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Abstract

We consider the Hospitals/Residents (HR) prob-
lem in the presence of ties in preference lists of
hospitals. Among the three notions of stability,
viz. weak, strong, and super stability, we focus
on strong stability. Strong stability is appealing
both theoretically and practically; however, its ex-
istence is not guaranteed. In this paper, our objec-
tive is to optimally augment the quotas of hospi-
tals to ensure that a strongly stable matching ex-
ists in the modified instance. Such an augmenta-
tion is guaranteed to exist when resident preference
lists are strict. We explore two natural optimization
criteria: (i) minimizing the total capacity increase
across all hospitals (MINSUM) and (ii) minimiz-
ing the maximum capacity increase for any hospi-
tal (MINMAX). We show that the MINSUM prob-
lem admits a polynomial-time algorithm, whereas
the MINMAX problem is NP-hard. We prove an
analogue of the Rural Hospitals theorem for the
MINSUM problem. When each hospital incurs a
cost for a unit increase in its quota, the MINSUM
problem becomes NP-hard, even for 0/1 costs. In
fact, we show that the problem cannot be approxi-
mated to any multiplicative factor. We also present
a polynomial-time algorithm for optimal MINSUM
augmentation when a specified subset of edges is
required to be included in the matching.

1 Introduction
The Hospitals/Residents (HR) problem [Gusfield and Irving,
1989; Roth and Sotomayor, 1990] is a many-to-one gener-
alization of the classical stable marriage problem [Gale and
Shapley, 1962]. As the name suggests, the HR problem
models the assignment of junior doctors (residents) to hos-
pitals where agents in both sets are allowed to rank accept-
able agents from the other set in a preference order. The
problem is extensively investigated since it has applications
in a number of centralized matching schemes in many coun-
tries, including the National Resident Matching Program in
the USA (NRMP), the Canadian Resident Matching Service
(CaRMS), and the Scottish Foundation Allocation Scheme

(SFAS), to name a few. In addition, the HR problem mod-
els several real-world applications like assigning children to
schools [Abdulkadiroğlu et al., 2005] and students to under-
graduate programs [Baswana et al., 2019].When agents’ pref-
erences form a total order, the preferences are said to be strict,
whereas when agents are allowed to be indifferent among a
subset of agents, the preferences are said to contain ties. This
is known as the Hospitals/Residents problem with ties (HRT).

Ties in preference lists play an important role in real-world
matching applications. For instance, hospitals with a large
number of applicants often find it difficult to generate strict
preference lists and have expressed the desire to include ties
in their preference lists [Irving et al., 2000]. In the case of
college admissions, it is natural for colleges to have all the
students with equal scores in a single tie in their preference
lists. On the other hand, it is natural to require students to
express strict preferences over colleges. We refer to this set-
ting as HR-HT — Hospitals/Residents problem with ties on
hospitals’ side only.

In the presence of ties, stability has been defined in the
literature in three different ways — weak stability, strong sta-
bility and super stability (see Definition 1 and the footnote
therein). As indicated by the names, super stability is the
strongest notion and weak stability is the weakest among the
three. It is well-known that every instance of the HRT prob-
lem admits a weakly stable matching and it can be obtained
by breaking ties arbitrarily and computing a stable matching
in the resulting strict-list instance.

In the HR-HT setting considered throughout this paper,
the notions of strong and super stability coincide; how-
ever, neither of them is guaranteed to exist [Irving, 1994].
Weak stability, although guaranteed, is too weak, and as
justified in [Manlove, 2002], is susceptible to compromise
through persuasion or bribery (also see [Irving et al., 2003;
Kunysz et al., 2016] for further details). Moreover, from a
social perspective, weak stability may not be an acceptable
notion despite its guaranteed existence. For instance, accord-
ing to the equal treatment policy used in Chile and Hungary, it
is not acceptable that a student is rejected from a college pre-
ferred by her, even though other students with the same score
are admitted [Cseh and Heeger, 2020]. Thus, strong stability
is not only appealing but also essential.

Given that strong stability is desirable but not guaranteed
to exist, a natural option is to increase or augment the quotas
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(of, say, colleges or hospitals) so that a strongly stable match-
ing exists after the augmentation. We address this problem
in this paper. We use the hospital-residents terminology, as
is customary in many-to-one stable matchings. We note that
unlike the stable matching problem (with strict lists), which
is monotonic with respect to capacity increase, the strongly
stable matching problem with ties is not monotonic with re-
spect to capacity augmentation. That is, an instance that ad-
mits a strongly stable matching may stop admitting one after
the capacities of certain hospitals are increased. This non-
monotonicity makes the problem challenging.

We explore two natural optimization criteria: (i) mini-
mize the total increase (sum) in quotas across all hospitals
(MINSUM), and (ii) minimize the maximum increase in quota
for any hospital (MINMAX). To the best of our knowledge,
our work is the first to explore capacity augmentation for the
notion of strong stability, although capacity modification has
received considerable attention in the strict list setting (see
Section 1.3).

1.1 Preliminaries and Notations
The input to our problem is a bipartite graph G = (R∪H, E),
where the vertex set R represents the set of residents, H rep-
resents the set of hospitals and the edge set E represents
mutually acceptable resident-hospital pairs. Every hospital
h ∈ H has an associated quota q(h) denoting the maximum
number of residents that can be assigned to h in any assign-
ment. Each vertex v ∈ R ∪ H ranks its neighbors as per its
preference ordering, referred to as the preference list of v, de-
noted as Pref(v). A vertex strictly prefers a neighbor with a
smaller rank over another neighbor with a larger rank. If a
vertex is allowed to be indifferent between some of its neigh-
bors and is allowed to assign the same rank to such neighbors,
it is referred to as a tie. The length of a tie is the number of
neighbors having equal rank. If ties are not allowed (or equiv-
alently, all ties have length 1), the preference lists are said to
be strict. We use u1 ≻v u2 to denote that v strictly prefers u1

over u2 and u1 ⪰v u2 to denote that v either strictly prefers
u1 over u2 or is indifferent between them.

A matching M in G is a subset of E such that for each
resident r ∈ R we have |M(r)| ≤ 1 and for each hospital
h ∈ H we have |M(h)| ≤ q(h) where M(v) denotes the set
of matched partners of v in M . For a resident r, if |M(r)| =
0, then r is unmatched in M . In this case, we denote the
matched partner of r by M(r) = ⊥. A hospital h ∈ H is said
to be fully subscribed in M with respect to its quota q(h),
if |M(h)| = q(h), under-subscribed in M if |M(h)| < q(h).
We abuse the term matching and say that h is over-subscribed
in M if |M(h)| > q(h). If left unspecified, the quota under
consideration for these terms is the original quota q(h). If h
is under-subscribed, then we implicitly match the remaining
q(h) − |M(h)| many positions of h to as many copies of ⊥.
A vertex prefers any of its neighbors over ⊥.
Definition 1 (Strong Stability:). For a matching M in an
instance of HRT setting, an edge (r, h) ∈ E \M is a strong
blocking pair w.r.t. M , if either (i) or (ii) holds:

(i) h ≻r M(r) and ∃ r′ ∈ M(h) such that r ⪰h r′

(ii) h ⪰r M(r) and ∃ r′ ∈ M(h) such that r ≻h r′.

A matching M is strongly stable matching if there does not
exist any strong blocking pair w.r.t. M . 1

Throughout the paper, we refer to a strong blocking pair
as a blocking pair. There exist simple instances of HR-HT
which do not admit a strongly stable matching. Any such
instance can be augmented so as to admit a strongly stable
matching by setting the quota of each hospital h equal to its
degree in G. In the augmented instance G′, the matching M ′

that assigns each resident to its rank-1 hospital, is a strongly
stable matching. Such an augmentation is clearly wasteful,
and hence our objective in this paper is to optimally increase
hospitals’ quotas to ensure that a strongly stable matching ex-
ists in the modified instance.

1.2 Our Problems and Contributions
For all our problems, unless stated explicitly, we assume that
the given HR-HT instance G = (R∪H, E) does not admit a
strongly stable matching. Deciding whether an HRT instance
admits a strongly stable matching can be done in polynomial
time using the algorithm by Irving et al. [2003]. Throughout
this paper, the augmented instance G′ is the same as G except
that for each h, we have q′(h) ≥ q(h). Our first objective is
to minimize the total increase in quotas across all hospitals,
defined as the MINSUM-SS problem.
MINSUM-SS: Given an HR-HT instance G = (R∪H, E),
construct an augmented instance G′ such that G′ admits a
strongly stable matching and the sum of the increase in quotas
over all hospitals (that is,

∑
h∈H(q′(h)−q(h))) is minimized.

Theorem 1. MINSUM-SS is solvable in polynomial time.

In Theorem 6 and Corollary 1, we provide an analog of the
well-known Rural Hospitals theorem [Gale and Sotomayor,
1985; Roth, 1986] for the MINSUM-SS problem. We prove
that strongly stable matchings across all optimal augmented
instances match the same set of residents. Moreover, we
show that the under-subscribed hospitals in the strongly stable
matching produced by our algorithm match the same number
of residents in each strongly stable matching across all opti-
mal augmented instances.

Given the polynomial-time solution for the MINSUM-SS
problem, we consider the optimal total quota augmentation
(if possible) for matching a subset Q ⊆ E in G. We denote
this problem as MINSUM-SS-FE (forced edges) and define
it formally below.

The MINSUM-SS-FE problem arises in course allocation
settings where final-year students in a university need to finish
a certain course to complete graduation requirements. Such
student course pairs are readily captured as forced edges.
MINSUM-SS-FE: Given an HR-HT instance G = (R ∪
H, E), which possibly admits a strongly stable matching, and
a subset Q ⊆ E, construct an augmented instance G′, if pos-
sible, such that G′ admits a strongly stable matching that con-
tains Q, and the sum of the increase in quotas over all hospi-
tals (that is,

∑
h∈H(q′(h)− q(h))) is minimized.

1A pair (r, h) is a super blocking pair if both prefer each other
strictly or equally to their matched partners. Also, (r, h) form a
weak blocking pair if they prefer each other strictly more than their
matched partners.
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Theorem 2. The MINSUM-SS-FE problem is solvable in
polynomial time.

Next, we consider a generalization of the MINSUM-SS
problem, where increasing the quota of a hospital incurs a
cost for each unit increase in the quota. This problem is de-
noted by MINSUM-COST.
MINSUM-COST: Given an HR-HT instance G = (R ∪
H, E), where each hospital h ∈ H has an associated cost
c(h) for unit increase in its quota, the goal is to construct an
augmented instance G′ such that G′ admits a strongly stable
matching, and the total cost of the increasing quotas across
all hospitals is minimized.

In contrast to the polynomial-time solvability for
MINSUM-SS, we establish a hardness result for the
MINSUM-COST problem.

Theorem 3. The MINSUM-COST problem is NP-hard and
is inapproximable to within any multiplicative factor.

We now turn our attention to the alternative objective: min-
imizing the maximum increase in quota for any hospital and
define MINMAX-SS problem.
MINMAX-SS: Given an HR-HT instance G = (R∪H, E),
construct an augmented instance G′ such that G′ admits a
strongly stable matching, and the maximum increase in the
quota for any hospital is minimized, that is, maxh∈H{q′(h)−
q(h)} is minimized.

Theorem 4. MINMAX-SS problem is NP-hard. Moreover,
the same minimization objective with the goal of construct-
ing an instance that admits a resident-perfect strongly stable
matching (one that matches all residents) is also NP-hard.

Finally, we consider a variant of the MINMAX problem
where hospitals’ preference lists have bounded tie lengths.
MINMAX-SS-BT: Given an HR-HT instance G = (R ∪
H, E), where the length of ties in the preference lists of hos-
pitals is bounded by ℓ + 1, determine the existence of an
augmented instance G′ such that G′ admits a strongly sta-
ble matching, and maxh∈H{q′(h) − q(h)} ≤ ℓ. We use
ℓ-augmented instance to denote an augmented instance that
admits a strongly stable matching and is obtained from G by
at most ℓ augmentations per hospital. An ℓ-augmented in-
stance G′ is resident-optimal ℓ-augmented instance of G if
the resident-optimal2 strongly stable matching in G′ is the
best for residents across all ℓ-augmented instances of G.

Theorem 5. For an instance of MINMAX-SS-BT problem,
with the tie length at most ℓ+1, an ℓ-augmented instance ex-
ists. Moreover, a resident-optimal ℓ-augmented instance can
be computed in polynomial time. Therefore, a strongly stable
matching which matches the maximum number of residents
across all ℓ-augmented instances can be computed efficiently.

1.3 Related Work
Capacity Modification. Chen and Csáji [2023] studied a
problem similar to ours for the case of strict preference lists.

2A strongly stable matching M is resident-optimal if for each
resident r ∈ R, M(r) is the best possible hospital to which r can
get matched in any strongly stable matching.

The goal was to augment the instance by increasing hospital
quotas such that the resulting instance admits a resident per-
fect (R-perfect) stable matching. They showed that with the
MINMAX objective, the problem admits a polynomial-time
algorithm. In contrast, somewhat surprisingly, for strongly
stable matching, we get an NP-hardness result (see Theo-
rem 4) for MINMAX. They also consider the MINSUM objec-
tive, and show NP-hardness for obtaining an augmented in-
stance that admits a stable and R-perfect matching. Note that
this also implies NP-hardness for constructing an augmented
instance in the HR-HT setting for achieving a strongly sta-
ble and R-perfect matching under the MINSUM objective.
However, without the R-perfectness requirement, our result
in Theorem 1 gives a polynomial-time algorithm.

Capacity modification to achieve specific objectives has
attracted significant interest in recent years. Bobbio et al.
[2022] explored the complexity of determining the optimal
variation (augmentation or reduction) of hospital quotas to
achieve the best outcomes for residents, subject to stability
and capacity variation constraints, and showed NP-hardness
results. In a follow-up work, Bobbio et al. [2023] developed
a mixed integer linear program to address this issue, and pro-
vided a comprehensive set of tools for obtaining near-optimal
solutions. Gokhale et al. [2024] considered the problem of
modifying hospitals’ quotas to achieve two objectives – (i) to
obtain a stable matching so as to match a given pair, and, (ii)
to stabilize a given matching, either by only augmenting or
only reducing hospital quotas. Afacan et al. [2024] examined
capacity design in the HR setting, to achieve a stable match-
ing that is not Pareto-dominated by any other stable matching.

Kavitha and Nasre [2011] and Kavitha et al. [2014]
addressed the capacity augmentation problem for popular
matchings in the one-sided preference list setting (where ev-
ery hospital is indifferent between its neighbours). It is
known that a popular matching is not guaranteed to exist
in this setting. Therefore, their objective was to optimally
increase hospital quotas to create an instance that admits a
popular matching. Although we focus on a different set-
ting (two-sided preference lists) and a different optimality no-
tion – strong stability, it is interesting to note that our results
closely resemble those obtained by Kavitha and Nasre [2011]
and Kavitha et al. [2014].

Strong Stability. The notion of strong stability was first
studied in the one-to-one setting (i.e. q(h) = 1 for all h ∈ H)
for balanced, complete bipartite graphs by Irving [1994],
where he gave an O(n4) algorithm to compute a strongly
stable matching if it exists. Since then, the strongly stable
matching problem has received a significant attention in the
literature. Manlove [1999] extended the results in [Irving,
1994] to the general one-to-one setting (i.e. incomplete bipar-
tite graphs) and also showed that all strongly stable matchings
have the same size and match the same set of vertices. Irving
et al. [2003] further extended these results to the HRT setting
and gave O(m2) algorithm for the strongly stable matching
problem, which was later improved to O(mn) by Kavitha et
al. [2007]. Manlove [2002] studied the structure of the set
of strongly stable matchings and showed that, similar to the
classical stable matchings, the set of strongly stable match-
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ings forms a distributive lattice. Kunysz et al. [2016] showed
that there exists a partial order with O(m) elements repre-
senting all strongly stable matchings and also provided an
O(mn) algorithm to construct such a representation. In the
presence of edge weights, Kunysz [2018] showed that when
edge weights are small, the maximum weight strongly sta-
ble matching problem can be solved in O(mn) time, and in
O(mn log(Wn)) if the maximum weight of an edge is W .
Strong stability w.r.t. restricted edges viz. forced, forbidden
and free edges has been studied by Cseh and Heeger [2020]
and by Boehmer and Heeger [2023].

Organization of the Paper. In Sections 2 and 3, the ob-
jective of our problems is to minimize the total increase in
quotas. In Section 4, our objective is to minimize the maxi-
mum increase in quotas. Proofs of lemmas/ theorems marked
with ⋆ are deferred to the full version [Ranjan et al., 2024].

2 MINSUM-SS Problem
In this section, we present an efficient algorithm for the
MINSUM-SS problem. Since the input instance does not ad-
mit a strongly stable matching we need to increase the quotas
of certain hospitals to obtain G′. Our algorithm (pseudo-code
given in Algorithm 1) involves a sequence of proposals from
hospitals and is inspired by the hospital-oriented algorithm
for super-stability [Irving et al., 2000].

The algorithm starts with every resident being unmatched
or, equivalently, matching every resident to its least preferred
hospital ⊥. Call this matching M ′ (see line 2 of Algo-
rithm 1). During the course of the algorithm, let h be a hos-
pital that is under-subscribed in M ′, and t be the most pre-
ferred rank in Pref(h) at which h has not yet made a proposal.
Then, h simultaneously proposes to all residents at rank t
in Pref(h) (see Line 4). Since a hospital h proposes to all
the residents at a particular rank simultaneously, it may lead
to the over-subscription of that hospital. A fully subscribed
or over-subscribed hospital does not propose further, and the
sequence of proposals terminates when either no hospital is
under-subscribed or all under-subscribed hospitals have ex-
hausted proposing to all residents on their preference lists.
When a resident r receives a proposal from h, the resident
accepts or rejects the proposal based on the resident’s prefer-
ence between h and its current matched partner M ′(r). Let
M ′ represent the set of matched edges when the proposal se-
quence terminates. Since G does not admit a strongly stable
matching, there must exist at least one hospital h that is over-
subscribed in M ′. Let G′ denote the instance with the mod-
ified quotas where the quota of each hospital h ∈ H is set
to q′(h) = max{q(h), |M ′(h)|}. The algorithm returns the
augmented instance G′ and the matching M ′. Next, we prove
the correctness and optimality of our algorithm.

Lemma 1. The matching M ′ returned by Algorithm 1 is a
strongly stable matching in the augmented instance G′.

Proof. By the way quotas of the hospitals are set in G′, it is
clear that M ′ is a valid matching in G′. Suppose for con-
tradiction, M ′ is not strongly stable in G′. This implies that
there exists a strong blocking pair, say (r, h) w.r.t. M ′ in G′.
Therefore, h ≻r M ′(r) and there exists r′ ∈ M ′(h) such that

Algorithm 1: Algorithm for MINSUM-SS
1 Input: An HR-HT instance G = (R∪H, E)
2 M ′ = {(r,⊥) | for every resident r ∈ R }
3 while ∃ h that is under-subscribed in M ′ w.r.t. q(h)

and h has not exhausted Pref(h) do
4 h proposes to all residents at the most preferred

rank t that h has not yet proposed
5 for every resident r that receives a proposal from

h do
6 if h ≻r M ′(h) then
7 M ′ = M ′ \ {(r,M ′(r))} ∪ {(r, h)}
8 G′ is the same as G, except quotas are set as follows
9 For each h ∈ H, set q′(h) = max{q(h), |M ′(h)|}

10 return G′ and M ′

r ⪰h r′. Since hospitals propose in order of their preference
list, h must have proposed r during the course of Algorithm 1.
The fact that h ̸= M ′(r) implies that the resident r must have
rejected h. Thus, at the time when r rejected h, the resident
r must have been matched to a better-preferred hospital, say
h′. Since during the course of the algorithm residents improve
their matched hospital, the final matched hospital M ′(r) of r
must be such that M ′(r) ⪰r h′ ≻r h. This contradicts the
fact that h ≻r M ′(r) and completes the proof.

To prove the optimality of our capacity increase, we es-
tablish useful properties of any augmented instance G̃ (not
necessarily optimal), obtained from G, such that G̃ admits a
strongly stable matching. Let M̃ be a strongly stable match-
ing in G̃. In Claim 1, we show that if a resident r is matched
to h (not equal to ⊥) in M ′ output by Algorithm 1, then r is
matched in G̃ and is matched to either h or a better-preferred
hospital in G̃.
Claim 1. Let r be matched to h ∈ H in M ′ at the end
of Algorithm 1. Then the resident r is matched in M̃ , and
M̃(r) ⪰r h.

Proof. In the proposal sequence of Algorithm 1, if possible,
consider the first proposal by any hospital h to any resident
r such that h ≻r M̃(r). The existence of such a proposal
refutes the claim since M ′(r) ⪰r h.

Since h ≻r M̃(r), and M̃ is strongly stable, h must be full
in M̃ with better preferred residents than r w.r.t. its capacity
q̃(h). Since q̃(h) ≥ q(h), there must be at least q(h) many
neighbors for h in M̃(h), which h strictly prefers to r. In
Algorithm 1, h proposes to all the residents in M̃(h) before
proposing r.

Since h proposes to r in Algorithm 1, at least one resident,
say r1, in M̃(h) must have rejected the proposal of h before
h proposed to r. Thus M ′(r1) ≻r1 h = M̃(r1). This contra-
dicts the assumption that h to r is the first proposal such that
h ≻r M̃(r).

In the next claim, we show that any hospital that remains
under-subscribed in M ′ w.r.t. q(h) continues to remain
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under-subscribed (to the same extent or more) in a strongly
stable matching M̃ of any augmented instance G̃.

Claim 2. Let M ′ be the output of Algorithm 1 and h ∈ H
be any hospital such that |M ′(h)| < q(h). Also, assume that
G̃ is an augmented instance obtained from G, and M̃ is a
strongly stable matching in G̃. Then, |M̃(h)| ≤ |M ′(h)|.

Proof. Since |M ′(h)| < q(h), the hospital h exhausted
proposing all residents in Pref(h) during the execution of Al-
gorithm 1. Clearly, all neighbors of h received proposals from
h. If there exists any resident, say r, who rejected h during
the execution of Algorithm 1, then r must have been matched
in M ′ to M ′(r) where M ′(r) ≻r h. Using Claim 1, we con-
clude that M̃(r) ⪰r M ′(r) ≻r h. Thus, no resident who re-
jected h during the execution of Algorithm 1 can be matched
to h in M̃ implying that |M̃(h)| ≤ |M ′(h)|.

Lemma 2. The total quota increase by Algorithm 1 is opti-
mal.

Proof. Let Rm ⊆ R be the set of residents who received
some proposal during the execution of Algorithm 1 and hence
residents in Rm are matched in M ′. By Claim 1, every r ∈
Rm must be matched in M̃ . Let Hu be the set of hospitals
such that |M ′(h)| < q(h), and Hf = H \ Hu. Let the Ru

m
denote the set of residents matched in M ′ to hospitals in Hu.
By Claim 2, the quota utilization over all hospitals Hu in a
strongly stable matching M̃ of any instance G̃ must be at most
|Ru

m|. This implies that at least |Rm \ Ru
m| many residents

must be matched to hospitals in Hf in the matching M̃ . Let
k = |Rm\Ru

m|−
∑

h∈Hf
q(h). Thus, the total quota increase

in any instance G̃ is at least k. Algorithm 1 increases the
quotas of hospitals in Hf only and matches the residents in
Rm \ Ru

m to hospitals in Hf . Thus, the total quota increase
of hospitals in G′ is exactly k which is optimal.

Lemma 1 and Lemma 2 together imply Theorem 1.
It is well known that when an HR-HT instance admits a

strongly stable matching, all strongly stable matchings of the
instance match the same set of residents [Irving et al., 2003].
In a similar spirit, we prove that all optimal solutions of a
given MINSUM-SS instance match the same set of residents.

Theorem 6. Let G′ be the instance returned by Algorithm 1
and Rm denote the set of residents matched in the strongly
stable matching M ′. Then for any optimal augmentation
Gopt, the set of residents matched in a strongly stable match-
ing is exactly Rm.

Proof. Theorem 1 asserts that the instance G′ returned by Al-
gorithm 1 is an optimal augmented instance for G. Let Mopt

be a strongly stable matching in Gopt. Applying Claim 1,
we know that Mopt must match all residents in Rm. If
Mopt matches any resident r /∈ Rm, then Mopt must match
more than |Rm| many residents for the instance Gopt. Us-
ing Claim 2, we observe that any hospital h that is under-
subscribed in M ′ w.r.t. q(h) is matched to at most |M ′(h)|
many residents in Mopt. Thus, the matching Mopt must

match r to a hospital h such that |M ′(h)| ≥ q(h). There-
fore, the total increase in quotas by Gopt is more than that of
G′. This contradicts the optimality of Gopt.

Using Claim 2 and Theorem 6 we have the following.

Corollary 1. Let G′ be the instance returned by Algorithm 1.
Also, assume that Gopt be any optimal augmentation and
Mopt be a strongly stable matching in Gopt. Then, |M ′(h)| ≥
q(h) for a hospital h implies that |Mopt(h)| ≥ q(h). More-
over, if |M ′(h)| < q(h), then |Mopt(h)| = |M ′(h)|.

Now, let us consider a variant of the MINSUM-SS problem
where our goal is to determine the existence of an augmented
instance which admits an R-perfect strongly stable match-
ing. Let us denote this problem by MINSUM-SS-RP. Chen
and Csáji [2023] studied a special case of this problem called
MINSUM CAP STABLE AND PERFECT problem. Given an
HR instance (strict list), say G, and a budget ℓ, the MINSUM
CAP STABLE AND PERFECT problem asks whether it is pos-
sible to obtain an augmented instance G′ from G, only by
increasing the quotas of some hospitals, such that G′ admits
an R-perfect stable matching, and the sum of the increase
in quotas over all hospitals is at most ℓ. They showed that
this problem is NP-complete even for a very restricted case.
Therefore, we conclude that MINSUM-SS-RP problem is
NP-complete.

2.1 MINSUM-SS for Forced Edges
In this section, we consider the MINSUM-SS-FE problem.
Here, in addition to an HR-HT instance G, we are given a
subset Q ⊆ E. Our goal in this problem is to decide the exis-
tence of an augmented instance G′ that admits a strongly sta-
ble matching M ′ such that Q ⊆ M ′. Note that such an aug-
mented instance is not guaranteed to exist even when |Q| = 1.
Consider an instance with one resident r and two hospitals
h1, h2 where r prefers h1 over h2. Let Q = {(r, h2)}.
There is no way to augment the quotas of hospitals to get
a strongly stable matching which contains Q. We show that
the MINSUM-SS-FE problem admits a polynomial-time al-
gorithm. Whenever an augmentation is possible, we output
the optimally augmented instance.

We present the overall idea here and defer the details to
the full version [Ranjan et al., 2024]. Our algorithm begins
by constructing a pruned graph through the deletion of cer-
tain edges. Specifically, we remove any edge that, if included
in a matching along with the edges in Q, would result in a
blocking pair. The pruned graph may or may not admit a
strongly stable matching. Hence, we use Algorithm 1 (for
MINSUM-SS) to obtain an augmented instance. While the
augmented instance admits a strongly stable matching, the
matching along with the forced edges Q may not be strongly
stable. To finally decide whether an augmentation is possible,
we crucially require the Rural Hospitals theorem analogue for
the MINSUM-SS problem that we establish in Theorem 1.

3 MINSUM-COST Problem
In this section, we consider the MINSUM-COST problem and
show that this problem is NP-hard even when the costs of the
hospitals are 0 or 1. We prove our hardness by reducing from
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an instance of the MONOTONE 1-IN-3 SAT problem. The
input for the MONOTONE 1-IN-3 SAT problem is a conjunc-
tion of clauses. Each clause is a disjunction of exactly three
variables, and no variable appears in negated form. The goal
is to determine whether there exists a truth assignment to the
variables such that for each clause, exactly one variable is set
to true. This problem is known to be NP-complete [Schae-
fer, 1978; Garey and Johnson, 1979] even when each variable
occurs in at most 3 clauses [Denman and Foster, 2009].

Gadget Reduction. Let I be an instance of MONOTONE
1-IN-3 SAT problem, where each variable occurs in at most
three clauses. Let {X1, X2, . . . , Xβ} be the set of variables
and {C1, C2, . . . , Cα} be the set of clauses in I, for non-
negative integers α and β.

Given I, we construct an instance G = (R ∪ H, E) of
MINSUM-COST problem with quota q(h) = 1 for each h ∈
H such that G does not admit a strongly stable matching. We
also associate a cost c(h) ∈ {0, 1} with each h ∈ H. We
show that there exists an augmented instance G′ = (R ∪
H, E) with a total augmentation cost 0 that admits a strongly
stable matching if and only if there exists an assignment of
variables in I such that exactly one variable in each clause is
set to true.

Let Cs= (Xi∨Xj∨Xk) be a clause in the instance I. Cor-
responding to the clause Cs, there exists a gadget Gs in our
reduced instance G. The gadget Gs consists of the resident
set Rs = {asi , asj , ask, bsi , bsj , bsk, ds1, ds2}, and the hospital set
Hs = {vsi , vsj , vsk, ws}. The augmentation cost of each hospi-
tal in the gadget Gs is given as: c(vsi ) = c(vsj ) = c(vsk) = 0
and c(ws) = 1.

The preference lists of residents and hospitals in Gs are
given in Figure 1. The preference list of a resident bsp cor-
responding to the variable Xp for p ∈ {i, j, k} consists of
four hospitals – two within the gadget Gs, and two outside
the gadget Gs. Assume that in I, the variable Xi appears in
three clauses, namely Cs, Ci1 and Ci2 . Then the preference
list of bsi consists of hospitals vsi , v

i1
i , vi2i and ws in this or-

der. Analogously, the hospital vsi corresponding to Xi ranks
the resident asi as its top choice, followed by a tie of length
three consisting of the three b-residents, namely bsi , b

i1
i , bi2i ,

from three different gadgets. If Xi appears in t clauses where
t < 3, then the preference list of bsi consists of t many vi-
hospitals (as mentioned above) followed by ws. This com-
pletes the description of our reduction.

Correctness. We claim that the reduced instance G does
not admit a strongly stable matching. Recall that the quota of
each hospital is one. Any strongly stable matching M in the
reduced instance G, must match asp to vsp for the gadget Gs, as
otherwise, (asp, v

s
p) blocks M . The matching M cannot leave

ws unmatched, otherwise (dst , w
s) for some t ∈ {1, 2} is a

strong blocking pair. Since ws has a unit quota, it cannot be
matched with any of the d-residents. For the same reason, ws

cannot accommodate all of the three b-residents in the gadget
Gs. This implies that there exists a b-resident, say bsj , which
is not matched to ws in M . Thus, the pair (bsj , w

s) blocks
M . Hence, the reduced instance G does not admit a strongly
stable matching.

asi : vsi
asj : vsj
ask : vsk
bsi : vsi , v

i1
i , vi2i , ws

bsj : vsj , v
j1
j , vj2j , ws

bsk : vsk, v
k1

k , vk2

k , ws

ds1 : ws

ds2 : ws

(i)

vsi : asi , (b
s
i , b

i1
i , bi2i )

vsj : asj , (b
s
j , b

j1
j , bj2j )

vsk : ask, (b
s
k, b

k2

k , bk2

k )

ws : (bsi , b
s
j , b

s
k), (d

s
1, d

s
2)

(ii)

Figure 1: (i) Preference lists of residents in the gadget Gs. (ii) Pref-
erence lists of hospitals in the gadget Gs.

Recall that I is an instance of MONOTONE 1-IN-3 SAT.
A satisfying assignment for an instance of MONOTONE 1-
IN-3 SAT is an assignment of variables such that for each
clause, exactly one variable is set to true.

Lemma 3 (⋆). If I admits a satisfying assignment, then there
exists an instance G′ obtained from G with an augmentation
cost 0 such that G′ admits a strongly stable matching.

Proof sketch. We construct G′ and M ′ as follows. Wlog,
assume that for the clause Cs= (Xi ∨ Xj ∨ Xk),
the variable Xk is set to true by the satisfying as-
signment. We set the quota q′(h) = 2 for each
h ∈ {vsi , vsj} and q′(h) = 1 for h ∈ {ws, vsk}.
Clearly, the total augmenting cost is 0. Let M ′ =⋃α

s=1{(asi , vsi ), (bsi , vsi ), (asj , vsj ), (bsj , vsj ), (ask, vsk), (bsk, ws)}.
To show the strong stability of M ′, we prove that for any s,
no resident in the gadget Gs participates in a strong blocking
pair w.r.t. M .

Lemma 4 (⋆). If there exists an instance G′ obtained from
G with zero total augmentation cost such that G′ admits a
strongly stable matching, say M ′, then the instance I admits
a satisfying assignment.

Proof sketch. We claim that |M ′(ws)| = 1 and M ′(ws) ∈
{bsi , bsj , bsk} for each s ∈ {1, 2, . . . , α}. We further claim that
(bsi , w

s) ∈ M ′, implies (bi1i , wi1) ∈ M ′ and (bi2i , wi2) ∈
M ′. We set the truth assignment to variables as follows. If
M ′(bsk) = ws, then set Xi and Xj to false and Xk = true in
the clause Cs. The first claim proves the satisfiability, and the
first and second claims together prove the validity as well as
consistency.

This completes the hardness reduction which shows that
the decision version of MINSUM-COST problem is NP-hard
for the budget ℓ = 0. This completes the proof of Theorem 3.

4 MINMAX-SS Problem
In this Section, we consider the MINMAX-SS problem. We
show that the MINMAX-SS problem is NP-hard even in a
very restricted setting. For this, we consider a special case of
this problem, where we set q(h) = 1 for all h ∈ H and the
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budget ℓ = 1. We call this special case 1-OR-2 CAPACITY-
SS problem as the quota of each hospital in the augmented
instance is restricted to 1 or 2. Next, we show the hardness of
1-OR-2 CAPACITY-SS problem thereby proving Theorem 4.

4.1 Hardness of 1-OR-2 CAPACITY-SS Problem
We prove the hardness of 1-OR-2 CAPACITY-SS problem
by reducing from an instance of the MONOTONE NOT-ALL-
EQUAL 3-SAT problem. The input for MONOTONE NOT-
ALL-EQUAL 3-SAT problem is a conjunction of clauses.
Each clause is a disjunction of exactly three variables, and
no variable appears in negated form. The goal is to deter-
mine whether there exists a truth assignment to the variables
such that for each clause, at least one variable is set to true
and at least one to false. This problem is known to be NP-
complete [Porschen et al., 2014] even when each variable ap-
pears in exactly four clauses [Darmann and Döcker, 2020].

Gadget Reduction. Let I be an instance of the MONO-
TONE NOT-ALL-EQUAL 3-SAT problem, where each vari-
able appears in exactly four clauses.

Given I, we construct an instance G = (R ∪H, E) of 1-
OR-2 CAPACITY-SS problem with quota q(h) = 1 for each
h ∈ H. In our reduced instance G, there exists a gadget Gs

corresponding to the clause Cs in I. The gadget Gs is the
same as the one constructed in Section 3. Hence, the intra-
gadget edges are exactly the same. However, the inter-gadget
edges appear in a cyclical order. The preference list of a res-
ident bsp corresponding to the variable Xp for p ∈ {i, j, k}
consists of three hospitals — two within the gadget Gs, and
one outside the gadget Gs. Analogously, the hospital vsp cor-
responding to Xp ranks the resident asp as its top choice, fol-
lowed by a tie of length two consisting of the two b-residents
— one from the same gadget and the other from a different
gadget. See full version [Ranjan et al., 2024] for details.

4.2 MINMAX-SS Problem with Bounded Ties
In this section, we consider MINMAX-SS-BT problem — a
special case of the MINMAX-SS problem. First, we observe
that executing Algorithm 1 on an instance of the MINMAX-
SS-BT problem produces an ℓ-augmented instance. This is
because the tie length is bounded by ℓ + 1, and a hospital
h proposes to residents at a particular rank, say k, only if h
remains under-subscribed after proposing to all residents up
to rank k − 1. The facts that (i) h was under-subscribed be-
fore proposing to kth-rank residents, and (ii) the length of the
tie at rank k is at most ℓ + 1, together imply that hospital h
cannot be over-subscribed by more than ℓ residents. Thus,
for a given MINMAX-SS-BT instance, the existence of an
ℓ-augmented instance is guaranteed and can be computed ef-
ficiently. However, the strongly stable matching M ′ returned
by Algorithm 1 need not be resident-optimal. For example,
for the instance shown in Figure 2, executing Algorithm 1
on G outputs the augmented instance G′ with q′(h1) = 2
and q′(h2) = 1 and the strongly stable matching M ′ =
{(r1, h2), (r2, h1), (r3, h1)}. The resident-optimal strongly
stable matching in G′ is M ′′ = {(r1, h1), (r2, h2), (r3, h1)},
which is better than M ′ for r1, r2 and no worse for the re-
maining residents. Yet, M ′′ is not the best for the residents

r1 : h1, h2

r2 : h2, h1

r3 : h1 [1] h1 : (r2, r3), r1
r4 : h2 [1] h2 : r1, r2, r4

Figure 2: The instance G where ℓ = 1 does not admit a strongly
stable matching.

among strongly stable matchings across all ℓ-augmented in-
stances of G.

For example, the instance Ĝ obtained from G (in Fig-
ure 2) by augmenting the capacities of both h1 and h2

by one, i.e. q̂(h1) = q̂(h2) = 2 contains the match-
ing M̂ = {(r1, h1), (r2, h2), (r3, h1), (r4, h2)}, which is a
strongly stable matching in Ĝ. Moreover, M̂(r) ⪰r M ′′(r)

for each resident r, and M̂(r4) ≻r4 M ′′(r4). This example
demonstrates that simply executing the resident-proposing al-
gorithm by Irving et al. [2003] on the augmented instance G′

output by Algorithm 1, does not give the best possible match
to the residents. In this context, we define and consider a
resident-optimal ℓ-augmented instance of G (see Section 1.2
for the definition).

We present an efficient algorithm that outputs a resident-
optimal ℓ-augmented instance G′. We begin by setting a tem-
porary quota for each hospital h as qt(h) = q(h) + ℓ. Let us
denote this instance by Gt. Next, we execute the algorithm
by Irving et al. [2003] (restricted to H-side ties — see full
version [Ranjan et al., 2024]) on the instance Gt. Let M ′

be the tentative matching (also called the engagement graph)
obtained at the end of the execution by the algorithm of Irv-
ing et al. [2003]. We note that a hospital h may be over-
subscribed in M ′ w.r.t. its original quota q(h). However, for
every hospital h, we have |M ′(h)| ≤ qt(h). We further note
that the matching M ′ need not be strongly stable in Gt. Yet,
we show that it is possible to fix the quota of each hospital h to
q′(h) = max{q(h), |M ′(h)|} such that the tentative match-
ing M ′ becomes a strongly stable matching in the modified
instance G′. See full version [Ranjan et al., 2024] for details.

Theorem 7 (⋆). The instance G′ returned by our algorithm
is a resident-optimal ℓ-augmented instance of G. Moreover,
the matching M ′ in G′ is a resident-optimal strongly stable
matching across all ℓ-augmented instances of G.

Theorem 7 immediately gives us the following corollary.

Corollary 2. The strongly stable matching M ′ output by our
algorithm matches the maximum number of residents across
strongly stable matchings of all ℓ-augmented instances of G.

Conclusion. In this paper, we study capacity augmentation
problem in the many-to-one HR-HT setting for the notion of
strong stability. We consider the MINSUM and MINMAX ob-
jectives. For the MINSUM-SS problem, apart from polyno-
mial time solvability, we are able to show an invariance result
with respect to all optimal augmentations. For the MINMAX-
SS problem, it is natural to ask for an approximation algo-
rithm — we leave it as an open question. Another direction
worth exploring is reduction in quotas to achieve stability, as
is done by Gokhale et al. [2024] for strict preferences.
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Janosch Döcker. On a simple hard variant of not-all-equal
3-sat. Theor. Comput. Sci., 815:147–152, 2020.

[Denman and Foster, 2009] Richard Denman and Stephen
Foster. Using clausal graphs to determine the computa-
tional complexity of k-bounded positive one-in-three sat.
Discrete Applied Mathematics, 157(7):1655–1659, 2009.

[Gale and Shapley, 1962] D. Gale and L. S. Shapley. College
admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9–15, 1962.

[Gale and Sotomayor, 1985] David Gale and Marilda So-
tomayor. Some remarks on the stable matching problem.
Discrete Applied Mathematics, 11(3):223–232, 1985.

[Garey and Johnson, 1979] M. R. Garey and D. S. Johnson.
Computers and Intractability: A Guide to the Theory of
NP-Completeness (Series of Books in the Mathematical
Sciences). W. H. Freeman, first edition edition, 1979.

[Gokhale et al., 2024] Salil Gokhale, Samarth Singla, Shiv-
ika Narang, and Rohit Vaish. Capacity modification in the
stable matching problem. In Proceedings of the 23rd In-
ternational Conference on Autonomous Agents and Mul-
tiagent Systems, AAMAS 2024, pages 697–705, Auck-
land, New Zealand, 2024. International Foundation for
Autonomous Agents and Multiagent Systems / ACM.

[Gusfield and Irving, 1989] Dan Gusfield and Robert W. Irv-
ing. The stable marriage problem: structure and algo-
rithms. MIT Press, Cambridge, MA, USA, 1989.

[Irving et al., 2000] Robert W. Irving, David F. Manlove,
and Sandy Scott. The hospitals/residents problem with
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