
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Counterfactual Explanations Under Model Multiplicity
and Their Use in Computational Argumentation

Gianvincenzo Alfano1 , Adam Gould2 , Francesco Leofante2 ,
Antonio Rago2,3 and Francesca Toni2

1DIMES Department, University of Calabria, Rende, Italy
2Department of Computing, Imperial College London, United Kingdom
3Department of Informatics, King’s College London, United Kingdom

g.alfano@dimes.unical.it, {adam.gould19, f.leofante, a.rago, f.toni}@imperial.ac.uk

Abstract
Counterfactual explanations (CXs) are widely
recognised as an essential technique for providing
recourse recommendations for AI models. How-
ever, it is not obvious how to determine CXs in
model multiplicity scenarios, where equally per-
forming but different models can be obtained for
the same task. In this paper, we propose novel qual-
itative and quantitative definitions of CXs based
on explicit, nested quantification over (groups) of
model decisions. We also study properties of these
notions and identify decision problems of interest
therefor. While our CXs are broadly applicable, in
this paper we instantiate them within computational
argumentation where model multiplicity naturally
emerges, e.g. with incomplete and case-based argu-
mentation frameworks. We then illustrate the suit-
ability of our CXs for model multiplicity in legal
and healthcare contexts, before analysing the com-
plexity of the associated decision problems.

1 Introduction
Counterfactual reasoning is often leveraged in eXplainable
AI (XAI) to shed light on the decision-making process of AI
models (e.g. decision trees [Tolomei et al., 2017] and neu-
ral networks [Wachter et al., 2017]). In particular, counter-
factual explanations (CXs) help users understand the outputs
of a model by revealing how minimal changes in its inputs
would alter the model’s decisions. CXs are often advocated
as being useful because they can provide actionable insights
into AI models and empower recourse recommendations to
users that are negatively affected by the models’ decisions.
For example, to understand a loan rejection for an applicant
asking for £15k to be repaid over 5 years, a CX may suggest
a longer repayment period, thus showing the user what needs
to be changed for the loan to be approved.

While CXs are widely advocated in XAI for explain-
ing individual models [Guidotti, 2024a], recent work has
highlighted the challenges arising when determining CXs in
model multiplicity scenarios, where equally performing mod-
els that slightly differ in their internals can be obtained for the
same task [Black et al., 2022]. Indeed, under model multi-

plicity, CXs computed for individual models may fail to pro-
vide valid recourse with the other models [Leofante et al.,
2023; Jiang et al., 2024], thus raising questions about their
justifiability as explanations. The following example illus-
trates the problem.

Example 1. Consider a simple loan application scenario
modelled by binary features LoanTermOver10Years,
i.e., whether the loan term exceeds 10 years (1) or not (0), and
LoanAmountBelow10k, i.e., whether the amount to be
borrowed is below £10k (1) or not (0). Assume an individual
represented by input x = [0,0] applies for a loan and the bank
uses three equally performing classifiers inF ={f1, f2, f3} to
predict whether the loan should be granted. Let y1=f1(x)=0,
y2=f2(x)=0 and y3=f3(x)=0 be the classifier’s outputs for
x as shown below, left:

f1

x=[0, 0]

y1=f1(x)=0

y2=f2(x)=0

y3=f3(x)=0

x′=[0, 1]

f1(x
′)=1

f2(x
′)=0

f3(x
′)=0

f2

f3

f1

f2

f3

Then, the loan may be rejected. Suppose the applicant re-
quests an explanation for the rejection and a CX x′ =[0,1] is
produced as shown above, right, intuitively encoding ‘if-only
the applicant were to request less than £10k then their loan
would be accepted’. The choice of x′ is based on it being a
valid CX for f1, but, since x′ is still rejected by f2 and f3, it
is unclear whether x′ is the best CX under model multiplicity
since it only changes one model’s prediction. ◻

In this paper, we take the view that computing CXs un-
der model multiplicity requires fine-grained reasoning about
the outputs of multiple models simultaneously, and propose a
novel approach for this. Specifically, we focus on Multiplicity
Decision Frameworks (MDFs) where individual model deci-
sions are first-class citizens and propose novel definitions of
CXs based on explicit, nested quantification over (groups of)
models in the MDFs, as illustrated next.

Example 2. Continuing from Example 1, we observe that x′
encodes the following explanation, which we call an ∃∀-CX
for x: there exists at least one (non-empty) group G = {f1} of
models among those in F , such that (i) all models in G agree
on the outcome for x, and (ii) x′ is a valid CX for x and (all
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models in) G. Other CXs may exist, e.g. x′′ = [1,0] for which
f1(x

′′) = f2(x
′′) = f3(x

′′) = 1, which we call a ∀∀-CX for
x as it captures the following intuition: (i) all models in F
agree on the outcome for x, and (ii) x′′ is a CX for x in all
models in F . Such x′′ is intuitively stronger, and potentially
more informative, than x′ as it better captures the behaviour
of the three models. ◻

In addition to qualitative notions of CXs as in the earlier
example, we define quantitative notions of CXs intuitively
capturing the number of subsets G ofF in which all functions
fi ∈ G: (1) agree on fi(x), and (2) differ in the output for x
and x′, i.e., fi(x) ≠ fi(x′).

We then study the computational properties of our novel
notions and the benefits they provide under model multiplic-
ity, e.g. depending on the quantity of models that change their
output, and pointing to trade-offs between the CXs’ benefits
and their cost to action.

While our notions of CXs are applicable to MDFs with
a wide range of AI models, in this paper we explicitly
study instantiations thereof in settings where decision
models are represented by argumentation frameworks
(AFs) as in Computational Argumentation (CA) (see
[Atkinson et al., 2017] for an overview). Within CA,
the multiplicity that we target may result from the emer-
gence of different AFs with the same arguments (e.g. as
in argumentation for case-based reasoning when choos-
ing different default arguments [Cyras et al., 2016;
Gould et al., 2024]). Further, this multiplicity natu-
rally arises in AFs that adopt a possible-world seman-
tics, e.g. incomplete AFs [Baumeister et al., 2018;
Baumeister et al., 2021].

Contributions. In summary, our main contributions are:
● a general framework for counterfactual reasoning under

multiplicity, formalising novel qualitative and quantitative
notions of CXs based on explicit, nested quantification;
● a categorization of qualitative definitions of CXs, based on

how well they capture multiplicity, and the definition of
natural decision problems related to their computation;
● instantiations of our general framework in CA giving novel

notions of CXs for incomplete AFs and AFs for case-based
reasoning, and the study of the complexity of the decision
problems for these instantiations;
● an illustrative exploration of the applicability of our CA

instantiation within legal and healthcare contexts.

2 A General Theoretical Framework
In this section we define qualitative and quantitative no-
tions of CXs for generic Multiplicity Decision Frameworks
(MDFs), dealing with model multiplicity, and making use of
the following notation. Given two functions f1 ∶ D1 → C1

and f2 ∶ D2 → C2, we say that f1 and f2 are similar if
they share the same domain and codomain (i.e., D1 = D2

and C1 = C2). Given similar functions f1, . . . , fn, we simply
denote D and C their domain and codomain, respectively.
Given a set F = {f1, . . . , fn} of functions, we denote with
pow(F) the powerset of F .

Definition 1 (MDF). A Multiplicity Decision Framework
(MDF) consists of a set F = {f1, . . . fn} of similar func-
tions that, for any input instance x ∈ D, returns the output
F(x) = {yi = fi(x) ∣ i ∈ {1, . . . , n}} ∈ C

n.
Note that the output of an MDF may be passed to a method

producing a single output for each input as is done in several
machine learning contexts, e.g. using majority voting [Black
et al., 2022]. In these contexts, if a CX is computed post-
hoc for the single output, then issues concerning the CX’s
justifiability may emerge, as we have seen in Example 1. In
this paper we take the view that CXs for MDFs should be
more granular and allow to reason ex-ante about (sets of) de-
cisions corresponding to different elements in the MDF’s out-
put explicitly. In the remainder of this section, we define new
qualitative and quantitative notions of CXs, where individual
model predictions are first-class citizens.

2.1 A Qualitative Approach to CXs
We consider four notions of CXs, based on choosing (i) sub-
sets of the set of functions in an MDF such that the functions
all agree on the output for a given input, and (ii) CXs that are
valid for all or some of the functions in the chosen subsets
while being ‘close enough’ to the input, according to a dis-
tance metric d ∶D×D → N , as standard in the XAI literature
when defining CXs [Guidotti, 2024a].
Definition 2 (νµ-CX). Let F = {f1, . . . fn} be an MDF, x ∈
D an input and ν,µ ∈ {∀,∃} be two quantifiers. Given a
threshold δ ∈ N, we say that x′ ∈ D is a νµ-CX for x, F and
δ iff d(x,x′) ≤ δ and

• for ν = ∀ and µ ∈ {∀,∃}:
ν fi, fj ∈ F . fi(x) = fj(x) and
µfk ∈ F . fk(x

′) ≠ fk(x);
• for ν = ∃ and µ ∈ {∀,∃}:
ν G ∈ pow(F) ∖ ∅. fi(x) = fj(x) for all fi, fj ∈ G and
µfk ∈ G. fk(x

′) ≠ fk(x);
Intuitively, for ∀∀-CXs and ∀∃-CXs, all functions agree

on the output for the given input, and the CXs offer valid
recourse for all/some functions in F , resp.; instead, for ∃∀-
CXs and ∃∃-CXs, only some functions in F need to agree
on the output for the given input, and the CXs offer valid
recourse for these functions.

Note that Definition 2 captures proximity by means of
a threshold δ. This is to ease the discussion on computa-
tional properties later in the paper, as is often the case in
the XAI literature, e.g. [Leofante et al., 2023; Mohammadi
et al., 2021]. However, we will also consider optimal coun-
terfactuals, formalised as follows. In the remainder, the set
of νµ-CXs for x, F and δ is denoted as νµ(x,F , δ). More-
over, x′ ∈ νµ(x,F , δ) is said to be optimal iff there is no
x′′ ∈ νµ(x,F , δ) such that d(x,x′′) < d(x,x′). The set of
optimal νµ-CXs for x, F and δ is denoted as ν̃µ(x,F , δ).

Informally, Definition 2 allows to specify CXs for subsets
of F that can be chosen dynamically by using the quantifiers
ν and µ, as illustrated in the following example.
Example 3. Consider the MDF introduced in Example 1.
Formally, we haveF = {f1, f2, f3}with fi ∶ {0,1}

2 → {0,1}
for any i ∈ {1,2,3} and thus D = {0,1}2, C = {0,1}3. Con-
sider the distance metric d([a1, a2], [b1, b2]) = ∣a1−b1∣+∣a2−
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b2∣, and threshold δ = 2. Then, given the input x = [0,0], the
(optimal) νµ-CX of x w.r.t. F and δ are described in the last
column of the following table.

instance f1(⋅) f2(⋅) f3(⋅)
x = [0,0] 0 0 0 d(x, ⋅) νµ(x,F , δ)

x′ = [0,1] 1 0 0 1 ∀̃∃ ∃̃∀ ∃̃∃
x′′ = [1,0] 1 1 1 1 ∀̃∀ ∀̃∃ ∃̃∀ ∃̃∃

x′′′ = [1,1] 1 1 1 2 ∀∀ ∀∃ ∃∀ ∃∃

It holds that functions fis (with i ∈ {1,2,3}) classify the input
instance x = [0,0] (resp., x′′ and x′′′) with fi(x) = 0 (resp.,
fi(x

′′) = fi(x
′′′) = 1). Thus, x′′ and x′′′ are ∀∀-CXs for

x, F and δ. However, among x′′ and x′′′, only the former is
optimal, due to having a lower distance from x (as d(x,x′′) =
1 < d(x,x′′′) = 2). ◻

We will focus on two decision problems regarding νµ-
CXs, i.e., existence and verification, as follows.
Definition 3 (Existence). Let F = {f1, . . . fn} be an MDF,
x ∈ D be an input, δ a distance threshold, and ν, µ ∈ {∀,∃}
be two quantifiers. Eνµ (resp. Ẽνµ) is the problem of deciding
whether there exists a νµ- (resp., ν̃µ-) CX for x, F and δ.

The following proposition states the relations between the
existence problems, also synthesized in Figure 1.
Proposition 1. The following relations hold:

(a) E∀∀ implies E∀∃ (resp., Ẽ∀∀ implies Ẽ∀∃);
(b) E∀∃ implies E∃∀ (resp., Ẽ∀∃ implies Ẽ∃∀);
(c) E∃∀ and E∃∃ (resp., Ẽ∃∀ and Ẽ∃∃) are equivalent;
(d) Ẽνµ and Eνµ are equivalent, for any ν,µ ∈ {∃,∀};
(e) The inverse of relations (a) and (b) does not hold.

Note that (d) is trivial, as the existence of a νµ-CX for x,
F and δ implies the existence of an optimal νµ-CX for x, F
and δ, and vice versa, for any fixed ν,µ ∈ {∀,∃}.
Definition 4 (Verification). Let F = {f1, . . . fn} be an MDF,
x,x′ ∈ D be two inputs, δ a distance threshold, and ν,µ ∈
{∀,∃} be two quantifiers. Vνµ (resp., Ṽνµ) is the problem of
checking whether x′ is a νµ- (resp., ν̃µ-) CX for x, F and δ.

Differently from the case of the existence problem, the op-
timality constraint makes the problems Vνµ and Ṽνµ non-
equivalent. That is, Ṽνµ implies Vνµ, while the vice-versa
may not hold as there may exist some νµ-CX for x, F and δ
that is not optimal, as illustrated next.
Example 4. Continuing from Example 3, for any pair of
quantifiers ν,µ ∈ {∃,∀} it holds that (x,x′′,F , δ = 2) and
(x,x′′′,F , δ) are true instances of Vνµ, as both x′′ and x′′′

belongs to νµ(x,F , δ). However, as d(x,x′′) < d(x,x′′′),
we have that (x,x′′,F , δ) is the only true instance of Ṽνµ. ◻

The relationships between verification problems are out-
lined below and summarised in Figure 1.
Proposition 2. The following relations hold:
(a) V∀∀ implies V∀∃;
(b) V∀∃ implies V∃∀;
(c) V∃∀ and V∃∃ (resp., Ṽ∃∀ and Ṽ∃∃) are equivalent;
(d) Ṽνµ implies Vνµ, for any ν,µ ∈ {∃,∀};
(e) The inverse of relations (a) and (b) does not hold.

Ẽ∃∃ ≡ Ẽ∃∀ ≡ Ẽk=1Ẽ∀∃Ẽk=2n ≡ Ẽ∀∀

V∃∃ ≡ V∃∀ ≡Vk=1V∀∃Vk=2n≡ V∀∀

Ṽ∀∃Ṽk=2n ≡ Ṽ∀∀ Ṽ∃∃ ≡ Ṽ∃∀ ≡ Ṽk=1

E∃∃ ≡ E∃∀ ≡ Ek=1E∀∃Ek=2n ≡ E∀∀

Figure 1: Relations for existence (top), and verification problems
(bottom) from Propositions 1-3.

2.2 A Quantitative Approach to CXs
Our qualitative notions of CXs offer limited insight into the
numerical strength of an explanation in terms of multiplic-
ity. Moreover, when the functions in F do not all agree on
the outcome for x, the qualitative notions cannot distinguish
the type of CX. For illustration, assuming f3(x) = 1 in the
previous example, we would no longer be able to distinguish
between x′ and x′′, as they collapse to be both ∃∀-CXs for x.

Here, we introduce a novel, entirely quantitative definition
of CXs, making use of the following notation. We denote
with F(x,x′) = ∣{G ∈ pow(F). fi(x) = fj(x) and fi(x

′) ≠

fi(x) for all fi, fj ∈ G}∣ the number of subsets G of F in
which all functions fi ∈ G: (1) agree on fi(x), and (2) differ
in the output for x and x′, i.e., fi(x) ≠ fi(x′). We illustrate
this notation next.
Example 5. Consider the MDF F = {f1, f2, f3} and inputs
x = [0,0] and x′ = [0,1] of Example 3 having distance
d(x,x′) = 1 ≤ δ = 2. We have that F(x,x′) = ∣{∅,{f1}}∣ = 2.
When considering x′ = [1,0] (or x′ = [1,1]) we have that
F(x,x′) = ∣pow(F)∣ = 2

3 = 8. ◻

Definition 5 (k-CX). Let F = {f1, . . . fn} be an MDF, x ∈D
an input, δ ∈ N a threshold, and k ∈ N+ a positive integer. We
say that x′ ∈ D is a k-CX for x, F and δ iff d(x,x′) ≤ δ and
F(x,x′) ≥ k.

The set of k-CXs for x, F and δ is denoted as k(x,F , δ).
Moreover, x′ ∈ k(x,F , δ) is said to be optimal iff there is
no x′′ ∈ k(x,F , δ) such that d(x,x′′) < d(x,x′). The set of
optimal k-CX for x, F and δ is denoted as k̃(x,F , δ).
Example 6. Continuing from the previous example, we have
that x′ and x′′ = [1,1] are the only 8-CXs for x, F and δ.
Moreover, only x′ is optimal, i.e., 8̃(x,F , δ) = {x′}. ◻

The natural quantified versions of the existence and verifi-
cation problems follow.
Definition 6 (Quantified Existence). Let F = {f1, . . . fn} be
an MDF, k ∈ N, x ∈ D be an input, and δ a threshold. Ek

(resp., Ẽk) is the problem of deciding whether there exists a
k- (resp., k̃-) CX for x, F and δ.
Definition 7 (Quantified Verification). Let F = {f1, . . . fn}
be an MDF, k ∈ N, x,x′ ∈D be two inputs, and δ a threshold.
Vk (resp., Ṽk) is the problem of checking whether x′ is a k-
(resp., k̃-) CX for x, F , and δ.

The next proposition states the relations between the exis-
tence and verification problems, also synthesized in Figure 1.
Proposition 3. Let F = {f1, . . . fn} be an MDF, x an input,
and δ a threshold. The following relations hold:
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(a) V2n and V∀∀ (resp., Ṽ2n and Ṽ∀∀) are equivalent;
(b) E2n and E∀∀ (resp., Ẽ2n and Ẽ∀∀) are equivalent;
(c) E∃∃ and E∃∀ (resp., Ẽ∃∃ and Ẽ∃∀) are equivalent to Ek=1

(resp., Ẽk=1);
(d) V∃∃ and V∃∀ (resp., Ṽ∃∃ and Ṽ∃∀) are equivalent to Vk=1

(resp., Ṽk=1).

3 An Argumentative Setting
We now instantiate our framework within the context of
Computational Argumentation (CA), choosing specifically
Abstract Argumentation (AA) as the underlying form of
CA [Bench-Capon and Dunne, 2007]. We first give some
core background in AA (Section 3.1), specifically on the AA
Framework (AF) [Dung, 1995], followed by the correspond-
ing instantiations of the notions introduced in Section 2 (Sec-
tion 3.2). We then illustrate the emergence of model mul-
tiplicity in AA with two case studies: with incomplete AF
[Baumeister et al., 2018; Fazzinga et al., 2020] (Section 3.3)
and with AA-CBR [Cyras et al., 2016; Gould et al., 2024],
when an AF is used to perform case-based reasoning (Sec-
tion 3.4). Finally, we study the computational complexity of
the existence and verification problems we have defined in the
argumentative setting we consider (Section 3.5).

3.1 Background on AFs
Let A a set of arguments, which we call universal. An Ab-
stract Argumentation Framework (AF) [Dung, 1995] is a pair
⟨A,R⟩, where A ⊆ A is a set of arguments and R ⊆ A × A
is a set of attacks: if (a, b) ∈ R then we say that a attacks
b. Given an AF Λ = ⟨A,R⟩ and a set S ⊆ A of arguments,
the sets of defeated and acceptable arguments w.r.t. S are as
follows (where Λ is understood):
● Def(S) = {a ∈ A ∣ ∃(b, a) ∈ R. b ∈ S};
● Acc(S) = {a ∈ A ∣ ∀(b, a) ∈ R. b ∈ Def(S)}.
Then, S ⊆ A is said to be (i) conflict-free iff S∩Def(S) = ∅;
and (ii) admissible iff it is conflict-free and S ⊆ Acc(S).

Different semantics have been proposed to character-
ize collectively acceptable sets of arguments, called exten-
sions [Dung, 1995]. Specifically, S⊆A is an extension called:
● complete (co) iff it is admissible and S = Acc(S);
● preferred (pr) iff it is a ⊆-maximal complete extension;
● stable (st) iff it is a preferred extension s.t. S∪Def(S)=A;
● grounded (gr) iff it is a ⊆-minimal complete extension.

Example 7. Let Λ = ⟨A,R⟩ be an AF where A = {a,b,c}
and R = {(a,b), (b,a), (b,c), (c,c)}. AF Λ has three com-
plete extensions: E1 = ∅,E2 = {a},E3 = {b}, where E2 and
E3 are preferred, E3 is stable, and E1 is grounded. ◻

The set of complete (resp. stable and grounded) extensions
of an AF Λ will be denoted by co(Λ) (resp. pr(Λ), st(Λ),
gr(Λ)). With a small abuse of notation, we also use gr(Λ)
to denote the grounded extension.

Several decision problems can be associated to an AF Λ un-
der semantics σ, including the verification problem, denoted
as Vσ,Λ

(S), that checks whether a given set S of arguments
belongs to σ(Λ). For illustration, considering the AF Λ of
Example 7, Vst,Λ

(S = {b}) returns true as S ∈ st(Λ).

a b a b a b a∆: Λ1: Λ2: Λ3:

Figure 2: iAF ∆ of Example 8 and its completions Λi with
i ∈ {1,2,3}. (Dashed) nodes/arrows represent (uncertain) argu-
ments/attacks, respectively.

The complexity of the above problems has been investi-
gated (see [Dvorák and Dunne, 2017] for a survey).

3.2 Argumentative MDFs and CXs
Argumentative Multiplicity Decision Frameworks are MDFs
comprising argumentative functions able to solve argumen-
tative queries about decision problems in the argumentation
frameworks (AFs in this paper) underpinning the functions,
as follows. Note that, from now on, for uniformity with Sec-
tion 2, we use x to denote a set of arguments in A.
Definition 8 (AA-MDF). An AA Multiplicity Decision
Framework (AA-MDF) is an MDF with F = {f1, . . . fn} con-
sisting of argumentative functions fi(x) = Pσi,Λi

i (x) whose
input is a set of arguments x ⊆ A, and whose output is a
boolean answer to the question Pσi,Λi

i (x), where: P is a de-
cision problem; σi is a semantics; and Λi is an AF.

Thus, two functions in an AA-MDF are similar in that they
share the same domain (i.e., the universal set of argumentsA)
and the same codomain (i.e., a boolean value corresponding
to the output of an argumentative decision problem).

Qualitative and quantitative CXs for AA-MDFs are then as
in Section 2, but using the following concrete distance metric
whereby the distance between two sets of arguments is the
number of changes needed to make them equal.
Definition 9 ( Symmetric Difference Distance Metric). Let
Λ = ⟨A,R⟩ be an AF. Given two sets x ⊆ A and x′ ⊆ A of
arguments, the symmetric difference distance metric d(x,x′)
between x and x′ is given by d(x,x′) = ∣x ∖ x′∣ + ∣x′ ∖ x∣.

Considering, e.g., the sets x = {a,b}, x′ = {b} and
x′′ = {a}, it holds that d(x,x′) = d(x,x′′) = 1. We note
that a similar distance metric is commonly adopted in several
works within logic-based explainable AI to compare vectors
of (binary) features [Barceló et al., 2020; Alfano et al., 2025;
Guidotti, 2024b].

3.3 AA-MDFs and CXs with Incomplete AF
For our first case study, consider incomplete AFs (iAFs),
i.e., tuples ⟨A,B,R,T ⟩, where A and B are disjoint sets
of arguments, and R and T are disjoint sets of attacks be-
tween arguments in A ∪ B. Arguments in A and attacks
in R are said to be certain, while arguments in B and at-
tacks in T are said to be uncertain [Baumeister et al., 2018;
Fazzinga et al., 2020]. Certain arguments/attacks in A/R are
definitely known to exist, while uncertain arguments/attacks
in B/T are not known for sure: they may or may not occur.

An iAF compactly represents alternative AF scenar-
ios, called completions. A completion for an iAF ∆ =

⟨A,B,R,T ⟩ is an AF Λ = ⟨A′,R′⟩ such that A ⊆ A′ ⊆ A∪B
and R ∩ (A′ ×A′) ⊆ R′ ⊆ (R ∪ T ) ∩ (A′ ×A′).

Verification problems for iAF have been investigated
in [Baumeister et al., 2018; Fazzinga et al., 2020]. Given an
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iAF ∆ = ⟨A,B,R,T ⟩, a set of arguments x ⊆ (A∪B), and a
semantics σ ∈ {gr,co,pr,st}, the possible/necessary verifi-
cation problem under σ (denoted as PVσ,∆

/NVσ,∆) consists
in deciding whether x is a σ-extension in any/all completions
of ∆, respectively.
Example 8. Consider a legal situation where a defendant,
Alex, is accused of robbery. Bob, a potential witness, says
that they possibly saw Alex. It is unclear whether Bob will
testify or whether the jury will consider Bob’s eventual testi-
mony. This situation can be modelled by the iAF ∆ of Fig-
ure 2 (left), where statements ‘Alex will not be found guilty’
and ‘Bob will testify’ are represented by arguments a and b,
respectively. The iAF ∆ has three completions Λ1, Λ2, and
Λ3 (see Figure 2) capturing alternative scenarios. x = {a} is a
stable extension for all the three completions (i.e., NVst,∆

(x)
holds), while x′ = {b} is a stable extension in only one of the
three completions (i.e., PVst,∆

(x′) holds). ◻

However, if PV/NV problems are false, a user may want to
know the reasons. For instance, assume the user is interested
in knowing whether both Bob will testify and Alex will not be
found guilty. As x = {a,b} is neither a possible nor necessary
extension, an interesting question is why not. To answer such
questions we make use of an AA-MDF where argumentative
function fi(x) solve the problem Vσi,Λi

i (x), as outlined next.
Example 9. Consider the iAF ∆ of Example 8. To capture
such multiplicity , an AA-MDF F = {f1, f2, f3} (see Fig-
ure 3) can be instantiated, where functions fi(x) = Vst,Λi(x)
return true if x ∈ st(Λ). Thus:

• for x = {a,b}, f1(x) = f2(x) = f3(x) = 0, intuitively
capturing the fact that {a,b} is not a stable extension in
any of the three AFs;

• for x′ = {b}, f1(x′) = 1 and f2(x
′) = f3(x

′) = 0, in-
tuitively capturing the fact that {b} is a stable extension
only for AF Λ1; and

• for x′′ = {a}, f1(x′′) = f2(x′′) = f3(x′′) = 1, intuitively
capturing the fact that {a} is a stable extension in all of
the three AFs.

Assume the Symmetric Difference Distance Metric (cf.
Definition 9), and a threshold δ = 2. It holds that x′′ = {a}
belongs to ν̃µ(x,F , δ), for any ν,µ ∈ {∃,∀}, intuitively cap-
turing the notion ‘if only you remove {b} from x = {a,b},
then you can conclude that x′′ is a stable extension in all com-
pletions, which tells us that if only Bob does not testify, then
Alex will not be found guilty in any possible scenarios.’ ◻

Thus, counterfactual reasoning in AA-MDF encodes ex-
planations in the form of minimal changes to the input set of
arguments to obtain a different outcome (i.e., an extension).

Further, we illustrate the usefulness of the resulting in-
stances of our quantitative notions of CXs.
Example 10. Continuing from Example 9, we have that
F(x,x′) = ∣{∅,{f1}}∣ = 2, while F(x,x′′) = ∣pow(F)∣ =
23 = 8. Thus, for δ = 2, we have that x′ and x′′ belong to
2̃(x,F , δ), while only x′′ belongs to 8̃(x,F , δ). Intuitively,
x′′ captures an explanation of the form: ‘if only you remove
{b} from x then you can conclude that x′′ is a stable exten-
sion independently of the chosen set of scenarios’. ◻

{a, b}/{b}/{a}

a bΛ1: 0 / 1 / 1

input x/x′/x′′ functions fi output fi(x/x
′/x′′)

0 / 0 / 1

0 / 0 / 1

a bΛ2:

aΛ3:

Figure 3: AA-MDF F = {f1, f2, f3} of Example 9. Functions
fi(x) = Vst,Λi

(x) return true if the set x is a stable extension of
the completion Λi of iAF ∆ of Example 8.

Finally, qualitative and quantitative problems in AA-MDF
naturally instantiate their MDF counterparts (cf. Defini-
tions 3-4 and 6-7), where x and x′ denote sets of arguments.

Example 11. Considering the AA-MDF of Example 9, it
holds that for any ν,µ ∈ {∃,∀}: (x,F , δ) is a true instance
of Ẽνµ and Eνµ; and (x,x′′,F , δ) is a true instance of Ṽνµ

and Vνµ. Moreover, (x,x′,F , δ) is a true (resp. false) in-
stance of Ṽ∀∃ (resp. Ṽ∀∀). Also, quantitatively, for k-CXs,
we have that for any k ∈ {1, . . . , 8}: (x,F , δ) is a true in-
stance of Ẽk and Ek; and (x,x′′,F , δ) is a true instance of
Ṽk and Vk. Finally, (x,x′,F , δ) is a true instance of Ṽk and
Vk, for k ∈ {1,2}. ◻

3.4 AA-MDFs and CXs with AA-CBR
We now show how our AA-MDFs can be applied with
Preference-Based Abstract Argumentation for Case-Based
Reasoning (AA-CBR-P) [Gould et al., 2024], which is a bi-
nary classification model using an AF as a reasoner con-
structed from labelled data points, known as cases, and user
preferences. In AA-CBR-P , cases are structured with a char-
acterisation (e.g. a set of features) and a labelled outcome.
A casebase is a set of past cases, and can be ordered by how
exceptional cases are as determined by a provided sequence
of preorders defined over the characterisations. An AF can be
obtained from the casebase whereby arguments are cases and
attacks occur between cases of opposing outcomes from more
exceptional to less exceptional cases; an additional constraint
ensures minimal difference between the cases to avoid un-
necessary attacks. When defining attacks, we apply the pre-
orders in the sequence lexicographically. Thus, preferences
are applied based on how the preorder sequence is specified.
Different preferences naturally introduce multiplicity of AFs.
An unlabelled new case, N , can be classified by adding it to
the AF using a notion of irrelevance. We then compute the
grounded semantics. If a default case is accepted, we assign
its outcome to the new case; otherwise, we assign the oppos-
ing outcome. For example, we may characterize cases by sets
of high-priority and low-priority features, with case A consid-
ered more exceptional than case B if either A has a superset
of high-priority features or they have the same set of high-
priority features and A has a superset of low priority features.
Different stakeholders may consider which features are high
or low priority differently.

Example 12. Consider assessing patients in good (+) or poor
health (−) within a simple medical setting. Patients may dis-
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(∅,∅,−)

C0

({a},{e},+)

C1

(∅,{b, e},+)

C2

({a},{c},−)

C3

({d},{e},−)

C4

({a, d},{c},−)

C5

({d},{b, c, e},+)

C6

({a, d},{b, c, e}, ?)

N

(∅,∅,−)
C0

(∅,{a, e},+)

C1

(∅,{b, e},+)

C2

({c},{a},−)

C3

(∅,{d, e},−)

C4

({c},{a, d},−)

C5

({c},{b, d, e},+)

C6

({c},{a, b, d, e}, ?)

N

(∅,∅,−)
C0

(∅,{a, e},+)

C1

(∅,{b, e},+)

C2

(∅,{a, c},−)

C3

({d},{e},−)

C4

({d},{a, c},−)

C5

({d},{b, c, e},+)

C6

({d},{a, b, c, e}, ?)

N

Figure 4: AFs of Clinitian 1 (left), 2 (middle), and 3 (right) generated from AA-CBR-P according to Example 12. The high-priority features
in the AF of Clinitian 1 (resp., 2, and 3) are {a, d} (resp., {c}, and {d}).

play weight loss (feature a), maintain a healthy diet (fea-
ture b), suffer from a chronic condition (feature c), experi-
ence appetite loss (feature d), and engage in regular exercise
(feature e). When conducting this assessment, three clini-
cians consider the same set of past patients as their casebase,
Dcb, to assess a new patient, N , who presents with all fea-
tures. However, differing clinicians will prioritise each fea-
ture in their assessment differently, with clinician 1 consid-
ering a and d as high-priority features and b, c, and e as
low-priority features; clinician 2 considering feature c as a
high-priority feature and a, b, d and e as low-priority fea-
tures; and clinician 3 considering d as a high-priority feature
and a, b, c and e as low-priority features. Figure 4 showcases
the AA-CBR-P models for each clinician. All three models
include the default case, C0, in the grounded extension and,
therefore, predict that the new case N is in poor health (−). ◻

The clinicians may be convinced that the patient is
healthy despite what the models suggest. We can leverage
AA-CBR-P as an interpretable argumentative model to gen-
erate CXs that can modify the models to accommodate this.
This form of counterfactual can be viewed in the light of con-
testability , which is necessary to identify and repair incor-
rect predictions or faulty reasoning in algorithmic decision
systems [Leofante et al., 2024].

To do so, we can leverage an AA-MDF with the problem
Pgr,Λi

i (x) = [C0 ∈ gr(AFPi(x ∩Dcb,N))], where AFPi(.)
is a function constructing the AF with AA-CBR-P using clin-
ician i’s preferences, x is the input set of arguments, Dcb is
the casebase and N is a new case. We can identify which sub-
sets of the casebase can be used to change the outcome using
the symmetric distance metric (Definition 9), δ = 5 and let-
ting x = Dcb. Intuitively, this asks the counterfactual question
of which past patients need to be disregarded from each clini-
cian’s casebase for the new patient to be predicted as healthy.

The following table showcases (a subset of) possible CXs.

instance f1(⋅) f2(⋅) f3(⋅)
Dcb - - - d(x, ⋅) νµ(x,F , δ)

{C1,C2,C4,C6} + + + 2 ∀̃∀ ∀∃ ∃∀ ∃∃

{C1,C3,C4,C6} + + + 2 ∀̃∀ ∀∃ ∃∀ ∃∃

{C1,C2,C6} + + + 3 ∀∀ ∀∃ ∃∀ ∃∃

{C1,C2,C3,C4,C6} + - + 1 ∀̃∃ ∃̃∀ ∃̃∃

{C1,C3,C4,C5,C6} - + + 1 ∀̃∃ ∃̃∀ ∃̃∃

{C1,C2,C3,C4} + - - 2 ∀∃ ∃∀ ∃∃

We see two possible ∀̃∀-CXs, which require removing two
arguments from the casebase to convince all three clinicians
to change their outcome for the new case. The first ∀̃∀-CX
{C1,C2,C4,C6} states that if arguments C3 and C5 are re-

moved from the casebase, then all three clinicians will predict
that the patient is in good health. Similarly, the second ∀̃∀-
CX {C1,C3,C4,C6} requires removing arguments C2, C5.

However, disregarding two arguments from the casebase
may be extreme, and comes at a greater cost than if we re-
move solely C5 or solely C2. Both scenarios convince two
out of three of the clinicians to change their prediction but
with only a single argument removed. These are optimal ∀̃∃-
CXs. Our novel CX notions can, therefore, empower a user
with a choice between a ‘stronger’ CX that convinces more
clinicians to change their minds or a ‘weaker’ CX in which
fewer clinicians change their minds, but with a smaller and
more palatable cost to action.

3.5 Computational Complexity
The parametric nature of AA-MDF is influenced by three
key aspects: 1) the class of AFs used, 2) the specific ar-
gumentation problem considered, and 3) the semantics ap-
plied. These aspects result in numerous possible combina-
tions, making it infeasible to fully address the complexity of
all variants. Thus, we focus on a single source of multiplic-
ity, reserving the exploration of other dimensions for future
research. Particularly, we focus on multiplicity that comes
from choosing multiple AFs, as in the case of Sections 3.3 and
3.4. Moreover, to limit multiplicity in the number of exten-
sions, we adopt the grounded semantics, also motivated from
the AA-CBR instance where the grounded semantics is used
for data classification. As argumentative queries/functions,
we choose Ugr,Λ, that is a small variant of the verification
problem (i.e., Vgr,Λ) returning true iff the input set of argu-
ments x is contained in the grounded extension of Λ (this last
choice is also motivated from the AA-CBR instance). Note
that, this different choice of problem does not impact on the
complexity results, as problems U and V can both be solved
in PTIME [Dvorák and Dunne, 2017].

Theorem 1. The problems Eνµ and Ẽνµ are in PTIME for
any ν,µ ∈ {∃,∀}.

Theorem 2. The problems Vνµ and Ṽνµ are in PTIME for
any ν,µ ∈ {∃,∀}.

From the previous theorems we can conclude that, inde-
pendently of the quantification, computing a CX in the cho-
sen setting of interest can be done in PTIME. However, this
can not generally hold when moving the attention to the quan-
tified versions, as stated in the following theorems.

Theorem 3. The problems Ek and Ẽk are in PTIME for k ∈
{1,2n}; and in NP for k /∈ {1,2n}.
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Problems
νµ/k Eνµ/k Ẽνµ/k Vνµ/k Ṽνµ/k

∃∃,∃∀,∀∃,∀∀ PTIME PTIME PTIME PTIME
k ∈ {1,2n} PTIME PTIME PTIME PTIME
k /∈ {1,2n} NP NP PTIME coNP

Table 1: Complexity of the (optimal) νµ- and k- existence and veri-
fication problems in the considered AA-MDF setting.

Theorem 4. The problems Vk, Ṽ1, and Ṽ2n are in PTIME;
while Ṽk is in coNP for any k /∈ {1,2n}

Thus, these results demonstrate the trade-off between the
granularity of the CX and its complexity; specifically, the
finer the granularity, the greater the complexity.

4 Related Work
Model multiplicity has been the subject of recent research
efforts within the trustworthy machine learning commu-
nity [Black et al., 2022]. Researchers have shown that
among equally accurate models, there could be different
fairness characteristics [Wick et al., 2019; Coston et al.,
2021], interpretability levels [Rudin, 2019; Semenova et al.,
2022] and even inconsistent explanations [Fisher et al., 2019;
Mehrer et al., 2020; Marx et al., 2023]. More central to
this work, a Mixed-Integer Linear Programming encoding
method has been proposed to compute CXs that are prov-
ably valid for all feed-forward neural networks in an ensem-
ble [Leofante et al., 2023]. This approach corresponds to a
specific instantiation of our framework, namely ∀∀CXs. Dif-
ferent from us, their work focuses on deep learning models,
and their encoding does not apply to our setting in this paper.

Meanwhile, argumentation has been advocated by promi-
nent works in the explainable AI literature [Miller, 2019] as
a useful mechanism for explanation, given that a majority of
statements made in explanations have been shown to actually
be argumentative claim-backings [Antaki and Leudar, 1992].
This has given rise to a whole sub-field of works known
as argumentative explainable AI (see [Cyras et al., 2021;
Vassiliades et al., 2021; Guo et al., 2023] for overviews),
where argumentation is used for explaining AI models. This
range of methods includes those explaining argumentative
reasoning mechanisms themselves, e.g. [Ulbricht and Wall-
ner, 2021; Brewka and Ulbricht, 2019; Saribatur et al., 2020;
Fan and Toni, 2014; Amgoud, 2024; Borg and Bex, 2024;
Kampik et al., 2024; Yin et al., 2024]. However, these
methods generally assume access to the underlying AF and
thus do not qualify as post-hoc explanations. Moreover,
while some methods also touch upon counterfactual reason-
ing [Fan and Toni, 2014; Amgoud, 2024; Borg and Bex, 2024;
Kampik et al., 2024; Yin et al., 2024; Alfano et al., 2024],
none explicitly consider the challenge posed by model multi-
plicity, which we address in this paper for the first time.

Within the realm of model multiplicity, an argumentation-
based solution to the problem of aggregation to address model
multiplicity, while factoring in CXs has been proposed [Jiang
et al., 2024]. Their solution is in the spirit of an ∃∀ instance of
our approach whereby F is a set of machine learning models
for binary classification. Moreover, their aggregation strategy

relies on the availability of CXs, while our goal here is to
define CXs for the whole set of functions.

5 Conclusions and Future Work
We introduced a novel method for addressing the challenges
of counterfactual reasoning in Multiplicity Decision Frame-
works (MDFs). We proposed qualitative and quantitative def-
initions of CXs for MDFs, categorized by the degree of satis-
faction, which indicates the strength of the explanation. Our
framework is defined generally, supporting any instance in
which model multiplicity arises and providing a path to re-
solving individual CXs that would otherwise conflict.

Further, we have instantiated our novel framework within
abstract argumentation, obtaining the Argumentative Mul-
tiplicity Decision Frameworks (AA-MDFs), that are MDFs
comprising argumentative functions able to solve argumen-
tative queries about decision problems. While our notion
of AA-MDF is designed to capture a wide range of sources
of multiplicity in abstract argumentation, it could be natu-
rally extended to address diverse scenarios in which other
forms of argumentation are needed. An example amounts to
structured argumentation frameworks [Besnard et al., 2014],
where the structural composition of arguments may introduce
variations. Variations can also stem from differences in pref-
erences used during the construction of argumentation frame-
works, such as in preference-based abstract argumentation for
case-based reasoning [Gould et al., 2024] or ASPIC+ [Mod-
gil and Prakken, 2014], amongst others. Furthermore, it ac-
counts for distinct choices of argumentation semantics ap-
plied within the same framework, which can yield varying
conclusions. Additionally, our framework could accommo-
date multiplicity arising from different choices of probabili-
ties associated to argumentative structures. As future work it
would be interesting to instantiate our AA-MDFs in the case
of probabilistic AFs since here, as in iAFs, multiplicity arises
from the different AFs referred to as possible worlds [Dung
and Thang, 2010; Li et al., 2011].

We also provided novel notions of CXs for incomplete AFs
and AFs for case-based reasoning, as well as analyzed the
complexity of decision problems related to counterfactual ex-
istence and verification. Further, we have exemplified the
potential of our approach in three different real-world, high-
stakes scenarios (i.e., financial, legal, and healthcare) where
the validity of recourse recommendations may be critical.

An interesting direction for future research is the investi-
gation of properties of our CXs, as done for (non-post-hoc)
explanation strategies in the CA literature [Ulbricht and Wall-
ner, 2021; Jiang et al., 2024; Borg and Bex, 2024]. Moreover,
we plan to undertake further analyses of MDFs in argumen-
tation, both within the settings we have described and oth-
ers, e.g. when multiplicity amounts to alternative dialectical
strengths for the same arguments in Quantitative Bipolar AFs
[Baroni et al., 2018], due to different choices of initial intrin-
sic strengths for the arguments or different gradual seman-
tics [Baroni et al., 2019].

As a further line for future work, we plan to instantiate
MDFs to other AI domains with pronounced multiplicity,
such as ensemble models typically used in machine learning.
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