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Abstract

In a recently introduced model of successive com-
mittee elections, for a given set of ordinal or ap-
proval preferences one aims to find a sequence of a
given length of “best” same-size committees such
that each candidate is a member of a limited num-
ber of consecutive committees. However, the prac-
tical usability of this model remains limited, as the
described task turns out to be NP-hard for most se-
lection criteria already for seeking committees of
size three. Non-trivial or somewhat efficient algo-
rithms for these cases are lacking too. Motivated
by a desire to unlock the full potential of the de-
scribed temporal model of committee elections, we
devise (parameterized) algorithms that effectively
solve the mentioned hard cases in realistic scenar-
ios of a moderate number of candidates or of a lim-
ited time horizon.

1 Introduction
A non-profit organization (NPO) offers a 3-day personal de-
velopment workshop for teenagers in a remote location. Fea-
tured activities include discussion sessions with three expert
counselors who tackle the participants’ questions in various
topics of developing self awareness. Potential counselors
agreed to participate in such discussions for at most two con-
secutive days to avoid excessive traveling and fatigue. Every
counselor specializes in a limited selection of topics regard-
ing self-awareness. The NPO wants to select three groups of
three counselors, one group per day, to offer the participants
as broad experience as possible. Hence, the selected groups
must obey the counselors’ consecutiveness requirement and
also guarantee a diverse selection of topics covered each day
by the respective counselor pair.

The NPO’s task seemingly can be modeled as a multi-
winner voting task [Faliszewski et al., 2017; Lackner and
Skowron, 2023]. Identifying counselors as candidates and
each subarea as a voter, who approves for the candidates rep-
resenting counselor’s expertise, we want to select a diverse
group of candidates. However, the classical model neglects
the temporal aspect of the problem and thus misaligns with
the task. Precisely, it fails to group the counselors in teams of

three to serve on the three days of the workshop while adher-
ing to the consecutiveness requirement.

The described shortcoming has recently been addressed
by Bredereck et al. [2020], who proposed a suitable frame-
work of successive committee elections. Here, based on a
collection of votes, one selects a collection of multiple, or-
dered, same-size groups, called committees, of “best” can-
didates. In line with our toy example, each candidate in the
selected committees must be a member of a single contiguous
block of at most a given number of committees. Besides in-
troducing the new model, the authors have studied associated
problems through algorithmic lens. They studied four suc-
cessive committee rules focused on maintaining the diversity
of the chosen committees based on the Chamberlin–Courant
rule [Chamberlin and Courant, 1983]. Further, they consid-
ered extensions of the widespread approval voting rule and
weakly-separable scoring rules. Their study identified cases
solvable in polynomial time mostly related to finding series
of committees that consist of two candidates. While they
showed that with very few exceptions the same task for com-
mittees of size three or more is computationally hard, they
abstained from providing algorithms dealing with such cases.

Motivated by the desire of providing means of computing
successive committees for criteria considered by Bredereck et
al. [2020], we sidestep their hardness results by applying ad-
vanced algorithmic methods from parameterized complexity
theory. We analyze the same set of rules they did and con-
tribute several positive algorithmic results, as shown in Ta-
ble 1. Consequently, (1) we provide the first algorithms that
deal with the hard scenarios for committee size bigger than
two, including cases focusing on diverse committees sim-
ilar to our introductory example, and (2) our methods are
furthermore computationally efficient (in the parameterized
sense) for cases with a small number of candidates or com-
mittees to be selected. The mentioned cases of interest seem
quite likely in practice. Indeed, planning too far ahead usu-
ally bears unacceptable risks (like unpredictable changes of
voters preferences or dropping out of candidates). Too big
pool of candidates is often undesired due to human percep-
tion limitation and is usually avoided by shortlisting (in a
broad sense, e.g., by requiring petition signatures, delibera-
tion processes, organizing pre-selection). As our algorithmic
contributions extend the applicability of successive commit-
tee elections, we directly respond to the call of Boehmer and
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Niedermeier [2021] to consider different paths of tractability
of new models1 better capturing the changing nature of real-
world problems.

Some other models incorporate the time aspect into classi-
cal committee elections additionally allowing votes to change
their vote over time. Bredereck et al. [2022] introduce such
a model and analyze the (parameterized) computational com-
plexity of several related questions. Their results, comple-
mented with those of Kellerhals et al. [2021], offer a compre-
hensive computational landscape. Importantly, their model
does not generalize the one we consider, as their requirements
for the outcome on a series of committees are focused on
(dis)similarity of neighboring committees. Deltl et al. [2023]
deepen the study of the model of Bredereck et al. [2022] by
studying new questions related mostly to the fairness of the
outcomes towards the voters. The dynamic nature of prefer-
ences considered by the three listed works makes approaches
therein impossible to adapt to our problems. In the light of
the mentioned literature, our work takes a significant step to-
wards addressing the somewhat neglected algorithmic study
of successive committee elections.

Another related scenario of time-dependent voting where
the task is to select a single candidate for each time step can
be seen as a series of committees of size one. The literature
on this model mostly focuses on proportionality and fairness
from axiomatic [Lackner, 2020; Lackner and Maly, 2021;
Chandak et al., 2024], algorithmic [Elkind et al., 2024b;
Bulteau et al., 2021] and experimental perspectives [Bulteau
et al., 2021; Chandak et al., 2024]. See a survey by Elkind et
al. [2024a] for more details on this topic.

2 Preliminaries
For a positive integer x, we use [x] to denote set {1, 2, . . . , x}.
An election E = (C, V ) consists of m candidates C =
{c1, c2, . . . , cm} and a collection V = {v1, v2, . . . , vn}
of n voters. We study approval and ordinal preferences. In
the former preference type, we associate a voter vi ∈ V with
their approval set A(i) of candidates that vi approves. In the
ordinal preferences model each voter vi ranks all candidates
and so is identified with their (total and strict) preference or-
der ≻i. We denote by posi(c) a position of candidate c ∈ C
in some voter vi’s ranking ≻i. There are multiple mathemat-
ical ways of relating ordinal preferences to approval prefer-
ences.2 However, they all require decisions somewhat arbi-
trary from the practical perspective.

Fixed-Parameter Tractability. We say a computational
problem is fixed-parameter tractable for some parameter x
(being a part of the input) if there is an (parameterized) al-
gorithm solving every instance I in time O(f(x)|I|c) for
some constant c. We call such an algorithm an FPT(x)-
algorithm. Under standard computational complexity as-
sumptions, fixed-parameter tractability for some parameter x

1Their taxonomy classifies successive committee elections as the
setting of Ordered One profile Multiple solutions (O-OM).

2For example: approvals are either complete rankings with ties
or can be constructed from rankings by letting each voter approve a
number of their top candidates.

is excluded when the problem is W[t]-hard, t ∈ N with re-
spect to x or when the problem is NP-hard for a fixed value
of x.
Committee Series Quality. Let us fix a committee scoring
function sc : 2C → N, which assigns a nonnegative natu-
ral committee score to each committee W ⊆ C. Given an
(ordered) committee series W = (W1,W2, . . . ,Wτ ) of τ
same-sized committees, util(W) :=

∑
i∈[τ ] sc(Wi) is the

utilitarian committee series quality of W and egal(W) :=
mini∈[τ ] sc(Wi) is its egalitarian committee series quality.
We study consecutive f -frequency committee series. In such
series, each candidate participates in at most f consecutive
committees of a series.
Ordinal committee scoring functions. Let E = (C, V )
be an arbitrary ordinal election with m candidates, n vot-
ers, and W = {w1, w2, . . . , wk} ⊆ C be a committee.
Following Bredereck et al. [2020] we consider three (fami-
lies of) ordinal committee scoring functions (1.) Chamberlin–
Courant (CC), (2.) egalitarian Chamberlin-Courant (eCC),
and (3.) weakly separable scoring functions (which we denote
collectively by FWS) formally defined as:
(1) CC(W ) :=

∑
i∈[n] maxw∈W (m− posi(w))

(2) eCC(W ) := mini∈[n] maxw∈W (m− posi(w))

(3) a function Q is weakly separable, i.e., Q ∈ FWS, if it
can be associated with some function ϕ : [m] → N0 such
that Q(W ) =

∑
i∈[n]

∑
w∈W ϕ(posi(w))

The family of weakly-separable functions is very general.
Among others, it includes such prominent voting rules as Plu-
rality or Borda. Their respective ϕ functions are ϕplu(x) :=
max(0, 2 − x) and ϕBor(x) := m − x (both defined for x ∈
[m]).
Approval committee scoring functions. Similarly, for an
arbitrary approval election E = (C, V ) with n voters and
some committee W ⊆ C, we consider (1.) (approval)
Chamberlin-Courant (AppCC), (2.) threshold-α Chamber-
lin-Courant (trCCγ), for rational γ ∈ (0, 1], and (3.) approval
score (App), defined formally as follows:
(1) AppCC(W ) := |{vi ∈ V : A(i) ∩W ̸= ∅}|

(2) trCCγ(W ) :=

{
1 if |{v ∈ V |A(v) ∩W ̸= ∅}| ≥ γn,
0 otherwise.

(3) App(W ) :=
∑

v∈V A(v) ∩W

Central problem. We focus on the following computa-
tional problem, which we define very generally. We use α ∈
{util, egal} as a placeholder for a committee series quality
measure and β ∈ {CC, eCC,AppCC, trCCγ ,App} ∪ FWS,
to indicate a committee scoring function. For readability, we
directly substitute β with FWS, when we mean that β is an
arbitrary weakly-separable committee scoring function (e.g.,
egal-FWS-SCE is a placeholder for any problem egal-g-SCE
where g ∈ FWS). We do not explicitly specify whether the in-
put consists of ordinal or approval votes. It is to be inferred
from the committee scoring function β in question.
α-β-SUCCESIVE COMMITTEES ELECTION (α-β-SCE)
Input: Election E = (C, V ) with candidates C and vot-
ers V , a number τ of committees in a target series, a size k
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of committees in a target series, a maximum candidate fre-
quency f , and a minimal committee quality η.
Question: Is there a consecutive f -frequency committee
series S of size τ consisting of size-k committees such that
α(β(S)) ≥ η?

Bredereck et al. [2020] show that egal-β-SCE is NP-hard
for all studied β even when simultaneously k = 3 and f = 1.
Except for β′ ∈ {App,FWS}, they prove the same for util-
β′-SCE. Importantly, these two results immediately exclude
efficient parameterized algorithms for small values of k, f ,
and their sum.

Even though the above formulation is a decision problem,
all our algorithms can be used to find a requested committee
series. In theorem statements, we give asymptotic running
times of algorithms ignoring mostly irrelevant terms polyno-
mial in the input. For clarity, we stress it using O⋆ instead of
the standard O. The proofs marked by ⋆, or their parts, are
deferred to the full version of our paper [Jain and Kaczmar-
czyk, 2025].

3 The Case of Few Candidates
Given the general computational hardness results of Bred-
ereck et al. [2020], we start our search of efficient algorithms
from cases with a bounded number of candidates. As argued
in the introduction, this assumption can naturally be justified
from the practical point of view. Parameter “number of can-
didates,” which we denote by m, is too a standard parameter
in the literature on the complexity of election problems.

For better accuracy, in some subsequent results (and in Ta-
ble 1) we give running times using the size k of committees.
Because k ≤ m, such results always yield fixed-parameter
tractability for parameter m. Naturally, they also show fixed-
parameter tractability for parameter m + k. Recall that the
hardness results of Bredereck et al. [2020] exclude fixed-
parameter tractability for k alone.

Finding the winner of every multiwinner voting rule that
assigns a score to each committee and chooses the one with
the maximum score as the winner is fixed-parameter tractable
with respect to the number of candidates (assuming comput-
ing the score of a committee is polynomial-time solvable).
This observation becomes easy, when one realizes that for
such rules it is enough to enumerate all possible committees
and compute their scores (for example, see the works of Pro-
caccia et al.; Betzler et al. [2008; 2013]) . However, a com-
mittee series is composed of multiple committees whose in-
terdependency is nontrivially governed by the frequency of
candidates and the requirement of consecutiveness. Indeed,
even if we enumerate all at most 2m committees, to construct
a committee series we need to consider that each of them pos-
sibly come in any between one and frequency-many copies as
demonstrated in Example 3 by Bredereck et al. [2020].

Does this complication to the domain of all possible solu-
tions make finding the right solution computationally harder
with respect to parameter “number of candidates”?

For the good news, we answer the above in negative. Quite
surprisingly, even though the number of all possible commit-
tee series depends nonlinearly on the candidate frequency, the
following series of results show fixed-parameter tractability

of the problems we study with respect to solely the number
of candidates. By this, the results reveal that the increase of
the complexity of the domain of solutions is, intuitively, still
bounded by a function of the number of candidates.

We start with a foundational result for the case of f = 1.
While the result applies to both the utilitarian and egalitarian
variants of our problem, it is the latter variant for which the
result gives fixed-parameter tractability.
Theorem 1 (⋆). There exists an algorithm that solves util-
β-SCE and egal-β-SCE in O⋆(2m) time for f = 1 and all
studied β.

The importance of Theorem 1 for the egal-β-SCE problem
lies in combining it with the subsequent observation by Bred-
ereck et al. [2020].
Proposition 1 (Lemma 1 by Bredereck et al. [2020]). egal-
β-SCE with f ≥ 2 can be reduced to egal-β-SCE with f =
1 in linear time.

The reduction in Proposition 1 does not increase the num-
ber of candidates. Hence, with Theorem 1, Proposition 1
yields a general result about the egalitarian version of the
problem, which shows the sought tractability for small num-
ber of candidates.
Theorem 2. There exists an algorithm that solves egal-β-
SCE in O⋆(2m) time for all studied β.

Generalizing Theorem 1 in the utilitarian case does not di-
rectly lead to such an optimistic result as that for the egali-
tarian case. Instead, we obtain dynamic programming (DP)
algorithms whose running time upper-bounds increase expo-
nentially with the increase of parameter f . To increase read-
ability, we first state our result for f = 2.
Theorem 3. There is an FPT(m)-algorithm running in time
O⋆(42m) solving util-β-SCE for f = 2 and all studied β.

Proof. Let us define a Boolean function F (A, j, s,G), which
returns true if among candidates A, there is a series achieving
quality at least s and consisting of j committees, each of size
2 such that in the j-th committee candidates from G ⊆ A ap-
pear for the first time in the series; F returns false otherwise.
Our algorithm computes the values of F and returns true, if
at least one of F (C, τ, η,G′), for G′ ⊆ C, |G′| ≤ k is true.

We compute the values of F applying the DP approach to
the following recursive formula. Denoting by W(A,G, k) a
collection of all size-k sets W such that G ⊆ W ⊆ A we get:

f(A,j, s,G) =∨
W∈W(A,G,k)

f(A \G, j − 1, s− sc(W ),W \G).

The correctness of the formula follows from the equation. Re-
call that to compute the left hand side value, we need to check
whether it is possible to obtain exactly j 2-consecutive com-
mittees yielding quality s such that candidates from G appear
in the j-th committee for the first time. To do so, in the for-
mula, we consider each possible committee W containing G
as a subset and scoring sc(W ). For each such W , we check
whether there is a series of j − 1 consecutive committees of
the requested size that jointly get quality s − sc(W ) consist-
ing of candidates in A \G. The last conditions follows from
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candidates number m

egal-β-SCE O⋆(2m) Thm. 1
util-β-SCE O⋆(m!(k − 1)m) Thm. 5

O⋆(2m); const. k and f = 1 Thm. 1
O⋆(4fm); any f Thm. 4

time horizon τ (for const. k)

egal-β-SCE O⋆(2.851(k−0.5501)τ ) Thm. 9
util-β-SCE O⋆(2.851(k−0.5501)τ ); f = 1 Thm. 6

O⋆(2kτ(f+1)(2e)kτ (kτ)log(kτ)); const. f Thm. 7

Table 1: Our results for egalitarian and utilitarian committee series quality functions and β ∈ {CC, eCC,AppCC, trCCγ ,App}. In all
cases we assume k ≥ 3. Note that Bredereck et al. [2020] show polynomial-time algorithms for util-App-SCE and egal-FWS-SCE, so in
these cases our algorithms run (much) slower.

the fact that candidates in G must be used for the first time
only in W in question. Furthermore, we assure that the j−1-
th committee contains the candidates that appear in W for
the second time, as these have to take part in the committees
consecutively; hence the last argument W \G of F ’s evalua-
tion on the right-hand side. To conclude the proof, we define
F (A, 0, s,G) = true for s ≤ 0 and false for s > 0. We let
the value of the function be false each time W(A,G, k) = ∅.

There are at most τ2mpoly(n,m) values of F to compute,
where the polynomial term comes form the maximum score
of our committee scoring functions. It takes at most 2m to
compute a single value. Hence, as a result we obtain the
claimed running time of O⋆(42m).

The above approach readily generalizes to arbitrary values
of f by defining F to take arguments G1 up to Gf−1 instead
of just G. Increasing the parameter space, leads to the expo-
nential in f increase of the running time.

Theorem 4 (⋆). There is an FPT(m)-algorithm running in
time O⋆(4fm) that solves util-β-SCE for all studied β.

In the remainder of this section, we present Theorem 5 cov-
ering the claimed fixed-parameter tractability for m for util-
β-SCE. There is a clear theoretical advantage of this next
result over the one from Theorem 4, as the latter depends
exponentially on both m and f . As we shall see, however,
the running time of the algorithm from Theorem 5 may be
(asymptotically) as large as mm. Such a running time would
(asymptotically) be way larger than 4fm coming from Theo-
rem 4 for small values of f . Hence, the algorithm from The-
orem 4 (as well as the one from Theorem 1) might be more
useful in practice. Especially since one of the motivations
of studying candidate frequencies is to avoid excessive over-
load of committee members, which leads to small values of f
[Bredereck et al., 2020]. Finally, the algorithm from the fol-
lowing Theorem 5, albeit interesting from the computational
complexity classification perspective, would rather turn out
too computationally intensive to be applicable in practice.

Theorem 5. There is an FPT(m)-algorithm which runs
in time O⋆(m!(k + 1)m) and solves α-β-SCE for α ∈
{util, egal} and all studied β.

Proof. Throughout the whole proof we let k be the size of
committees in a requested f -consecutive committee series of
size τ . Our algorithm computes the sought committee series
by repeatedly running a dynamic programming (DP) proce-
dure over a collection of guesses, each of which represents
a subspace of the solution space. The proof comes in three

parts. We first discuss the guesses, then the DP procedure,
and finally we show how to effectively enumerate the guesses.

Guesses. Our algorithm repeatedly guesses a specific struc-
ture over candidates C, which we call a division, and which
describes a space of possible f -frequency committee series of
size τ . Before we describe divisions, let us first consider some
order of candidates represented by a bijection ρ : [m] → C;
e.g., ρ(2) = c′ means that candidate c′ ∈ C is ordered sec-
ond. A subset X of candidates is an interval (according to ρ)
if the set {i : ρ(i) ∈ X} is an interval; intuitively, the can-
didates from X form an interval according to ρ. If X is an
interval, then we denote by beg(X) the position in ρ of the
leftmost candidate of X .

Definition 1. A division D of size d is a 3-tuple (ρ,S,F) with
order ρ of candidates, an ordered set S = {S1, S2, . . . Sd}
of size-k committees called primitives, a collection F =
{F1, F2, . . . , Fd} of interim candidate sets such that jointly:

a) Si is an interval according to ρ for each i ∈ [d],
b) beg(Si) < beg(Si+1) for each i ∈ [d− 1],
c) Fd = ∅,
d) Fi ∩ Fj = ∅ for each (i, j) ∈ [d]× [d], i ̸= j,
e) |Fi| ∈ {0, k − |Si ∩ Si+1|} for each i ∈ [d− 1],
f) Si ∩ Si+1 = ∅ ⇒ Fi = ∅ for each i ∈ [d− 1], and

g)
(⋃

i∈[d] Fi

)
∩
(⋃

i∈[d] Si

)
= ∅.

Together with the following intuitive description of the
above definition, we provide an example division in Figure 1.
Let us fix some order ρ. Then, the definition says that the
primitives in S are d pairwise different interval size-k com-
mittees ordered increasingly by their interval beginning ac-
cording to ρ. Further, the interim candidate sets are pair-
wise disjoint and consist of candidates that do not belong to
any primitive committee. Interim candidate set Fd is always
empty, and each interim candidate set Fi, i ∈ [d − 1] can be
non-empty only if Y = Si ∩ Si+1 is non-empty; but if Fi is
non-empty, then it contains k − |Y | elements.

A division is intended to encode a (sub)space of feasible
solutions that can be used for an efficient search for a solution
to our problem. So, it is crucial that at least one division
describes a space containing the solution, if the latter exists.

Lemma 1 (⋆). For each instance of α-β-SCE, there is a
division D whose space contains a committee series maxi-
mizing α(β(W)) for the given values of f , τ , and k.

The proof of the above lemma is constructive, but it does
not offer an efficient way of finding an optimal solution. Be-
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c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11S:

∅∅∅ ∅ {c10, c11} ∅∅∅F :

Figure 1: Division D = (ρ,S,F) of size d = 4 of 11 candidates for
a committee size k = 3 and order ρ(i) = ci. The division features
S = ({c1, c2, c3}, {c4, c5, c6}{c5, c6, c7}, {c7, c8, c9}) and F =
{∅∅∅, ∅, {c10, c11},∅∅∅}. Bolded ∅∅∅ are empty by definition.

fore showing such a way, we present an intuition of how the
elements of the space of some division D look like. To ease
the presentation, we assume the identity order ρ(i) = ci for
i ∈ [m], and lay out some elements of the space in Figure 2.

First, observe that some consecutive f -frequency commit-
tee of size τ can be constructed as follows. We assign each
primitive Si ∈ S the respective number ri of copies of this
primitive ensuring that the sum of ri’s is exactly τ . Assum-
ing that our ri’s do not violate the frequency limit f , we get
a committee series W of size τ by repeating, in order, each
primitive Si exactly ri times. Clearly, W is consecutive due
to the interval requirements on the primitives in S . There are,
however, more committee series similar to W in the space
of D. They use the so-far ignored interim candidate sets F .
For an example, consider the following case. Assume that W
contains a sequence Si, Si, Si+1 of neighboring committees
and that Y = Si ∩Si+1 is non-empty. If Fi ̸= ∅, then we can
substitute the “middle” Si, with a committee S′ = Y ∪ Fi,
thus obtaining a new committee series W ′ containing a se-
quence Si, S

′, Si+1. Note that W ′ remains f -consecutive be-
cause by definition |Fi| = k − |Y | and Fi ∩ Y = ∅.

The whole space of D consists of the committee series
emerging from all valid choices of the multiplicities ri and
from all valid substitutions (perhaps multiple at once) analo-
gous to the construction of W ′.

Finding a Solution. Assume some division D = (ρ,S,F),
where S = (S1, S2, . . . , Sd) and F = (F1, F2, . . . , Fd).
We show a dynamic programming algorithm (DP) running
in the claimed FPT-time that tests whether the space of D
contains a sought committee. We define a Boolean func-
tion T (t, i, q, u, j, r, p), for q > 0, r > 0, which is true if
and only if there is an f -consecutive series X such that:

a) X contains t committees (of size k),
b) primitive Si ∈ S is repeated exactly q times in X ,
c) if Fi ̸= ∅, committee S′ = Fi ∪ (Si ∩ Si+1), called

i-intermediate, is repeated u times in X between the
copies of Si and Si+1,

d) in which candidate ρ(j) ∈ Si is part of exactly r con-
secutive committees of X , and

e) α(β(X)) ≥ p.
Assuming that ρ(j′) is the last candidate in Sd according to ρ,
there exists a sough f -consecutive series of size τ achieving a
committee series quality η if there is a pair (q′, r′) ∈ [f ]× [f ]
for which T (τ, d, q′, 0, j′, r′, η) outputs true.

We recursively compute the values T (t, i, q, u, j, r, p) in
the order of increasing values of t, i, j, and p; the variables
are mentioned in the order of increasing frequency of change
during computation iterations. Because the candidates are or-
dered with respect to ρ, it is convenient to think of combina-
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Figure 2: Two selected 3-consecutive 3-committee series of size τ =
6 from the space of division D of Figure 1. Each column represents
a single committee in a committee series, and each color represents
a different primitive (or its part).

tions of values i and j as cells in a grid, where j is the column
number representing candidate ρ(j) and i is the row number
representing primitive Si ∈ S . In the grid, primitive Si forms
an interval in the i-th row; this interval corresponds to the
candidates in Si. As depicted in Figure 3, by convention, we
place point (1, 1), corresponding to candidate ρ(1) in primi-
tive S1, in the upper left corner of the corresponding grid.

Some values of T (t, i, q, u, j, r, η) are invalid by definition
or in an obvious manner. This is the case for:
(I1) each i and j ∈ [m] for which ρ(j) /∈ Ci; see dark

shaded cells in Figure 3,
(I2) cases in which q + t > τ , q + u > f , or r > f ,
(I3) positive values u for i for which Fi = ∅; in particular,

by definition of D, this holds when Si ∩ Si+1 ̸= ∅.
For readability, we never explicitly test for these invalid cases
assuming, for technical reasons, that T returns false for them.

For the sake of presentation, for each primitive Si ∈ S ,
we define the head and the tail of Si as, respectively, the
first and the last candidate of Si with respect to order ρ (as
demonstrated in Figure 3). Formally, head(Si) = j′ and
tail(Si) = j′′ if for each j ∈ [m] such that ρ(j) ∈ Si, j′ ≤ j
and j ≤ j′′. If a candidate is neither the tail nor the head of
some primitive Si ∈ S , then it is intermediate in this primi-
tive. Note that a candidate might be the head of one primitive
but an intermediate candidate for another primitive.

In what follows, we frequently consider a situation in
which we seek a committee series of quality at least p by
repeating a primitive Si ∈ S exactly q times and the com-
mittee (Si ∩ Si+1) ∪ Fi exactly u times. In such cases, we
use rq(i, p, q, u) := p−qβ(Si)−uβ((Si∩Si+1)∪Fi) that de-
scribes the required quality of a to-be-constructed committee
series prior to using the q + u committees mentioned above.
This is where the subtraction in the expression comes from.
Our formulas use u = 0 whenever (Si ∩ Si+1) ∪ Fi is not
a committee of the requested size (when either Fi = ∅ or
Si ∩ Si+1 = ∅). Consequently, the related term vanishes.

We continue with presenting a recursive formula for T ,
which we split into multiple cases for readability. Values
of the base cases T (t, 1, q, u, j, r, p) follow directly from the
definition of T .

We first focus on such cases T (t, i, q, u, j, r, p) in which
head(Si) = j and Si−1 ∩ Si = ∅. We skip computation
at all and return false if q ̸= r. Indeed, q = r is required
as all candidates in Si will appear for the first time in the
constructed committee series.

T (t, i, q, u, j, r, p) =
∨

q′∈[f ],r′∈[f ]

T (t− q − u, i− 1, q′, 0,

tail(Si−1), r
′, rq(i, p, q, u))

In words, the formula’s alternative tests whether we can
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achieve sufficient committee quality rq(i, p, q, u), before we
repeat primitive Si exactly q times and committee Si∩Si+1∪
Fi exactly u times. Since Si−1 ∩ Si = ∅ implies that
Fi−1 = ∅, in the alternative we invoke T with the respective
parameter equal to 0. Recall that expression rq(·) remains
correct even if Fi = ∅, which by Case (I3) implies u = 0.

Next, we consider head(Si) = j under assumption that
Si−1 ∩ Si ̸= ∅. Consequently, q < r, as the j-th candidate
belongs to Si−1 ∩ Si, and Si−1 has to be repeated at least
once (see the domain of T ). So, if q ≥ r we return false and
otherwise we compute T as follows:

T (t, i, q, u, j, r, p) =
∨

q′∈[f ],u′∈[f ]

T (t− q − u, i− 1, q′, u′, j,

r − q, rq(i, p, q, u)).

This time, we ensure that before using primitive Si and
interim candidates Fi, we used the j-th candidate exactly
r−q times. We do not subtract u, as by the fact that primitives
are different, j-th candidate cannot be part of (Si∩Si+1)∪Fi,
which is repeated u times. Accordingly, the alternative iter-
ates over all possible values of q′ and u′ to check if there is
any committee series using primitives up to Si−1 of the re-
quired quality (see the discussion in the previous case).

We continue with computing T (t, i, q, u, j, r, p) for cases,
in which the j-th candidate is either an intermediate or a tail
candidate. Consequently, the j-th candidate (from the respec-
tive primitive Si ∈ S) can be part of ℓ-intermediate commit-
tees for ℓ ≥ i, i.e., that come after all copies of Si in the built
committee series W . Previously, when the j-th candidate was
a head candidate, it could only be part of the ℓ-intermediate
committees for ℓ < i. For this reason, the following formulas
sometimes impose additional conditions.

We start with a simple case. Let the j-th candidate c =
ρ(j) be the intermediate or tail of primitive Si. Assume that
c /∈ (Si ∩ Si+1).

T (t, i, q, u, j, r, p) =
∨

r′∈{r,r+1,...,f}

T (t, i, q, u, j − 1, r′, p)

The number repetitions of Si and the score p is always fixed
during the computation for Si’s head candidate. So in this
case the alternative recursively mostly “carries on” function
values from previous candidates of Si. We iterate using r′

because the j − 1-th candidate could be part of more (pre-
vious) committees than candidate c. Due to our interval re-
quirements and sorting of Si ∈ S , we know that r′ ≥ r.

Next, consider computing T (t, i, q, u, j, r, p) assuming that
the j-th candidate c = ρ(j) is an intermediate or tail candi-
date, c ∈ Si ∩ Si+1, and c /∈ Si−1. We repeat c exactly
q + u times as a member of q copies of Si and of u copies
of i-intermediate committee. Hence, we immediately return
false if r ̸= q + u, and otherwise we have

T (t, i, q, u, j, r, p) =
∨

r′∈{q,q+1,...,f}

T (t, i, q, u, j − 1, r′, p).

The lower-bound of iterator r′ follows from the fact that the
j − 1-th candidate must be repeated at least as many times as
the primitive Si to which the candidate belongs is repeated.

In the final case we consider the, intermediate or tail, j-th
candidate c = ρ(j) such that c ∈ Si ∩ Si+1, and c ∈ Si−1.

i = 1 • ×
i = 2 • ×
i = 3 • ×
i = 4 • ×

c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 3: A grid-representation of division D from Figure 1 with
the heads (•) and tails (×) of the primitives. Shaded boxes represent
invalid value combinations of parameters i and j of function T . For
readability, we omit the sets of interim candidates.

Since c is used in copies of primitive Si−1, we return false if
q + u ≤ r. Otherwise, we compute T as follows:

T (t, i, q, u, j, r, p) =
∨

r′∈{q,q+1,...,f}

T (t, i, q, u, j − 1, r′, p)∧

∨
q′∈[f ],u′∈[f ]

T (t− q − u, i− 1, q′, u′, j, r − q − u, rq(i, p, q, u)).

On top on all conditions of the counterpart case with c /∈
Si−1 described directly above this case, we add further re-
quirements. Observe that here c is used q+u times but it was
also previously used. The second alternative of the formula
ensures that these q+u uses of candidate c would not make c
exceed the frequency f .

The case distinctions is exhaustive so the correctness of
the formula stems directly from its description. To com-
pute each value of function T , we need at most O(f2) steps.
Further, for some division D of size d, we need to compute
d · kτf3 · poly(n,m) values of T , as there is dk valid pairs
of parameters i and j, t ∈ [τ ], (q, u, r) ∈ [f ]3. Hence, we
obtain a polynomial running-time for each division.
Constructing Guesses and Running Time. We run the DP
procedure for each possible division D = (ρ,S,F). We first
select some order ρ of candidates out of m! of them. Then,
we guess the division size d. Note that S = (S1, S2, . . . , Sd)
can be represented as a vector (s1, s2, . . . , sd), where si,
i ∈ [d], denotes the rightmost candidate of the interval of
committee Si given ordering ρ. Hence, the guessed divi-
sion size d varies from one to at most m, where the up-
per bound is not tight and describes the maximum number
of distinct equisized interval committees coming from tak-
ing d = m − k and si = k + i, for i ∈ [d]. Impor-
tantly, τ does not contribute to the number of possible values
of d, as it is only the DP procedure that achieves τ commit-
tees for some D. Next, we guess each entry of the S vec-
tor, except for the first one which is fixed. To this end, we
choose the value of each si, i ∈ {2, 3, . . . , d}, from range
{si−1 + 1, si−1 + 2, . . . , si−1 + k + 1} (recall that all prim-
itives in S have to form an interval according ρ). Finally,
for each non-empty intersection X of neighboring primitives,
of which there are at most d, we either select an empty in-
terim set or take next unused k − |X| candidates according
to ρ (as long as the latter is possible). This totals in at most
m!·m·(k+1)m ·2m guesses. Overall, the algorithm is clearly
fixed-parameter tractable with respect to m.

The approach behind Theorem 5 in fact works for any qual-
ity measures of committee series quality and committee scor-
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ing function as long as their values are polynomially bounded
by the input size. This leads to a general result covering much
more scoring functions than those described in Section 2.

Corollary 1. There is an FPT(m)-algorithm with running
time O⋆(m!(k − 1)m) solving α-β-SCE for arbitrary com-
putable aggregation α and a committee scoring function β
whose values are polynomially bounded in the instance size.

4 The Case of Short Time Horizon
The algorithms from the previous section are no longer of
use for large pools of candidates. In such cases, approaches
tailored to small values of parameter τ , which is a formal
framing of short time horizon in our model, might come to the
rescue. Imagine, for example, an online streaming platform
building daily music recommendation for the following week,
based on a user’s past-week activity. While such a task might
likely include even hundreds of songs, it is still only seven
lists (committees) that we want to arrange in a series.

In most cases that we study, however, our expectations
cannot be stretched as far as obtaining FPT-algorithms for
parameter τ . The Chamberlin–Courant rule, in its vari-
ants for approval as well as ordinal preferences, is W[2]-
hard for parameter “committee size” already in the mul-
tiwinner voting model [Lu and Boutilier, 2011; Betzler et
al., 2013]. Because these results are special cases of α-
β-SCE for both committee series quality variants and β ∈
{CC, trCCγ , eCC,AppCC} for τ = 1, there is no hope for
fixed-parameter tractability for parameter k + τ in this case.

Consequently, we focus on FPT-algorithms with respect
to τ assuming a constant committee size. On the one hand,
such results are a clear advancement from the theoretical
perspective given that util-β-SCE and egal-β-SCE both
are NP-hard even for the constant committee size for al-
most every committee scoring β that we study [Bredereck et
al., 2020] (the exceptions are util-FWS-SCE and util-App-
SCE). On the other hand, constant values of k are still in-
teresting from the practical point of view as small committee
sizes might appear in practice. For example, in our toy exam-
ple about daily music recommendation, providing too many
songs each day would be overwhelming for the user and in-
effective in promoting featured tracks.

Our first algorithm reinterprets util-β-SCE with f = 1 as
an instance of WEIGHTED SET PACKING and then applies a
known procedure of Goyal et al. [2015] for solving the latter.

Theorem 6 (⋆). There exists an algorithm that solves util-
β-SCE in O⋆(2.851(k−0.5501)τ ) time for all studied β when
the committee size k is constant and f = 1.

Next, we prove the result for constant f ≥ 2. Without loss
of generality, we assume that τ > f . Otherwise, we find a
committee of maximum score in polynomial time and repeat
it f times. Since k is a constant, computing a maximum score
committee is polynomial-time solvable for every committee
scoring β that we study.

Theorem 7 (⋆). There exists an algorithm that solves util-
β-SCE in O⋆

(
2kτ(f+1)(2e)kτ (kτ)log(kτ)

)
time for all stud-

ied β when the committee size k and f are constant.

The proof of Theorem 7 heavily depends on the following
randomized algorithm.
Theorem 8 (⋆). There exists a randomized algorithm that
given an instance of util-β-SCE for all studied β either
reports failure or outputs a solution in O⋆(2kτ(f+1)(2e)kτ )
time. Moreover, if the algorithm is given a yes-instance, it
returns yes with probability at least 1/2, and if the algorithm
is given a no-instance, it returns no with probability 1.

Proof sketch. A solution S = (S1, . . . , Sτ ) is called colorful
if every pair of candidates s, s′ in ⊎i∈[τ ]Si has distinct colors.
Now, our algorithm runs in three phases. In the first phase, we
uniformly and independently at random color the candidates
forming our solution. Then, we discard the sets that cannot be
part of our solution under the coloring. In the third phase, we
use dynamic programming to turn the coloring into a colorful
solution, if the coloring admits one.

We obtain Theorem 7 by derandomizing the algorithm
of Theorem 8. To this end we employ a (p, q)-perfect hash
family [Alon et al., 1995] that we construct in the requested
time applying the results of Naor et al. [1995] and Cygan et
al. [2015].

We provide more good news, by presenting an analogous
result for the egalitarian committee series evaluation. By this,
we cover all of our cases of interest (for constant k).
Theorem 9 (⋆). There exists an algorithm that solves egal-
β-SCE in O⋆(2.851(k−0.5501)τ ) time for all studied β when
the committee size k is constant.

5 Conclusions and Future Directions
We have provided first algorithms for solving hard instances
emerging from the model of successive committee elec-
tions [Bredereck et al., 2020]. Extending the algorithmic un-
derstanding of a recent area of temporal elections, our results
concern potentially practical scenarios including small num-
bers of candidates and a short time horizon. In the light of
increasing resonance of experiments in computational social
choice [Boehmer et al., 2024], our algorithms potentially en-
able experimental study on successive committee elections.

Theoretical follow-up directions include complementing
our picture with parameterizations by “number n of voters”
and “committee series quality η.” While both these parame-
ters might turn out to be quite large in practical applications,
obtaining the respective results would complete the picture of
the parameterized complexity of the studied problems. We
note that parameter η in part inherits technical intricacies of
the study of the parametrization by (mis)representation for
Chamberlin–Courant rules [Betzler et al., 2013; Chen and
Roy, 2022]. Importantly, Bredereck et al. [2020, Theorem 5]
implicitly excludes fixed-parameter tractability of η for egal-
trCC1(W )-SCE, while our results yield it for util-CC-SCE
and util-AppCC-SCE for η.

On the more practical side, our algorithms require an em-
pirical treatment to verify its potential applicability in prac-
tice. As our study only gives pessimistic running-time upper
bounds, a thorough investigation based on synthetic and real-
life instances is needed to check the algorithms behavior on
more realistic input instances.
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