
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
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Abstract
Vision-based motion planning is a crucial task in
Autonomous Driving (AD). Recent advancements
in urban AD show that integrating Imitation Learn-
ing (IL) with Deep Reinforcement Learning (DRL)
improves decision-making to be more like hu-
mans. However, IL methods depend on expert
demonstrations to learn the optimal policy. The
main drawback of this approach is the assump-
tion that expert demonstrations are always opti-
mal, which is not always true in real-world set-
tings. This creates challenges in adapting to diverse
weather conditions and dynamic traffic scenarios,
often resulting in higher collision rates and in-
creased risks to pedestrian safety. To address these
challenges, we propose a Diffusion-Guided Deep
Reinforcement Learning (DGDRL) framework that
integrates a diffusion model with a Soft Actor-
Critic DRL method to effectively mitigate envi-
ronmental uncertainties and enable self-learning
beyond the training maps for new tasks. This
framework follows a novel modified partially ob-
servable Markov decision process (mPOMDP) to
choose optimal action from original and diffusion-
generated observations, ensuring that the policy
behavior remains consistent with the current ac-
tion. We use the CARLA NoCrash benchmark to
train and evaluate the proposed framework. The
method is validated in diverse urban environments
(e.g., empty, regular, and dense) across multi-
ple towns. Additionally, we compare our model
against state-of-the-art techniques to ensure robust-
ness and generalizability to new environments. The
project page and code are available at the link
https://autovisionproject.github.io/project/.

1 Introduction
In recent years, Autonomous Driving (AD) has gained sig-
nificant research attention due to advancements in Imitation
Learning (IL) and Deep Reinforcement Learning (DRL) tech-
niques. AD systems require a comprehensive understanding
of the driving environment to ensure safety and effective gen-
eralization for deployment in real-world settings. IL uses

supervised learning to make a driving policy based on ex-
pert datasets. [Shafiullah et al., 2022; Wang et al., 2023;
Jain and Unhelkar, 2024]. The goal of IL is to train an agent
to replicate the behavior of human experts as closely as pos-
sible. However, IL algorithms have the following limitations:
1) The driving policy is inherently restricted to the expert’s
performance, and it is impractical to gather expert data for
every conceivable driving situation, and 2) IL algorithms of-
ten experience a distribution mismatch between training data
and real-world scenarios, as they rarely encounter failure sit-
uations during training. This lack of exposure prevents the
system from learning how to manage such cases effectively.

To address the limitations of IL, researchers have shifted
their focus to DRL techniques to develop driving policies
through direct interaction with the environment. These tech-
niques utilize reward mechanisms to evaluate optimal ac-
tions in various environmental states, such as dense traf-
fic and dynamic weather conditions (e.g., rain, fog, and
cloudy) [Ahmed et al., 2021; Buddareddygari et al., 2022;
Wu et al., 2022; Zhang et al., 2023b; Coelho et al., 2023;
Chowdhury et al., 2024]. The main goal of DRL techniques
is to maximize expected cumulative rewards. Since the agent
learns by interacting with the environment, DRL alleviates
distribution mismatch issues and is not constrained by the
performance of any expert. However, DRL suffers from low
sample efficiency and requires significantly more data than
IL to achieve convergence due to the extensive exploration
needed during training to understand and navigate the envi-
ronment completely. In advanced methodologies, researchers
are focusing on integrating data augmentation, IL, and DRL
techniques to develop robust and efficient DRL systems ca-
pable of effectively managing the complexities of real-world
driving environments [Yuan et al., 2022b; Liu et al., 2024;
Wang et al., 2024b; Hansen and Wang, 2021]. Despite recent
progress, the widespread deployment of Autonomous Vehi-
cles (AVs) on public roads remains a challenge. The main
difficulties stem from dense urban traffic environments char-
acterized by numerous dynamic entities, such as cars, bicy-
cles, and pedestrians, as well as complex road layouts and in-
tricate user interactions. Existing solutions sometimes make
incorrect decisions in these complex and dynamic settings,
potentially leading to serious accidents or traffic violations.

A survey report by the AAA Newsroom highlights the sig-
nificant challenge of building public trust in autonomous ve-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 1: Sequential observations at different intervals show minimal changes in subsequent scenes and nearly identical actions between
closely spaced frames. This indicates that minor variations in observations do not significantly influence vehicle behavior. Such stability is
crucial, as it provides a robust foundation for developing a generalized solution capable of effectively addressing environmental uncertainties.

hicles, particularly due to recent incidents that have height-
ened safety concerns among the public. The statistics indi-
cate potential risks for the future of the autonomous indus-
try. Therefore, this research aims to develop a generalized
solution for handling environmental uncertainties in AD sys-
tems, primarily focusing on enhancing their performance in
dynamic environments. We use the CARLA simulation envi-
ronment to emulate real-world conditions like varied towns,
weather, and highway scenarios. To advance the performance
of AVs, we propose the following contributions:

• We propose the Diffusion-Guided Deep Reinforcement
Learning method to enhance generalization in the occur-
rence of unseen events and reduce dependency on imi-
tation learning by integrating a diffusion model with the
Soft Actor-Critic (SAC) method.

• We introduce a novel modified Partially Observable
Markov Decision Process (mPOMDP) to optimize the
behavior of the SAC policy for managing uncertainty
in the dynamic environment. This design enhances the
policy network’s ability to make optimal decisions in
closely related states.

• We conducted extensive testing to evaluate the effective-
ness of the proposed method in various CARLA envi-
ronments. Our approach outperformed the benchmarks
in NoCrash scenarios (Empty, Regular, Dense) in both
the Towns (Town01 and Town02), resulting in signifi-
cant improvements in pedestrian safety. The pedestrian
impact was reduced to 0.01/km, and the task completion
success rate increased to 95%.

2 Related Work
This section presents a thorough review of existing litera-
ture on IL and explores methods to improve generalization
through DRL techniques.

2.1 Imitation Learning in Driving
The effectiveness of IL has been widely acknowledged in
AD, enabling the development of driving policies applicable
in simulated and real-world urban driving scenarios. Learn-
ing from All Vehicles (LAV) [Chen and Krähenbühl, 2022]
enhances sample efficiency by incorporating behaviors from
all vehicles in the scene. Similarly, Learning by Cheating

(LBC) [Chen et al., 2020a] and Roach [Zhang et al., 2021]
adopt a RL coach, trained on-policy with privileged informa-
tion, to guide the learning process. The CaT (Coaching a
Teachable student) framework facilitates efficient knowledge
transfer from a privileged teacher to a sensorimotor student,
utilizing ResNet architectures for effective learning [Zhang
et al., 2023a]. The Behavior-Aware Trajectory (BAT) predic-
tion model [Liao et al., 2024b] employs LSTM and attention-
based techniques to manage prediction uncertainties and un-
derstand interactions. It mainly addresses issues with non-
continuous behavior labeling. The RLfOLD [Coelho et al.,
2024] integrates IL with DRL by leveraging online demon-
strations to bridge the distribution gap between demonstration
and training environments. Furthermore, researchers have
also focused on integrating diffusion models with IL. The
Diffusion Q [Wang et al., 2022] conceptualizes the diffusion
model as a policy, incorporating regularization and maximiz-
ing the action value function to optimize action selection.
Diffusion-BC [Pearce et al., 2023] improves traditional be-
havior cloning by employing the diffusion model as a policy,
addressing expressiveness limitations. Additionally, CDSTraj
[Liao et al., 2024a] combines the Diffusion Module and the
Spatio-Temporal Interaction Module to predict future traffic
scenarios, enabling safe and efficient navigation in dynamic
environments. DiffAIL [Wang et al., 2024a] enhances adver-
sarial IL by integrating the diffusion model, strengthening the
discriminator’s ability to capture and represent complex dis-
tributions effectively. However, despite the advancements in
IL approaches, a significant challenge persists in addressing
the distribution gap between demonstration datasets, and few
works have explored the effectiveness of IL models for gen-
eralization. This gap remains a key challenge to the effective
deployment of AD systems in real-world scenarios and high-
lights the need for further research.

2.2 Enhancing Generalization Using DRL
Researchers have explored various approaches to enhance
generalization capabilities in visually diverse environments.
Data Augmentation (DA) and Domain Randomization (DR)
have proven two effective methods for this purpose. [Hansen
and Wang, 2021] employed a BYOL-like [Grill et al., 2020]
architecture to separate augmentation from policy learning,
enhancing generalization. To manage high variance during
DA, DrQ [Yarats et al., 2020] updated the temporal difference
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Figure 2: Comparison of (a) the standard POMDP, (b) the mPOMDP, and (c) the proposed DGDRL framework, highlighting key architectural
enhancements. The DGDRL model addresses uncertainty in stochastic environments by leveraging three encoder blocks to extract features
Ot. These features are processed by a diffusion model and the Actor (Policy) network to generate perturbed features O′

t and optimal actions
at. The framework minimizes the distribution mismatch between Ot and O′

t to jointly optimize the Actor and Critic networks.

loss using augmented Q-values and target Q-values. SVEA
[Hansen et al., 2021] identified two pitfalls causing instabil-
ity in DrQ and proposed augmenting Q-values only during
training. [Yuan et al., 2022a] proposed a task-aware data aug-
mentation method using the Lipschitz constant to maintain
training stability. Additionally, [Hafner et al., 2023] worked
on improving sample efficiency for learning from pixel-based
observations. [Ma et al., 2024] proposed Random PadRe-
size (Rand PR) and Cycling Augmentation (CycAug) to en-
hance the efficacy of DA by improving spatial diversity and
maintaining data distribution consistency. The most popular
approach in domain randomization involves training a DRL
agent on numerous source domains to develop a generalized
policy, as demonstrated by Andrychowicz et al. [Andrychow-
icz et al., 2020]. This method helps the agent to ignore irrel-
evant variations and focus on common features. [Lee et al.,
2024] introduced a spatial domain adaptation algorithm that
enhances images through random transformations such as
flipping, cropping, and rotating. These techniques use deter-
ministic transformations, which sometimes fail to capture the
continuous nature of state transitions and unexpected events
in a dynamic environment. As depicted in Figure 2c, the pro-
posed method learns smooth interpolation between states and
allows the model to develop more robust representations of
the states.

3 Methodology
In this section, we introduce the modified Partially Observ-
able Markov Decision Process (mPOMDP) method for im-
proving generalization. Subsequently, we detail the integra-
tion of the diffusion model with the Soft Actor-Critic Deep
Reinforcement Learning framework.

3.1 Problem Definition
Autonomous vehicle (AV) frequently encounters challenges
in interpreting scenes from images due to the dynamic na-
ture of the environment (e.g., rapid movements of vehi-

cles and pedestrians) and its inherent uncertainties. Con-
sequently, the sequential decision-making process for AVs
can be modeled as a mPOMDP, characterized by the tuple
(S,O,A, r, P, γ). Here, S = {s1, s2, . . . , sNS

} represents
the finite set of possible states of the vehicle and its envi-
ronment, O = {o1, o2, . . . , oNO

} denotes the finite set of
possible observations derived from sensor data, where o2
is derived from the diffusion generated latent representation
of o1 and the initial original latent representation (o1), and
A = {a1, a2, . . . , aNA

} is the finite set of actions the vehicle
can take. The reward function r : S×A→ R assigns rewards
based on actions taken in specific states, such that r(s, a) ∈
[0, Rmax], where Rmax ∈ R+ is the maximum possible re-
ward. The state transition function P : S × A × S → [0, 1]
gives the probability P (st+1 | st, at) of transitioning from
state st to state st+1 after taking action at. The observation
functionO : S×O → [0, 1] defines the probabilityO(ot | st)
of making observation ot given the current state st. Finally,
γ ∈ [0, 1] is the discount factor that places higher importance
on immediate rewards over future rewards. Our main objec-
tive is to determine an optimal policy π∗ that maximizes the
expected cumulative reward over time. Mathematically, this
can be defined as:

π∗ = argmax
π

Eat∼π(·|st),st∼P

[
T∑
t=1

γtr(st, at)

]
(1)

where the actions at are sampled from the policy π(· | st) and
the states st evolve according to the transition probabilities
P (st+1 | st, at), starting from an initial state s0 ∈ S. The
optimal policy π∗ specifies the best action at to take in each
state st to maximize the expected discounted sum of rewards
over a time horizon T .

3.2 Use Case
Making complex sequential decisions in a non-deterministic,
stochastic environment is a key challenge in autonomous
driving (AD). Traditional methods often approach this task
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using Markov Decision Processes (MDPs) or POMDPs.
These methods typically assume that the next state is fully de-
termined by the current state and the action taken, as shown
in Figure 2a. However, this assumption can be inadequate in
AD, where sudden or significant state transitions may lead to
unsafe conditions, such as collisions. Real-world driving dy-
namics require state transitions to be smooth and constrained
to ensure safety and stability, as represented in Figure 1. To
address these challenges, the proposed mPOMDP framework
allows the vehicle to make optimal decisions by analyzing
original and diffusion-generated observations as illustrated in
Figure 2b. These generated observations enable the model
to learn a more robust, generalized policy by exposing it to
uncertainty. The primary objective of integrating the diffu-
sion model within the mPOMDP is to create anticipated fu-
ture states with controlled uncertainty.

3.3 Encoder Block
The AV decision-making process involves interpreting ob-
servations ot and selecting actions at to maximize cumu-
lative rewards over time. Each observation ot at timestep
t is defined as: ot = {(It−k,Wt−k,Vt−k)}1k=0, where
It−k ∈ R3×256×256 represents the image from the vehi-
cle’s camera, Wt−k ∈ RN×2 denotes the 2D coordinates of
N = 10 future waypoints, and Vt−k ∈ R2 includes the vehi-
cle’s speed and steering angle. The agent computes an action
at = (throttle, brake, steering), where throttle, brake ∈ [0, 1]
and steering ∈ [−1, 1], based on these observations. The
environment provides a reward rt and the next observation
ot+1. The throttle and brake values are determined by a
Proportional-Integral-Derivative (PID) controller that aligns
with the predicted target speed from the policy network. To
handle partial observability, we transform observations into
latent representations. We used a similar setup for the encoder
configurations based on the approach defined in RLfOLD
[Coelho et al., 2024]. The image encoder fimg processes the
image sequence to generate latent features it. This encoder
uses convolutional layers enhanced with Adaptive Local Sig-
nal Mixing (A-LIX) and data augmentations such as color
jittering and Gaussian blur to improve feature extraction and
reduce overfitting. The waypoint encoder fwp applies 1D con-
volutions to the waypoint coordinates Wt, producing a latent
representation. The vehicle measurements encoder fveh uses
a Multi-Layer Perceptron (MLP) to process the concatenated
vehicle data. The overall latent state ot is formed by concate-
nating these individual latent features: ot = (Ih,Wh, Vh)t,
where ot ∈ Rdtotal , with dtotal representing the combined di-
mensionality of the latent features from the image, waypoint,
and vehicle measurement encoders. These latent represen-
tations ot encapsulate the critical information from the en-
vironment and vehicle state, allowing the policy network to
take optimal actions.

3.4 Diffusion for Latent Space Uncertainty
Diffusion models are generative methods that iteratively
transform Gaussian noise into a desired target distribution,
potentially incorporating contextual information as needed.
We modified the output layer of the DiffAIL [Wang et al.,
2024a] model to process encoded latent representations and

generate representations that are closely aligned with some
uncertainty. For simplicity, define ot = (Ihi,Whi, Vhi)t,
where t denotes the time step in the diffusion process, and
i indicates the agent environment steps at which a latent rep-
resentation is used for action in the trajectory. The forward
diffusion process is parameter-free and is given by:

q(ot | ot−1) = N
(
ot |

√
1− γt · ot−1, γtI

)
(2)

where, γt represents the variance at time step t. The reverse
process of the parameterized diffusion model is defined as:

pψ(o0:T | ot) = N (ot−1 | µψ(ot, t),Σψ(ot, t)) (3)

The covariance matrix is fixed as Σψ(ot, t) = σ2
t I = γtI ,

making it non-trainable and represented by a predefined
schedule. According to the forward process, ot can be de-
rived from ot−1 at any time step t. The mean of the reverse
process is expressed as:

µψ(ot, t) =
1√

1− γt

(
ot −

γt√
1− δt

ϵψ(ot, t)

)
(4)

where, δt =
∏t
s=1(1 − γs) and ϵψ(ot, t) represents the pre-

dicted noise at time step t. The diffusion model over state-
action pairs is formulated to predict the noise at each time
step in the reverse diffusion process:

L(ψ) = Eo′t∼ot

[∥∥∥ϵ− ϵψ

(√
δt · ot +

√
1− δt · ϵ, t

)∥∥∥2]
(5)

Equation (5), is used to train the diffusion model to align with
ot. We incorporate the predicted noise into the latent features
to enhance the policy network’s ability to generalize across
different scenarios. The term (

√
δt·ot+

√
1− δt·ϵ) represents

the noisy latent state generated by the forward pass, referred
to as opred

t . In the reverse pass, the diffusion model learns
the added noise, denoted as ϵpred. Therefore, we can obtain
o′t by subtracting the learned noise ϵpred from opred

t . Once the
diffusion model is end-to-end trained, o′t will converge to ot.
Therefore, o′t can be mathematically represented as:

o′
t =

opred
t −

√
1− δt · ϵpred√
δt

(6)

where, o′t represents the adjusted latent feature, δt is the pa-
rameter of the diffusion process, and ϵpred is the predicted
noise. Eq. (6), then used to guide the policy network in se-
lecting new actions based on this input, effectively reducing
the distribution gap between the actions taken by ot and o′t.
This process is detailed in the following subsection.

3.5 Diffusion-Guided Soft Actor-Critic Method
Soft Actor-Critic [Haarnoja et al., 2018] method is a model-
free, off-policy actor-critic DRL algorithm designed to opti-
mize a maximum-entropy objective with a discount factor γ.
It learns two Q-functions Qθ1 and Qθ2 , a stochastic policy
πϕ, and a temperature parameter α. Our approach bypasses
the use of a value network and instead trains two Q-networks
by optimizing them based on the one-step soft Bellman resid-
ual:

Lθk,i,w,v = Eot,at,ot+1∼D

[
(Qθk(ot, at)− ŷ)

2
]

(7)
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Weather Town Task CILRS LBC CADRE GRIAD WOR RLfOLD OURS

Train (W01) Train (T01)
Empty 97.23 89.11 95.32 97.15 97.43 100 100
Regular 83.54 87.34 92.21 98.43 97.32 94.12 96.43
Dense 42.65 75.36 80.04 94.54 92.46 90.42 95.52

Train (W01) Test (T02)
Empty 66.44 86.56 92.21 94.32 94.54 100 100
Regular 49.65 79.34 78.23 93.54 89.34 92.34 98.77
Dense 23.23 53.65 61.32 78.22 74.76 82.26 89.97

Test (W02) Train (T01)
Empty 96.46 60.72 94.32 83.97 90.23 96.23 97.90
Regular 77.65 60.67 86.23 87.34 90.65 88.02 95.25
Dense 39.56 54.46 76.33 83.74 84.23 85.42 92.23

Test (W02) Test (T02)
Empty 66.56 36.32 78.54 69.12 78.31 98.47 100
Regular 56.35 36.76 72.76 63.23 82.76 86.99 92.32
Dense 24.43 12.67 52.23 52.56 66.34 68.62 82.12

Average 60.31 61.08 81.14 83.01 86.53 90.07 95.04

Table 1: Comparison of success rates (%) on the CARLA NoCrash benchmark using current state-of-the-art methods. The evaluation covers
two towns, T01 (Town01) and T02 (Town02), and two sets of weather conditions: W01 (ClearNoon, WetNoon, HardRainNoon, ClearSunset)
and W02 (SoftRainSunset, WetSunset).

ŷ = rt + γ

[
min
k=1,2

Q̄θk(ot+1, ãt+1)− α log πϕ(ãt+1|ot+1)

]
(8)

The policy loss function for the SAC method is enhanced by
integrating diffusion-based latent features from Eq. (6), aim-
ing to increase the expected return and promote exploration
via entropy regularization. Therefore, the policy loss function
can be defined as:

Lπϕ = −Eot∼D
[
Eãt∼πϕ(·|ot)

(
min
k=1,2

Qθk(ot, ãt)

−α log πϕ(ãt|ot))]
+ λEo′

t∼Diffusion(ot)

[
DKL

(
πϕ(·|ot)∥πϕ(·|o′

t)
)]

(9)
The policy loss function Lπϕ in (9), combines the expected
return, which drives the policy network to maximize re-
wards using KL divergence, weighted by λ, to regularize
the policy’s distribution. For Gaussian policies, the KL di-
vergence between the two distributions can be modeled as
πϕ(·|ot) ∼ N (µot , σ

2
ot) and πϕ(·|o′t) ∼ N (µo′t , σ

2
o′t
). The

higher KL divergence value helps the agent stay consistent
with previously learned policies, particularly in new or un-
certain states. As the diffusion model continues to learn
over time, the gradient of the KL divergence with respect
to the policy parameters (∂DKL

∂ϕ ), progressively decrease to
zero. Therefore, we can draw the following observations:
(µot − µo′t) → 0 and σot ≈ σo′t . Hence, we can for-
mulate:

lim
t→last episode

DKL (πϕ(· | ot) ∥ πϕ(· | o′t)) ≈ 0 (10)

Thus, the gradient of the policy loss with respect to ϕ simpli-
fies, as the KL divergence term no longer majorly contributes
to the gradient. Hence, the policy optimization reduces to:

∂Lπϕ
∂ϕ

=
∂LSAC

∂ϕ
+
∂DKL

∂ϕ
≈ ∂LSAC

∂ϕ
(11)

Reducing KL divergence weakens the penalty on policy dif-
ferences between states, allowing the policy to focus more on
optimizing actions based on Q-value differences rather than
maintaining consistency. This smooth transition from high to

low regularization reflects the policy’s shift from broad explo-
ration to specialization, initially exploring and generalizing
across states and later focusing on exploiting optimal actions
as confidence grows.

4 Experiments and Result Discussion
We trained and evaluated our model using an NVIDIA L40S
GPU with 46GB of RAM in the endless-full-nocrash Carla
environment. The training process took 6 days and 19 hours
to complete 106 environment steps. Evaluations were con-
ducted every 20k steps, with episode returns averaged over 10
episodes in each assessment. We utilized the reward function
mechanism described in [Zhang et al., 2021]. In this study,
we utilized CARLA [Dosovitskiy et al., 2017] version 0.9.10,
an open-source simulator designed for AD research. CARLA
features high-fidelity maps with static objects, such as build-
ings, traffic signs, and dynamic objects. In vehicle avoidance
scenarios, the ego vehicle must stop when a stationary vehicle
appears 20 meters ahead and proceed once cleared. The hy-
perparameter configurations used during model training are
provided in the supplementary file.

4.1 Evaluation Metrics and NoCrash Benchmark
To evaluate the generalization ability of the proposed model,
we utilized the NoCrash benchmark [Codevilla et al., 2019a].
Which provides three traffic conditions of varying difficulty:
empty (no dynamic objects), regular (moderate numbers of
pedestrians and vehicles), and dense (high volume of pedes-
trians and vehicles). Additionally, it defines six weather con-
ditions and features 25 routes in Town01 (characterized by
one-lane roads and T-junctions) for training, while Town02,
a scaled-down version with distinct textures, is used for test-
ing. The evaluation focused on the success rate, indicating
the proportion of routes completed without collisions.

4.2 Model Comparison
We compare the proposed method with recent state-of-the-
art (SOTA) approaches, including CILRS [Codevilla et al.,
2019b], LBC [Chen et al., 2020b], WOR [Chen et al., 2021],
GRIAD [Chekroun et al., 2023], CADRE [Zhao et al., 2022],
and RLFOLD [Coelho et al., 2024]. Table 1, presents a
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Figure 3: Generalization to unseen tasks: Despite being trained in Town01 (two-lane setup), the model autonomously learns and successfully
executes smooth lane-switching tasks on a four-lane road in a completely new town setup without collisions. This underscores the model’s
capability to learn and master tasks beyond its training scope through self-learning.

Figure 4: Analysis of the model’s generalization capability to ensure safety measures during unexpected events in the Town 2 dense setup
under test weather conditions.

comprehensive comparison of success rates on the NoCrash
benchmark across these methods. LBC, CADRE, and RL-
FOLD utilize single-camera approaches, while GRIAD and
WOR use three cameras as input. Most of these methods
rely on IL in offline or online demonstration mode. A major
drawback of IL is its limited generalization to unseen scenar-
ios. IL methods mainly rely on the quality of demonstration
data, which can result in unsafe or suboptimal decisions when
faced with rare or unpredictable events in dense traffic sce-
narios. The proposed method efficiently handled this prob-
lem and choose the optimal decision close to the previous
decision instead of following predefined actions. The DG-
DRL demonstrates remarkable efficacy across diverse traffic
conditions. In the Train(W01)-Train(T01) scenario, DGDRL
achieves a success rate of 95.52% in the dense task, outper-
forming other methods. However, it performs relatively lower
in the Regular task, where GRIAD achieves a higher success
rate of 98.43%. In the Test(W02)-Test(T02) scenario, where
other methods struggle to handle dense traffic conditions ef-
fectively, DGDRL continues to demonstrate outstanding per-
formance. In dense traffic scenarios, it achieves an 82.12%
success rate, representing a substantial 24% improvement
over RLFOLD. Similarly, in regular task conditions, DGDRL
attains a 92% success rate, surpassing RLFOLD by 6%. No-
tably, the method maintains an impressive average success
rate of 95.04%, underscoring its robust performance and su-
periority compared to existing state-of-the-art approaches.

Handling Unseen Tasks and Unexpected Events. Scene
understanding is a crucial task for AVs operating in highly dy-
namic environments, where even a minor deviation in percep-
tion and interpretation of surroundings can lead to significant
safety challenges for pedestrians. Figures 4 and 3 present ex-
perimental results evaluating the generalization capability of
the proposed method during unexpected events and its abil-
ity to handle unseen tasks. The results show that the vehi-
cle successfully detects pedestrians and executes appropriate
safety protocols by reducing speed to a complete stop, ensur-
ing safe road crossing for pedestrians with zero collision in-
cidents. The vehicle then resumes its planned trajectory once
the road is clear. Furthermore, we critically analyzed the cap-
tured testing videos and observed that the model, despite not
being explicitly trained for lane-switching, executes smooth
lane-switching tasks. These findings demonstrate the vehi-
cle’s reliability in handling unexpected events and highlight
its potential for real-world AV applications. Additionally, we
investigated the root cause of the 5% gap in the success rate
from the perfect score. Our analysis revealed that the vehi-
cle’s behavior is inconsistent when encountering traffic lights,
as shown in Figure 5. The agent stops when it detects another
stopped vehicle in the lane. However, the agent sometimes
passes through a red light when the road is clear. This be-
havior highlights the limitations of the proposed method and
requires further improvements.
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Metric RL baseline (λ=0.01) (λ=0.1) (λ=0.5)
Success Rate (%, ↑) 86 ± 2 85 ± 4 92 ± 2 89 ± 3
Trajectory Completion Rate (%, ↑) 94 ± 2 95 ± 1 98 ± 1 96 ± 2
Pedestrian Impact (#/Km, ↓) 0.10 ± 0.03 0.08 ± 0.04 0.01 ± 0.02 0.05 ± 0.03
Vehicle Collision (#/Km, ↓) 0.32 ± 0.11 0.30 ± 0.10 0.16 ± 0.06 0.22 ± 0.08
Layout Collision (#/Km, ↓) 0.15 ± 0.04 0.21 ± 0.03 0.09 ± 0.04 0.11 ± 0.05
Agent Obstruction (#/Km, ↓) 0.21 ± 0.13 0.18 ± 0.11 0.14 ± 0.08 0.16 ± 0.10

Table 2: The ablation study presents task success rates and safety metrics under varying values of λ, highlighting the performance of the
regular task under test conditions. Results are based on four runs (20 episodes each), presented as mean± std.

Figure 5: Model behavior in handling traffic lights in the CARLA NoCrash Regular setup under new weather conditions, observed at different
timestamps (t1 → t4) in a continuous sequence.

5 Ablation Study
In the ablation study, we evaluate the impact of varying the
diffusion regularization parameter (λ), given in Eq. (9), on
task completion and safety metrics. As shown in Table 2,
increasing λ leads to a substantial improvement in the task
success rate. Specifically, the success rate rises from 86% for
the RL baseline to 92% when λ is set to 0.1. This improve-
ment is due to the additional regularization term in the loss
function, which helps the policy network generate more ro-
bust actions to state perturbations. We observed a significant
reduction in pedestrian impacts and vehicle collisions, with
values of 0.01 and 0.14 per km, respectively, when λ was set
to 0.1. This indicates that the model generalizes effectively to
unseen events, such as sudden pedestrian movements. How-
ever, when λ exceeded 0.1, the diffusion loss became domi-
nant over the policy loss, causing the model to deviate from
optimal sequential decisions. In real-world driving scenar-
ios, state transitions are continuous in nature. For instance,
when moving from sunny to rainy weather, the change oc-
curs gradually: sunny change to cloudy, followed by light
rain and heavy rain. Considering these factors, we utilized
linear noise scheduling, which produced state-of-the-art re-
sults. We also tested exponential noise scheduling, which led
to aggressive exploration and caused learning instability. We
set the timesteps (t) to 1000 and observed that reducing the
t to 600 made the model less generalized, while increasing it
to 1200 resulted in no further improvement in results. Addi-

tionally, we conducted a series of testing experiments using
Town03, Town04, and Town05 to evaluate the generalization
capability of the proposed model to unseen dynamic environ-
ments, as detailed in the project page supplementary file.

6 Conclusion
This work introduces the Diffusion-Guided Deep Reinforce-
ment Learning (DGDRL) framework, which integrates a Dif-
fusion model with a Soft Actor-Critic DRL approach to en-
hance autonomous driving performance in complex urban en-
vironments. The framework follows a novel modified Par-
tially Observable Markov Decision Process (mPOMDP) prin-
ciple. It effectively addresses the limitations of traditional Im-
itation Learning by incorporating a diffusion process, which
improves the model’s ability to handle environmental uncer-
tainties and unforeseen events. Empirical results demonstrate
DGDRL’s significant superiority over existing state-of-the-art
methods, achieving an average success rate of 95.04% across
diverse towns and weather conditions. The ablation study re-
veals that increasing the diffusion regularization parameter
λ to 0.1 shows substantial improvements in task completion
rates and reduces collision rates, underscoring the critical role
of the diffusion model in developing robust and generalized
autonomous driving policies. In the future, we plan to fo-
cus on enhancing DGDRL’s capabilities to manage complex
tasks, such as handling traffic lights and tunnels, along with
exploring its application in other domains.
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