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Abstract
We study generalization and knowledge reuse ca-
pabilities of deep neural networks in the domain
of abstract visual reasoning (AVR), employing
Raven’s Progressive Matrices (RPMs), a recog-
nized benchmark task for assessing AVR abili-
ties. Two knowledge transfer scenarios referring to
the I-RAVEN dataset are investigated. Firstly, in-
spired by generalization assessment capabilities of
the PGM dataset and popularity of I-RAVEN, we
introduce Attributeless-I-RAVEN (A-I-RAVEN), a
benchmark with 10 generalization regimes that al-
low to systematically test generalization of ab-
stract rules applied to held-out attributes at var-
ious levels of complexity (primary and extended
regimes). In contrast to PGM, A-I-RAVEN features
compositionality, a variety of figure configurations,
and does not require substantial computational re-
sources. Secondly, we construct I-RAVEN-Mesh,
a dataset that enriches RPMs with a novel compo-
nent structure comprising line-based patterns, facil-
itating assessment of progressive knowledge acqui-
sition in transfer learning setting. We evaluate 13
strong models from the AVR literature on the intro-
duced datasets, revealing their specific shortcom-
ings in generalization and knowledge transfer.

1 Introduction
Generalization, the ability of a model to perform well on un-
seen data, remains a fundamental challenge in deep learn-
ing (DL). While DL methods have demonstrated remarkable
achievements in various domains, their generalization capa-
bilities are often questioned, particularly in tasks that de-
mand abstract problem-solving and reasoning skills [Chol-
let, 2019]. One such domain is abstract visual reasoning
(AVR) [Mitchell, 2021; Stabinger et al., 2021; van der Maas
et al., 2021; Małkiński and Mańdziuk, 2023] that encom-
passes tasks requiring (human) fluid intelligence – an as-
pect of human cognition believed to be crucial for reasoning
in never-encountered settings [Carpenter et al., 1990]. The
most popular AVR tasks are Raven’s Progressive Matrices
(RPMs) [Raven, 1936; Raven and Court, 1998], which con-
stitute a common problem found in human IQ tests. Typi-

Figure 1: RPM example. The correct answer is A.

cal RPMs comprise two components – the context panels ar-
ranged in a 3×3 grid with the bottom-right panel missing and
up to 8 answer panels, out of which only one correctly com-
pletes the matrix. Solving an RPM instance requires identifi-
cation of underlying abstract rules applied to certain attributes
of the objects composing the instance (see Fig. 1 for an illus-
trative example).

Design of computational methods capable of tackling
RPMs has for decades been an active area of research [Evans,
1964; Foundalis, 2006; Lovett et al., 2007; Kunda et al.,
2010]. Consequently, a number of works considered auto-
matic creation of RPM datasets [Matzen et al., 2010; Wang
and Su, 2015; Mańdziuk and Żychowski, 2019] and a wide
suite of predictive models [Hernández-Orallo et al., 2016;
Hernández-Orallo, 2017] were proposed, with DL methods
showing the most promising performance [Yang et al., 2022;
Małkiński and Mańdziuk, 2025b]. While this rapid progress
led to exceeding the human level in particular problem se-
tups [Wu et al., 2020; Mondal et al., 2023], a fundamental
challenge of generalization to novel problem settings remains
largely unattained.

Initial works designed several RPM datasets [Matzen et al.,
2010; Wang and Su, 2015; Hoshen and Werman, 2017], how-
ever, measuring generalization was not their focus. While
some works explored knowledge transfer between related
tasks [Mańdziuk and Żychowski, 2019; Tomaszewska et al.,
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2022], the complexity of the datasets was limited and conse-
quently they didn’t pose a challenge for contemporary DL
methods. To measure generalization in modern DL mod-
els, the PGM dataset was introduced [Barrett et al., 2018].
PGM defines eight generalization regimes, each specifying
the distribution of objects, rules and attributes in train and
test splits. For instance, in the Held-out Triples split,
a given rule–object–attribute triplet (e.g. Progression on Ob-
ject’s Size) was assigned only to one of the two splits. In
effect, the models were tested on triplet combinations differ-
ent from training ones, allowing to assess their generalization
capabilities. A subsequent work proposed RAVEN [Zhang et
al., 2019a], another RPM dataset with enriched perceptual
complexity of matrices instantiated in seven visual config-
urations (Center, 2x2Grid, 3x3Grid, Left-Right,
Up-Down, Out-InCenter, Out-InGrid). Moreover,
the benchmark is characterized by a moderate sample size,
i.e. 70K instances, compared to 1.42M RPMs per each of the
eight regimes in PGM. Due to this size disparity, subsequent
research gravitated towards RAVEN and its revised variants
(I-RAVEN [Hu et al., 2021] and RAVEN-Fair [Benny et al.,
2021]), which didn’t require substantial computational re-
sources to train DL models.

Contribution. Drawing inspiration from the broad adop-
tion of RAVEN and the generalization assessment capabili-
ties of PGM, this paper proposes a novel suite of generaliza-
tion challenges stemming from I-RAVEN [Hu et al., 2021] (a
revised variant of RAVEN that removes a bias in RAVEN’s
answer panels). However, unlike I-RAVEN, the proposed
suite of benchmarks allows for a direct assessment of the gen-
eralization and knowledge transfer of AVR models. Com-
pared to PGM, our datasets feature compositionality and va-
riety of figure configurations, and their processing doesn’t re-
quire substantial computational resources. Furthermore, they
include structural annotations, which are utilized, for exam-
ple, in recent neuro-symbolic approaches [Zhang et al., 2021;
Zhang et al., 2022].

First, we introduce Attributeless-I-RAVEN (A-I-RAVEN),
comprising 10 generalization regimes. The 4 primary regimes
correspond to specific held-out attributes ({Position,
Type, Size, Color}), resp. The training matrices in
these regimes adhere to the Constant rule for the respec-
tive attribute, whereas test matrices employ a rule differ-
ent from Constant for this attribute (i.e., Progression,
Arithmetic, or Distribute Three). Moreover, we
propose 6 extended regimes: 3 of them feature a held-out
attribute pair, while another 3 replace the Constant rule
in the training set with each remaining rule. In effect, each
regime comprises different distributions of training and test
data.

Next, we propose I-RAVEN-Mesh, a variant of I-RAVEN
with a new grid-like structure overlaid on the matrices.
The dataset enables assessing generalization to incrementally
added structures and progressive knowledge acquisition in a
transfer learning (TL) setting.

Investigations involving 13 contemporary AVR DL models
reveal that the introduced benchmarks present a substantial
challenge for the tested methods, raising the need for further

advancements in this area.
The key contributions of the paper are summarized below.

• We introduce the A-I-RAVEN dataset that enables mea-
suring generalization across 10 regimes.

• We construct I-RAVEN-Mesh, an extension of I-RAVEN
with a new component structure that facilitates assess-
ment of progressive knowledge acquisition in a TL set-
ting.

• We evaluate the performance of state-of-the-art AVR
models on the introduced benchmarks, uncovering their
limitations in terms of generalization to novel problem
settings.

2 Related Work
Generalization in AVR. In recent years, a variety of AVR
problems and corresponding datasets have emerged [Nie et
al., 2020; Fleuret et al., 2011; Qi et al., 2021; Shanahan et
al., 2020; Hill et al., 2019; Zhang et al., 2020] and several
attempts have been made to measure generalization in con-
temporary AVR models based on the introduced benchmarks.
In particular, distinct visual configurations were employed in
RAVEN to assess how a model trained on one configura-
tion performs on the remaining ones [Zhang et al., 2019a;
Spratley et al., 2020; Zhuo and Kankanhalli, 2021]. Al-
though in such a setting the visual aspects of train/test ma-
trices come from different distributions, the underlying rules
and attributes remain the same. In contrast, A-I-RAVEN en-
ables studying the generalization of rules applied to held-out
attributes, shifting the focus from perception towards reason-
ing. Besides RPMs, the limits of generalization have been
explored in other AVR tasks as well. Visual Analogy Extrap-
olation Challenge evaluates model’s capacity for extrapola-
tion [Webb et al., 2020]. However, such specialized datasets
might favor models that explicitly embed the notion of ex-
trapolation in their design and aim for being invariant only to
specific attributes such as object size or location. Differently,
our benchmarks allow verifying the model’s capacity to learn
a given concept from the data and generalize it to novel set-
tings. This perspective links our work to the recent literature
on concept learning [Moskvichev et al., 2023]. However, the
concept-oriented benchmarks that originate from ARC [Chol-
let, 2019] remain largely unsolved by DL models and pose
a significant challenge even for leading multi-modal large
language models [Mitchell et al., 2023]. In contrast, both
benchmarks proposed in this work are attainable by DL mod-
els, though further advances in generalization abilities of the
models are necessary to consider them solved.

Model architectures. Preliminary attempts to solve RPMs
with DL models involve WReN [Barrett et al., 2018] that rea-
sons over object relations using Relation Network [Santoro et
al., 2017], or SRAN [Hu et al., 2021] that relies on a hierar-
chical architecture with panel encoders devoted to particular
image groups. A common theme enabling generalization in
DL models is to explicitly identify RPM objects. To this end,
RelBase [Spratley et al., 2020] employs Attend-Infer-Repeat,
an unsupervised scene decomposition method, STSN [Mon-
dal et al., 2023] utilizes Slot attention [Locatello et al., 2020]
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(a) A/Position train (b) A/Position test (c) A/Color train (d) A/Color test

Figure 2: A-I-RAVEN. Left: Matrices from the A/Position regime belonging to the 2×2 Grid configuration. In (a), object position
is constant across rows, while in (b) object numerosity is governed by Distribute Three. Right: Matrices from the A/Color regime
belonging to the Left-Right configuration. In (c), object color is constant across rows in left and right image parts, while in (d) it’s
governed by Progression. Correct answers are marked in a green dotted border. Please refer to [Małkiński and Mańdziuk, 2025a,
Appendix A] for examples from other generalization regimes.

to decompose matrix to slots containing particular objects
and Temporal Context Normalization (TCN) [Webb et al.,
2020] to normalize latent matrix panel representations in a
task-specific context, DRNet [Zhao et al., 2024] relies on a
dual-stream design, and MRNet [Benny et al., 2021] presents
a multi-scale architecture. SCL [Wu et al., 2020] proposes
the scattering transformation, CoPINet [Zhang et al., 2019b]
and CPCNet [Yang et al., 2023b] rely on contrastive ar-
chitectures, PredRNet [Yang et al., 2023a] learns to mini-
mize the prediction error, ALANS [Zhang et al., 2021] and
PrAE [Zhang et al., 2022] employ neuro-symbolic architec-
tures, and SCAR [Małkiński and Mańdziuk, 2024b] adapts
its computation to the structure of the considered matrix. De-
spite the high variety of AVR models, experiments on the in-
troduced benchmarks reveal their shortcomings in terms of
generalization and knowledge transfer.

3 Proposed Datasets
The set of attributes in I-RAVEN is A = {Position,
Number, Type, Size, Color} and the set of rules
is R = {Constant, Progression, Arithmetic,
Distribute Three}. For attribute a ∈ A and a dataset
split s ∈ S , where S = {train, val., test}, we define the set of
rules applicable to a in split s by R(a, s) ⊆ R. In I-RAVEN
all rule–attribute pairs are valid in all splits:

R(a, s) = R, ∀a ∈ A ∧ ∀s ∈ S (1)

3.1 Attributeless-I-RAVEN (A-I-RAVEN)
To probe generalization in DL models, we present A-
I-RAVEN, a benchmark composed of 10 generalization
regimes. Example matrices are illustrated in Fig. 2, with addi-
tional samples provided in [Małkiński and Mańdziuk, 2025a,
Appendix A]. Each regime defines a set of held-out attributes
A∗, each with a corresponding rule r∗(a), a ∈ A∗. In train
and validation splits, held-out attribute a ∈ A∗ is governed
by r∗(a). In the test split, a ∈ A∗ is governed by a different

rule sampled from R − {r∗(a)}. In effect, during training,
the model doesn’t see rule–attribute combinations required to
solve test matrices. There are no rule-related constraints on
the remaining attributes. In summary, we have:

R(a, s) =


{r∗(a)} if a ∈ A∗ ∧ s ∈ {train, val.},
R− {r∗(a)} if a ∈ A∗ ∧ s = test,
R if a ̸∈ A∗.

(2)
We define 4 primary regimes with r∗(a) = Constant
that correspond to individual held-out attributes (|A∗| =
1), denoted as A/<Attribute> (e.g., A/Type). Since
Position and Number attributes are tightly coupled (e.g.,
it’s impossible to increase cardinality of objects while keep-
ing their position constant), we allocate a single general-
ization regime, A/Position, to cover both attributes. In
addition, we define 6 extended regimes as supplementary
generalization challenges. In the first group a pair of at-
tributes is held-out in the training set, i.e. |A∗| = 2.
Specifically, we introduce 3 new regimes: A/ColorSize,
A/ColorType, and A/SizeType, based on the respec-
tive attribute pairs. In the second group, Constant rule in
r∗(a) is replaced with each of the 3 remaining rules, leading
to A/Color-Progression, A/Color-Arithmetic,
and A/Color-DistributeThree regimes. While this
modification could be applied to all the described regimes,
we focus on the Color attribute due to its broad range of
possible values.

3.2 I-RAVEN-Mesh
The other of the proposed benchmarks is designed to probe
progressive knowledge acquisition in a TL setting. I-
RAVEN-Mesh extends I-RAVEN by introducing a novel vi-
sual component overlaid on top of the existing I-RAVEN
components (see Fig. 3). Though the dataset can serve as
a learning challenge on its own, the main motivation be-
hind its introduction is to employ models pre-trained on I-
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(a) Constant (b) Progression (c) Arithmetic (d) Distribute Three

Figure 3: I-RAVEN-Mesh. Matrices with the Position attribute of the mesh component governed by all applicable rules. For the sake
of readability, we present examples belonging to the Center configuration. (a) Line position is constant in each row. (b) The line pattern
displayed in the first column is rotated by 90 degrees in subsequent columns. (c) The union set operator applied to the first and the second
column produces line positions in the third column. (d) Each row contains lines arranged in one out of three available patterns. Correct
answers are marked in a green dotted border. Please refer to [Małkiński and Mańdziuk, 2025a, Appendix A] for examples concerning the
Number attribute.

Attribute Rule Description

Number

Constant Each image in a given row contains the same number of lines.
Progression The count of lines in a given row changes by a constant factor (e.g. 2, 4, 6).
Arithmetic The number of lines in the third column is determined based on an arithmetic operation applied

to the preceding columns (e.g. 3− 1 = 2).
Distribute Three Three line counts are sampled and spread among images in a given row.

Position

Constant Each image in a given row contains the same position of lines.
Progression A panel arrangement is sampled in each row and rotated by 90 degrees in subsequent columns.
Arithmetic The position of lines in the third column is computed based on a set operation (union or differ-

ence) applied to the preceding columns.
Distribute Three Three line arrangements are sampled and spread among images in a given row.

Table 1: Description of rule–attribute pairs in I-RAVEN-Mesh.

RAVEN and fine-tune them on I-RAVEN-Mesh with a con-
figurable train sample size, facilitating analysis of their TL
performance. The mesh grid comprises from 1 to 12 lines
placed in predefined locations. The set of available lines cov-
ers the inner and outer edges of a 2 × 2 grid (12 lines in
total). The mesh component has two attributes: Amesh =
{Number,Position}, which govern the count and loca-
tion of lines, respectively. To each attribute a rule r ∈ R can
be applied. Table 1 describes the effect of applying a given
rule–attribute pair to the mesh component. To generate the
mesh component of an I-RAVEN-Mesh matrix, we sample
one of the two attributes a ∈ Amesh and a corresponding rule
r ∈ R that governs its values. As the attributes often de-
pend on each other (e.g., it’s impossible to increase the num-
ber of lines while keeping their position constant), we don’t
constrain the value of the other attribute. The rule–attribute
pairs for the base I-RAVEN components are generated in the
same way as in the original dataset. To generate answers to
the matrix, we follow the impartial algorithm proposed in I-
RAVEN [Hu et al., 2021]. In addition, each matrix contains
at least one incorrect answer that differs from the correct one
only in the mesh component, ensuring that the solver has to

identify the correct rule governing the mesh component in or-
der to solve the matrix. To facilitate training with an auxiliary
loss, in which the model additionally predicts the representa-
tion of rules governing the matrix [Barrett et al., 2018], we
extend the base set of rule annotations with ones concerning
the Mesh component.

4 Experiments
We assess generalization of state-of-the-art models for solv-
ing RPMs on A-I-RAVEN and evaluate progressive knowl-
edge acquisition on I-RAVEN-Mesh.

Experimental setup. In all experiments we use the Adam
optimizer [Kingma and Ba, 2014] with β1 = 0.9, β2 =
0.999, ϵ = 10−8 and a batch size set to 128. Learning rate
is initialized to 0.001 and reduced 10-fold (at most 3 times)
if no progress is seen in the validation loss in 5 subsequent
epochs, and training stops early in the case of 10 epochs
without progress. Unless stated otherwise, each model con-
figuration was trained 3 times with a different seed, and
we report mean and standard deviation for these runs. In
each experiment, we utilize 42 000 training, 14 000 valida-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

I-RAVEN† I-RAVEN (ours) Mesh A/Color A/Position A/Size A/Type

ALANS − 27.0 (± 8.4) 15.9 (± 2.6) 15.2 (± 1.4) 16.0 (± 1.0) 23.3 (± 6.5) 19.0 (± 3.4)

CPCNet 98.5 70.4 (± 6.4) 66.6 (± 5.1) 51.2 (± 3.8) 68.3 (± 4.0) 43.5 (± 3.5) 38.6 (± 4.3)

CNN-LSTM 18.9 27.5 (± 1.5) 28.9 (± 0.4) 17.0 (± 3.1) 24.0 (± 2.9) 13.6 (± 1.4) 14.5 (± 0.8)

CoPINet 46.1 43.2 (± 0.1) 41.1 (± 0.3) 32.5 (± 0.2) 41.3 (± 1.6) 21.8 (± 0.2) 19.8 (± 0.9)

DRNet 97.6 90.9 (± 1.1) 83.9 (± 2.7) 70.0 (± 1.6) 77.5 (± 0.9) 54.3 (± 3.0) 44.3 (± 0.8)

MRNet 83.5 86.7 (± 2.3) 79.5 (± 2.0) 33.6 (± 8.2) 62.6 (± 2.6) 20.6 (± 5.0) 19.4 (± 0.3)

PrAE 77.0 19.5 (± 0.4) 33.2 (± 0.4) 47.9 (± 0.9) 68.2 (± 3.3) 41.3 (± 1.8) 37.0 (± 1.7)

PredRNet 96.5 88.8 (± 1.8) 59.2 (± 6.4) 59.4 (± 1.0) 73.7 (± 0.7) 47.5 (± 1.3) 40.2 (± 1.3)

RelBase 91.1 89.6 (± 0.6) 84.9 (± 4.4) 67.4 (± 2.7) 76.6 (± 0.3) 51.1 (± 2.4) 44.1 (± 1.0)

SCL 95.0 83.4 (± 2.5) 80.9 (± 1.5) 65.1 (± 2.0) 76.7 (± 7.1) 65.6 (± 2.4) 49.5 (± 1.8)

SRAN 60.8 58.2 (± 1.6) 57.8 (± 0.2) 38.3 (± 1.0) 56.9 (± 0.7) 34.4 (± 3.0) 30.7 (± 2.2)

STSN 95.7 59.0 (± 18.5) 48.7 (± 11.5) 39.3 (± 6.9) 36.1 (± 19.9) 38.4 (± 16.6) 39.1 (± 5.0)

WReN 23.8 18.4 (± 0.0) 25.7 (± 0.2) 16.9 (± 0.5) 17.3 (± 0.4) 12.4 (± 0.5) 15.1 (± 0.7)

Table 2: Single-task learning. Mean and standard deviation of test accuracy for three random seeds. Best dataset results are marked in bold
and the second best are underlined. I-RAVEN† provides results on I-RAVEN reported by model authors in the corresponding papers, while
I-RAVEN (ours) presents results obtained with our experimental setup, which utilizes a typical configuration of an optimizer and learning
rate scheduler without model-specific tuning, and doesn’t involve data augmentation, see ”Experimental setup” in Section 4 for details.

A/ColorSize A/ColorType A/SizeType A/Color-P A/Color-A A/Color-D3

ALANS 15.1 (± 3.3) 17.7 (± 3.2) 15.7 (± 3.2) 24.8 (± 18.8) 18.3 (± 6.6) 22.4 (± 7.7)

CPCNet 33.0 (± 5.3) 25.0 (± 0.9) 24.1 (± 1.2) 50.5 (± 0.6) 45.9 (± 2.7) 37.8 (± 0.9)

CNN-LSTM 13.4 (± 0.9) 14.7 (± 1.7) 13.0 (± 0.1) 17.2 (± 1.5) 17.1 (± 3.7) 20.6 (± 6.7)

CoPINet 18.3 (± 0.3) 17.2 (± 0.1) 19.7 (± 0.7) 35.8 (± 0.6) 35.2 (± 0.5) 26.9 (± 0.5)

DRNet 38.3 (± 0.5) 29.5 (± 0.5) 31.6 (± 1.2) 72.8 (± 1.3) 66.7 (± 1.2) 63.2 (± 0.3)

MRNet 18.7 (± 1.1) 20.0 (± 2.6) 28.2 (± 0.9) 34.4 (± 3.4) 35.7 (± 5.9) 18.6 (± 0.1)

PrAE 30.0 (± 1.1) 26.7 (± 0.7) 25.6 (± 0.8) 62.3 (± 0.9) 43.0 (± 26.5) 55.1 (± 0.8)

PredRNet 31.0 (± 1.6) 28.0 (± 0.7) 27.9 (± 0.5) 62.3 (± 2.2) 56.9 (± 1.4) 48.5 (± 0.9)

RelBase 36.6 (± 0.8) 29.7 (± 0.6) 31.1 (± 1.0) 73.0 (± 1.8) 66.2 (± 1.0) 65.7 (± 4.6)

SCL 40.8 (± 3.2) 32.0 (± 2.3) 33.5 (± 0.7) 75.6 (± 10.1) 60.0 (± 4.1) 63.9 (± 4.3)

SRAN 22.7 (± 1.1) 20.9 (± 0.9) 23.3 (± 0.3) 42.1 (± 2.3) 39.9 (± 2.7) 34.6 (± 3.6)

STSN 27.3 (± 4.6) 21.9 (± 4.6) 12.3 (± 0.1) 39.9 (± 14.7) 25.7 (± 10.6) 20.7 (± 7.7)

WReN 13.5 (± 0.1) 13.8 (± 0.7) 14.1 (± 0.2) 18.0 (± 0.4) 17.1 (± 0.2) 17.7 (± 0.6)

Table 3: A-I-RAVEN extended regimes. P, A, and D3 denote Progression, Arithmetic, and Distribute Three, resp.

tion, and 14 000 test matrices, following the standard data
split protocol taken in prior works [Zhang et al., 2019a;
Hu et al., 2021]. All models are trained with the auxiliary
loss with sparse encoding [Małkiński and Mańdziuk, 2024a]
and β = 1. Experiments were run on a worker with a single
NVIDIA DGX A100 GPU.
Models. In addition to the simple CNN-LSTM base-
line [Barrett et al., 2018], we assess generalization of
SOTA AVR models including WReN [Barrett et al., 2018],
CoPINet [Zhang et al., 2019b], RelBase [Spratley et al.,
2020], SCL [Wu et al., 2020], MRNet [Benny et al., 2021],
ALANS [Zhang et al., 2021], SRAN [Hu et al., 2021],
PrAE [Zhang et al., 2022], CPCNet [Yang et al., 2023b], Pre-
dRNet [Yang et al., 2023a], STSN [Mondal et al., 2023], and
DRNet [Zhao et al., 2024]. For direct comparison, we eval-
uate all models on I-RAVEN following the above-described
experimental setup.
Reproducibility. To guarantee reproducibility of experi-
ments, we use a fixed set of random seeds and turn off
hardware and framework features concerning indeterminis-
tic computation wherever possible. Together with the code,
we provide the full training script that can be used to run all

training jobs. The training job is packaged as a Docker im-
age with fixed dependencies to isolate the configuration of the
training environment. The released code allows for genera-
tion of all datasets from scratch, eliminating the dependency
on file-hosting services required to distribute the data. The
code for reproducing all experiments is publicly accessible
at: https://github.com/mikomel/raven

4.1 Generalization on A-I-RAVEN
Main regimes. In the first set of experiments we evaluate
all considered models on 4 primary generalization regimes of
A-I-RAVEN. The results are presented in Table 2, along with
the reference results on I-RAVEN and I-RAVEN-Mesh. The
best outcomes on A/Color and A/Position are achieved
by DRNet, followed by RelBase and SCL that perform com-
parably. In A/Size and A/Type, SCL outperforms other
models, with DRNet and RelBase taking the second and third
place, resp. Interestingly, the top 3 models present a mix of
architectures comprising large models, such as DRNet that
includes a Vision Transformer backbone (24.7M params),
as well as small models, such as SCL and RelBase that in-
clude mainly convolutional and feed-forward layers (0.6M
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and 1.3M params, resp.). This suggests that various archi-
tectural approaches may be taken to achieve reasonable gen-
eralization performance in solving RPMs.

Extended regimes. Table 3 shows the aggregated perfor-
mance of all considered models on 6 extended A-I-RAVEN
regimes. Similarly to the main regimes, the best results are
achieved by SCL, RelBase, and DRNet. Overall, replac-
ing the Constant rule in the training set of the A/Color
regime with Progression yields a dataset of slightly lower
complexity, as the best model on A/Color-Progression
achieved 75.6% accuracy, a 5.6 p.p. increase compared
to the best result on A/Color. Conversely, using the
Arithmetic and Distribute Three rules increases
the difficulty, as measured by the drop of the max accuracy
by 3.3 p.p. and 4.3 p.p., resp. Furthermore, using a pair of
held-out attributes significantly increases the complexity. For
instance, in A/ColorType, the most challenging regime,
the best result is only 32.0%. We conclude that A-I-RAVEN
provides a suite of challenging regimes of variable complex-
ity, in which even the best-performing models are far from
solving all test matrices.

Dataset difficulty. Across all A-I-RAVEN regimes, the
highest average result was achieved by SCL (56.3%), fol-
lowed by DRNet (54.8%) and RelBase (54.1%). While SCL
achieved 83.4% test accuracy on I-RAVEN, on A-I-RAVEN
regimes it scored from 32.0% on A/ColorType to 76.7%
on A/Position. Similar differences can be observed for all
remaining models, which shows that generalization regimes
of A-I-RAVEN pose a bigger challenge than the base dataset.

Fig. 4 displays the difference in performance of top-3 mod-
els on test and validation splits. On I-RAVEN and I-RAVEN-
Mesh the difference is negligible, as in these datasets both
splits follow the same distribution. However, the difference
in attributeless regimes is significant, indicating the need for
further research on generalization.

Tables 4 – 15 in [Małkiński and Mańdziuk, 2025a,
Appendix C] present the results of all considered models on
test and validation splits and the difference between these
two splits for particular datasets/regimes. The difference
in model performance between test and validation splits
in I-RAVEN (Table 4) and I-RAVEN-Mesh (Table 5) is
negligible. In A-I-RAVEN regimes, however, the difference
is significant, showing limitations of all evaluated models
in terms of generalization. Across 4 primary regimes
(Tables 6 – 9), the biggest difference concerns the A/Type
regime, suggesting that generalization of rules applied
to novel shape types constitutes a real challenge for the
contemporary models. In all 3 extended regimes concerning
held-out attribute pairs (A/ColorSize, A/ColorType,
and A/SizeType) the performance difference on test and
validation splits is bigger than in the primary regimes (see
Tables 10 – 12). This drop stems from overall weaker per-
formance on the test split, confirming high difficulty of these
regimes. Model performance on the next 3 regimes concern-
ing the Color attribute and rules other than Constant
(A/Color-Progression, A/Color-Arithmetic,
and A/Color-DistributeThree) is better, though
further progress in generalization is required to fully close

20 30 40 50 60 70 80 90 100
Accuracy ± std (%)

I-RAVEN

Mesh

A/Color

A/Position

A/Size

A/Type

A/ColorSize

A/ColorType

A/SizeType

A/Color-P

A/Color-A

A/Color-D3

83.4
± 2.5

83.0
± 2.5

80.9
± 1.5

81.0
± 1.5

65.1
± 2.0

84.4
± 0.5

-19.2

76.7
± 7.1

94.7
± 5.3

-18.0
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± 2.4

94.0
± 2.6

-28.4

49.5
± 1.8

95.9
± 0.7

-46.4

40.8
± 3.2

94.2
± 1.7

-53.4

32.0
± 2.3

96.4
± 0.4

-64.4

33.5
± 0.7
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± 0.6

-63.7

75.6
± 10.1

88.8
± 7.1

-13.2

60.0
± 4.1

85.0
± 1.5

-25.1

63.9
± 4.3

83.4
± 1.4

-19.5

Test

SCL

Test

DRNet

Test

RelBase

Validation

Figure 4: Dataset difficulty. Performance of top-3 models on test
and validation splits. Numerical values refer to SCL scores.

the performance gap between test and validation splits (see
Tables 13 – 15).

Per-configuration results. Tables 16 – 27 in [Małkiński
and Mańdziuk, 2025a, Appendix C] present the detailed re-
sults of all considered models for all matrix configurations.
The most challenging configurations in I-RAVEN and I-
RAVEN-Mesh are 3x3Grid and Out-InGrid, in which
image panels contain more objects than in the remaining con-
figurations. Apparently, such setups require stronger rea-
soning capabilities to correctly identify the rules applied to
multiple objects. Also, the results on the Left-Right
and Up-Down configurations are relatively weaker in most
regimes. In these configurations, rules may be applied
to both matrix components (left/right and up/down, resp.),
increasing the task complexity. This also concerns the
Out-InGrid configuration in the A/Size regime, and
the Out-InCenter configuration in the A/SizeType
regime. Results in the A/Position regime are close-
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Figure 5: Transfer learning. Mean and standard deviation of test accuracy on I-RAVEN-Mesh across three random seeds. Models were
trained in two setups: 1) from scratch on I-RAVEN-Mesh with variable sample size; 2) pre-trained on full I-RAVEN and fine-tuned on I-
RAVEN-Mesh with variable sample size. Results for setups 1) and 2) are shown below and above the plot lines, resp.

to-perfect in configurations comprising a single object in
each component (Center, Left-Right, Up-Down, and
Out-InCenter) and weaker in the remaining configura-
tions (2x2Grid, 3x3Grid and Out-InGrid). This per-
formance drop can be attributed to the fact that Position
attribute can only be effectively applied to the 2x2Grid,
3x3Grid and Out-InGrid configurations allowing mod-
ification of the object’s position. In the remaining configura-
tions its application does not introduce any changes.

4.2 Progressive Knowledge Acquisition on
I-RAVEN-Mesh

In the second set of experiments we employ I-RAVEN-Mesh
to examine the TL ability of the best performing models.
To this end, we consider variants of partial I-RAVEN-Mesh
dataset with a fraction q ∈ { 1

64 , . . . , 1} of the training set
and compare the performance of a model trained from scratch
on a partial dataset to that of a model pre-trained on full I-
RAVEN and fine-tuned on the respective part of I-RAVEN-
Mesh. Fig. 5 shows that for q = 1

64 pre-training RelBase,
MRNet, CPCNet, SRAN, and CoPINet on I-RAVEN leads
to gains smaller than 15 p.p., whereas pre-training DRNet,
SCL, PredRNet, and STSN improved their accuracy by 50.6,
34.8, 23.4 and 29.6 p.p., resp. In addition, TL clearly im-
proved performance of DRNet, SCL, PredRNet, and STSN
in all considered settings. In particular for q = 1 by 9.0, 5.9,
20.5, and 18.8 p.p., resp., indicating the models’ capacity for
knowledge reuse.

5 Conclusion
We investigate generalization capabilities of DL models in the
AVR domain. To accelerate research in this area, we propose
two RPM benchmarks. A-I-RAVEN introduces 10 general-
ization regimes of variable complexity that assess model’s
capability to solve matrices with rules applied to novel at-
tributes at various levels of complexity (primary and extended
regimes). Contrary to the existing PGM dataset, A-I-RAVEN
features compositionality, offers a variety of figure config-
urations, and above all does not require substantial compu-
tational resources. I-RAVEN-Mesh overlays line-based pat-
terns on top of the RPM, facilitating TL studies. Experiments
on 13 strong literature AVR models reveal their limitations
in terms of generalization. We believe that the introduced
datasets complement existing RPM benchmarks and will fos-
ter progress in the AVR area.
Limitations and future work. In this work we study gen-
eralization and knowledge transfer in contemporary AVR
models employing RPM datasets. While RPMs are by far
the most popular AVR tasks, the AVR domain also includes
other types of problems not covered in the paper [Małkiński
and Mańdziuk, 2023]. The Machine Number Sense dataset
presents visual arithmetic problems [Zhang et al., 2020],
VAEC defines an extrapolation challenge [Webb et al., 2020],
while ARC proposes a set of diverse tasks in a few-shot
learning setting [Chollet, 2019]. Similar studies could be
performed on problems other than RPMs to test the perfor-
mance and knowledge transfer abilities of AVR models in
other problem settings.
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