PredRNet come from [Yang et al., 2023a, Table 2d]. For
PoNG, we present mean and std of test accuracy for three random seeds. ND denotes Novel Domain, NTD — Novel Target Domain, NAV

— Novel Attribute Values.

150K, 2.25K, and 2.55K matrices in the train, validation, and
test splits, resp. Experiments are conducted on both dataset
variants, featuring random and difficult distractors, resp.

4.2 Experimental Setting

We assess PONG’s generalization by comparing its perfor-
mance to SOTA models on the respective datasets. PONG is
trained using a standard training strategy involving the Adam
optimizer [Kingma and Ba, 2014] with default hyperparame-
ters (A = 0.001, 81 = 0.9, B> = 0.999, ¢ = 10~9). Learning
rate ) is reduced by a factor of 10 after 5 epochs without im-
provement in validation loss. Early stopping is applied after
10 epochs without validation loss reduction. We use batch
size B = 128 for experiments on RAVEN-like datasets and
B = 256 in the remaining cases to reduce training time on
large datasets. All experiments are performed on a single
GPU (NVIDIA DGX A100).

To ensure reproducibility, we use a set of fixed random
seeds, provide a list of commands for running training jobs,
and explicitly list static dependencies in configuration files.
The code for reproducing all experiments is publicly accessi-
ble at: https://github.com/mikomel/raven

4.3 Results

Results on I-RAVEN and I-RAVEN-Mesh. We begin
with evaluating PoNG in the i.i.d. setting on the [-RAVEN
and [-RAVEN-Mesh datasets, comparing it to 13 SOTA base-
lines. As presented in Table 1, on [-RAVEN, using our exper-
imental setup, PONG achieves a test accuracy of 95.9%, out-
performing all other models. When compared to results ob-
tained with model-specific experimental setups (I-RAVENT),
PoNG is placed just behind CPCNet, DRNet, and PredRNet,
which achieve slightly better scores. PONG also secures the
1st place on I-RAVEN-Mesh, demonstrating high capacity to

handle matrices with rules that span a large number of ob-
jects. Unlike many baseline models that rely on deeper ar-
chitectures such as DRNet, SRAN or STSN, PoNG presents
competitive performance despite its parameter-efficient de-
sign. These results demonstrate PONG’s strong ability to
solve i.i.d. RPM tasks.

Results on A-I-RAVEN. To assess generalization, we eval-
uate PoONG on the 4 primary regimes of the A-I-RAVEN
dataset, where the training and test distributions differ signif-
icantly. As shown in Table 1, PONG outperforms all base-
lines across all settings, achieving test accuracies ranging
from 59.4% on A/Type to 80.3% on A/Color, surpass-
ing the best reference models by 10.3 and 9.9 p.p., resp.
Additionally, Table 2 shows PoNG’s performance across 6
extended regimes, which cover more challenging general-
ization tasks. Similarly, PoONG achieves superior perfor-
mance in all but one regimes. Notably, PoONG outper-
forms the 2nd best model in the A/Color-D3 regime by
15.6 p.p. Overall, the results on A-I-RAVEN highlight
PoNG’s ability to perform well across a wide range of gen-
eralization tasks with varying levels of complexity. How-
ever, certain regimes such as the 3 extended regimes with
held-out attribute pairs (A/ColorSize, A/ColorType,
A/SizeType) continue to pose a significant challenge for
all models (including PONG), raising the need for further ad-
vances in generalization.

Results on PGM. Table 3 presents PONG’s results across
PGM regimes. The model achieves strong results in several
settings, particularly excelling in the Held-out Triple Pairs
regime, where it surpasses the best reference model by 19.4
p.p- On average, PONG scored 57.3% accuracy securing the
2nd place, just behind DRNet with 58.3%. These results con-
firm PoNG’s ability to perform well on RPM-based general-
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Distractors ~ Zero-Shot ViT ~ Zero-Shot Swin ~ Supervised Concat  PoNG (best-of-3)  PoNG (mean =+ std)
Random 86.0 86.0 84.1 92.0 91.8+0.3
Difficult 50.3 52.9 54.9 70.5 69.5 +1.1

Table 5: Visual Analogies of Situation Recognition (VASR) [Bitton er al., 2023]. Results of selected baselines come from [Bitton et al.,
2023, Table 3]. For PONG, we present mean with std and best-of-3 test accuracy for three random seeds.

I-RAVEN I-RAVEN-Mesh A/Color A/Position A/Size A/Type
w/oPland P2  92.8 (- 3.1) 74.4 (—-14.9) 73.3 (— 7.0) 76.4 (— 2.9) 58.4 (-15.2) 49.5 (- 9.8)
w/o P3 and P4 95.6 (— 0.3) 88.0 (— 1.3) 78.9 (- 1.4) 78.6 (— 0.7) 73.9 (+ 0.4) 53.9 (- 5.5)
w/o TCN 96.0 (+ 0.1) 90.8 (+ 1.4) 75.4 (— 4.9) 80.3 (+ 1.0) 66.6 (— 6.9) 57.5(— 1.9)
B8=0 94.2 (- 1.7) 91.4 (+ 2.1) 79.0 (- 1.3) 77.5 (- 1.8) 70.3 (- 3.2) 53.3 (- 6.1)
v=0 95.7 (- 0.1) 88.8 (— 0.5) 74.2 (- 6.1) 79.6 (+ 0.3) 73.0 (— 0.5) 56.9 (— 2.5)
B=0Ay=0 79.7(-16.2) 32.7 (—56.7) 72.1 (- 8.2) 75.1 (- 4.2) 64.9 (- 8.6) 49.0 (-10.3)
union 81.4 (—-14.5) 32.5 (—56.8) 76.2 (— 4.1) 74.1 (- 5.2) 66.9 (- 6.6) 46.0 (—13.4)

Table 6: PoNG ablations. Test accuracy averaged across 3 random seeds and a difference to the default model setup (cf. Table 1). Union

denotes application of all ablations except for the first one.

ization challenges extending beyond the RAVEN dataset line.

Synthetic visual analogies. Table 4 presents PONG’s re-
sults across 5 regimes from the VAP benchmark. PoNG
achieves SOTA results in 3 out of 5 settings when compared
to PredRNet, the currently leading VAP model. The Novel
Attribute Values: Extrapolation regime poses the greatest
challenge among VAP regimes, aligning with findings from
PGM, where Extrapolation is also one of the most demand-
ing regimes. Overall, PONG and PredRNet perform compet-
itively, with PredRNet achieving a better average score by 1
p-p- PoNG’s strong results on VAP highlight its versatility in
generalization tasks that extend beyond RPMs.

Real-World visual analogies. To evaluate PONG on the
VASR dataset we followed the approach proposed by
the VASR authors and employed the Vision Transformer
(ViT) [Dosovitskiy er al., 2021] as a perception backbone
that produces image embeddings. Specifically, we used the
same model variant as [Bitton et al., 2023], which is ViT-L/32
pre-trained on ImageNet-21k at resolution 224x224 and fine-
tuned on ImageNet-1k at resolution 384x384. We replaced
the panel encoder of PONG with this frozen pre-trained back-
bone and trained the rest of the model from scratch. The
results are presented in Table 5. The three reference meth-
ods perform comparably to each other, with Supervised Con-
cat being slightly inferior to Zero-Shot methods on the ran-
dom distractor split and slightly superior on the difficult split.
However, in both dataset variants PONG significantly out-
competes the strongest reference result with 92.0% vs. 86.0%
and 70.5% vs. 54.9%, resp. This suggests that the proposed
reasoner block is much more effective in reasoning over pre-
trained embeddings than baseline methods. The results sup-
port the claim that PONG is a versatile model with strong
analogical reasoning capabilities, applicable to both synthetic
and real-world domains.

Ablation study. We performed an ablation study on the
RAVEN dataset line to evaluate the contributions of differ-
ent PONG components. Table 6 summarizes the results.
The removal of P1 and P2 (cf. Fig. 5) leads to perfor-

mance drop, in particular on [-RAVEN-Mesh (—14.9 p.p.)
and A/Size (—15.2 p.p.). Similarly, removing P3 and P4
reduces model performance, especially on A/Type (—5.5
p.p.).- Disabling TCN leads to generally worse results, pri-
marily on A/Color (—4.9 p.p.) and A/Size (—6.9 p.p.).
As shown in [Malkiriski and Maridziuk, 2025b, Appendix B],
PoNG w/o TCN may fail to generalize rules to held-out at-
tributes. Training without P{ (8 = 0) or P (y = 0) typ-
ically reduces model performance, but training with one of
these rule-based prediction heads compensates to some de-
gree the lack of the other. However, the removal of both
(v = 0 A B = 0) deteriorates results across all datasets,
signifying high relevance of the auxiliary training signal in
PoNG’s training. Overall, the ablation study demonstrates
that all employed design choices contribute to the model per-
formance.

5 Conclusion

Generalization to novel problem types is an active and open
area of DL research. In this work, we introduced PoNG, a
novel AVR model that leverages group convolution, paral-
lel design, weight sharing, and normalization. To evaluate
its effectiveness and versatility, we conducted experiments on
four RPM benchmarks and two visual analogy datasets com-
prising both synthetic and real-world images. PONG demon-
strates strong performance across all considered problems,
often surpassing the state-of-the-art reference methods.

Future directions. We believe that the proposed pathways
block, a key component of PoNG, is a generic module also
applicable to other tasks that require reasoning over a set
of objects (vector embeddings). Nevertheless, the presented
experimental evaluation of PoNG is focused on variable
RPM benchmarks, including I-RAVEN, I-RAVEN-Mesh, A-
I-RAVEN, and PGM, and two visual analogy datasets, i.e.
VAP and VASR. Assessing the model’s performance on prob-
lems outside the AVR domain constitutes an interesting con-
tinuation of this work.
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