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Abstract

Molecular Relational Learning (MRL) is widely
applied in molecular sciences. Recent studies at-
tempt to retain molecular core information (e.g.,
substructures) by Graph Information Bottleneck
but primarily focus on information compression
without considering the causal dependencies of
chemical reactions among substructures.  This
oversight neglects the core factors that determine
molecular relationships, making maintaining sta-
ble MRL in distribution-shifted data challenging.
To bridge this gap, we propose the Causal Sub-
graph Information Bottleneck (CausalGIB) for sta-
ble MRL. CausalGIB leverages causal dependency
to guide substructure representation and integrates
subgraph information bottleneck to optimize the
core substructure representation, generating sta-
ble representations. Specifically, we distinguish
causal and confounding substructures by noise in-
jection and substructure interaction based on causal
analysis. Furthermore, by minimizing the dis-
crepancy between causal and confounding infor-
mation within subgraph information bottleneck,
CausalGIB captures core substructures composed
of causal substructures and aggregates them into
molecular representations to improve their stability.
Experimental results on nine datasets demonstrate
that CausalGIB outperforms state-of-the-art mod-
els in two tasks and significantly enhances model’s
stability in distribution-shifted data.

1 Introduction

Molecular Relational Learning (MRL) predicts the interac-
tion between molecular pairs by mining structures and prop-
erties [Fang et al., 2024; Du et al., 2024]. MRL has gar-
nered significant attention in natural science research due
to its widespread applications in new material design and
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Figure 1: The motivating example.

drug discovery [Pei et al., 2024; Zhang et al., 2024a]. The
molecular structural information mining-based methods have
advantages in MRL [Wang er al., 2024; Job et al., 2023;
Zhang et al., 2025b]. However, these methods exhibit vary-
ing levels of performance fluctuations in real-world scenar-
ios. Consequently, enhancing model stability is essential for
the effective implementation of MRL.

The Graph Information Bottleneck (GIB) [Wu et al., 2020]
has recently been applied to extracting and identifying core
subgraphs. GIB generates representation that represent the
minimal sufficient information of the input graph by infor-
mation compression [Yuan et al., 2024; Fan er al., 2022;
Seo et al., 2024]. The theory provides a novel solution for
MRL, with the key problem being to efficiently capture the
molecular representation that are most beneficial for MRL [Li
et al., 2024; Seo et al., 2023]. Related research addresses the
above problem by maximizing the mutual information be-
tween molecules and prediction targets [Yang et al., 2023;
Li et al., 2024]. Specifically, these methods control the in-
formation flow between molecules and the targets to gener-
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ate representation that contain minimal sufficient information
about molecules [Lee et al., 2023al. The generalizability of
GIB-based MRL are improved by integrating the interaction
information into molecular representations.

The core challenge of MRL is the instability of model pre-
dictions caused by distribution differences between training
data and real-world data [Lee er al., 2023b]. An effective way
to deal with this challenge is to capture the core substructures
that determine molecular reactions [Fang er al., 2024]. Nev-
ertheless, GIB-based MRL have the following limitations:
(1) Missing Substructure Causal Information in Chemical
Reactions: The nature of chemical reactions is the dynamic
rearrangement between substructures [Hu ef al., 2017]. The
substructures of the same paired molecule causally related to
prediction targets in different chemical reactions may be dif-
ferent [Iwasaki and Nozaki, 2024]. As shown in Fig. 1(a),
when molecule A reacts with B, the reactive substructure in
A is -COOH, while with C, it is -NH,. GIB typically focuses
on information compression and fails to model causal interac-
tions between substructures, making it challenging to identify
the substructures that truly determine chemical reactions. (2)
Challenges in Capturing Nuanced Differences Between
Substructures: Substructures are susceptibly impacted by
active atoms within the molecule, altering their properties in
chemical reactions [Zhang et al., 2025al. As shown in Fig.
1(b), molecules D and E contain a -CO, but the substructures
involved in reactions with the same molecule differ. This is
because the -CI in E has the stronger electron adsorption, en-
hancing the reactivity of -CO, which leads to the -COCI sub-
structure involved in chemical reaction. Considering MRL
solely at the molecular level makes capturing these nuanced
differences between substructures difficult. These limitations
restrict the ability of GIB-based relevant methods to maintain
stable relational learning.

In this paper, we first establish the causal associations
between substructures and molecular relationships in MRL
and analyze the key factors influencing the backdoor paths.
Subsequently, we propose the Causal Subgraph Information
Bottleneck (CausalGIB), which incorporates the Causally-
driven Substructure Representation Learning (CauSRL) and
the Synergistic Optimization of Subgraph Information Bottle-
neck (SOSIB). CauSRL integrates causal dependencies into
the optimization of substructure representation through noise
injection and interactions, effectively distinguishing causal
and confounding substructures. SOSIB encourages the model
to learn the maximum causal mutual information between
causal substructures and prediction targets while minimizing
the information among confounding substructures, thereby
generating stable molecular representations. The main con-
tributions are as follows.

* We propose CausalGIB that introduces subgraph causal
information into GIB to improve the stability of MRL.
To the best of our knowledge, it is the first work to ad-
dress the problem of causal substructure selection in dif-
ferent chemical reactions.

* We provide a formal validation for the design of the
loss function, grounded in theoretical reasoning, to ef-
fectively capture subtle distinctions between substruc-

tures by minimizing the disparity between confounding
and causal information.

* Experiments on two tasks in nine real-world datasets
and three different data distributions demonstrate that
the predictive performance and stability of CausalGIB
outperforms seven state-of-the-art models.

2 Related Work

Molecular Relational Learning. MRL is an essential task
in molecular representation, encompassing various applica-
tions [Pei et al., 2024; Zhang et al., 2024b; Job et al., 2024].
We focus on Molecular Interaction (MI) and Drug-Drug In-
teraction (DDI) predictions. In MI prediction, CIGIN [Pathak
et al., 2020] employed message-passing network and collab-
orative attention to encode molecular atoms and predict sol-
vation energy. CMRL [Lee et al., 2023b] combined molecu-
lar representation with causal relationships, identifying sub-
structures related to chemical reactions. In DDI predic-
tion, SA-DDI [Yang et al., 2022], SSI-DDI [Nyamabo er al.,
2021], and DSN-DDI [Li et al., 2023] extracted substruc-
ture information from drugs in various ways to represent drug
molecules.

Graph Information Bottleneck. GIB is an extension
and development of the Information Bottleneck theory within
graph theory, which has been widely applied in molecular
relational learning [Sun et al., 2022], multi-agent commu-
nication [Ding et al., 2024b; Ding et al., 2024a], and graph
learning interpretability [Yuan er al., 2024]. Specifically,
PGIB [Seo et al., 2023] introduced prototype information into
the GIB framework and used it as a compression bottleneck
to improve the interpretability of graph representation learn-
ing. [Ding er al., 2024b; Ding et al., 2024a] optimized ro-
bust communication in multi-agent systems by setting mu-
tual information between message and action choices as the
GIB optimization objectives. CGIB [Lee et al., 2023a] com-
bined molecular relational learning with the GIB framework
to model the nature of chemical reactions.

Despite the advantages of the related methods in MRL,
they fail to consider the causal dependencies between sub-
structure pairs. Therefore, we aim to improve the model’s
stability in distribution-shifted data by introducing causal in-
formation to identify core substructures of molecules.

3 Preliminaries

In this section, we define stable MRL and construct the
Causal Substructure Model (CSM). Based on the analysis
results of CSM, we identify the key factors influencing the
backdoor paths in MRL.

3.1 Stable MRL

For any molecule G, it can be represented as G =
(V,E, X, A). Here, V = {v1, v2, - ,vn} denotes the set of
nodes. £ € N x N represents the connections between atoms
within the molecule, which is closely related to the adjacency
matrix A. If (v;,v;) € E, then A;; = 1; otherwise, 4,; = 0.
X is the feature matrix, consisting of the atom feature repre-
sentations. For the given molecular pair (G, Yy, G, ), the
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Figure 2: The CSM for stable MRL.

objective of Stable MRL is to generate a stable molecular
embedding representation Z(G**) and to use it for molecule
pair interaction prediction in different data distributions. For-
mally, Yz, = Fi(Z2(G3'), Z2(G3')). Therefore, CausalGIB
aims to learn stable representations of molecules and improve
the model’s predictive performance.

3.2 CSM for Stable MRL

We define and construct the CSM for stable MRL, as shown
in Fig. 2. The causal relationships illustrated in Fig. 2 are
described as follows:

* G, = G < Gyt GY is the causal core substructure
of molecule G5, jointly determined by G, and G, and
varies with changes in G,.

* Gy = Gy + Gy Gy is the causal core substructure
of molecule G, jointly determined by G, and G, and
varies with changes in G 5.

* G, — G + Gy G is the confounding substructure
of molecule Gz, representing the substructure involved
of G other than G¢.

* Gy = Gy < Gy Gy is the confounding substructure
of molecule G, representing the substructure involved
of G other than G7.

* G¢ — Z,: Z, is the representation of the molecule G,
obtained by encoding the causal core substructure G¥¢.

* Gy — Zy: Z, is the representation of the molecule G,
obtained by encoding the causal core substructure G7.

* Z, — Y < Z,: Y represents the interaction between
molecular pairs, which depends on both G, and G in
molecular relationship learning.

Through backdoor path analysis, we identify the core fac-
tors influencing molecular relationships Y. The backdoor
paths are G < Gy — Gy < G, =G =2, =Y, Gy—
G? +— G, —>G —>Z—>Y G.—GY <—G —Gy, —>Z—>Y
and G+ G -GS — Gy —>é —>Z S Y. By ana-
lyzing the backdoor paths in the CSM we observe that G'§
and G¢ serve as the backdoor criteria constraining molecu—
lar relationships Y. Considering the specificity of molecular
relationship learning, i.e., the substructure is either core sub-
structure G¢ or confounding substructure G”. Therefore, our
objective is to establish stable interactions between G and Y’
by eliminating the influence of G™ on G°.

4 Methodology

Motivated by CSM, we propose the CausalGIB with joint op-
timization of predictive loss and confusing information for

stable MRL, as shown in Fig. 3. CausalGIB models substruc-
ture dynamic binding in CSM by noise injection and substruc-
ture interactions, utilizing it to optimize substructure embed-
dings (Sec. 4.1). Furthermore, we propose the optimization
objective for Subgraph Information Bottleneck (SIB) to per-
turb confounding information while preserving the associa-
tion between causal substructures and the target (Sec. 4.2).

4.1 Causally-Driven Substructure Representation
Learning (CauSRL)

CauSRL utilizes the GNN encoder and an adjacency aggre-
gation strategy to generate representations for irregular sub-
structures. Subsequently, we intervene with causal dependen-
cies between substructures via noise injection to identify sub-
structures with strong causal relationships.

Irregular Substructure Representation Learning

We utilize substructure coefficient and neighbor feature
weighted aggregation to extract molecular substructures. For
the molecule G, the substructure GG° consists of the central
atom v,. and its K-hopping neighboring nodes v*. Formally,

Z(G®) = S py Oy cor CFGNNF(v,). GNN(*) can be se-
lected from GIN [Xu et al., 2019], MPNN [Gilmer et al.,
20171, GAT [Velickovi¢ et al., 2018], or GCN [Kipf and
Welling, 2017]. The calculation of C k is defined as follows:

__ 0(Z(vn))-logo(Z(vn)) @
Zvuev§ U(Z(Uu)) : 10gU(Z(Uu>)

Here, o is the activation function. Z(x) is the embedding
representation of node. We use Z(G?) to obtain the molec-
ular representation Z(G) = Z(G*)||---||Z2(G*7). Jis
the number of molecular substructures. Next, we compute
the importance R; of different substructures G*¢ within the
molecule G, which is used for subsequent noise injection.

+ZH£Z (G%),

Causal Substructure Recognition with Dependency
Intervention (CSDI)

To better identify causal relationships between substructures,
we introduce causal dependence to model the interaction be-
haviour. Causal dependence refers to a scenario where a
change in one variable, due to an external intervention, di-
rectly induces a change in another variable, with this effect
being unexplained by other variables. In other words, if a
change in the topology of a substructure increases its inter-
action probability with the paired substructure, the two sub-
structures exhibit a higher causal dependency.

Consequently, we interfere with the topological informa-
tion of substructures through noise injection and quantify
causal dependency by causal contribution scores to identify
and select causal substructures. Specifically, given the adja-
cency matrix A of molecule G, our objective is to inject noise
into the adjacent atoms of the substructure G* and reconstruct
the associations between them via the molecule’s adjacency
matrix A to obtain an intervening topologically informed sub-
structure G™°. Formally, G™® = G°+4 A v,s, where A vy

Ck:

R = o(Z(G™), Z(@) @
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Figure 3: The model structure of CausalGIB. (a) CauSRL incorporates noise injection to compute causal dependencies between substructures.
(b) SOSIB perturbs confounding information and preserves the association between causal substructures and target.

represents the added atomic nodes. The embedding represen-
tation of the substructure after noise injection is defined as:

Z(G™)=NZG*)+e(D_ Z(vns)(1—log 0(Z(vns)
Uns eN (3)
Ai ~Bernoulli (Sigmoid (R;)) , e~(ftz (v, UQZ(UM))

where N represents the set of neighboring atoms for sub-
structure G*, and ¢ is the noise function. p and o2 are mean
and variance of Z (v, ), respectively.

We compute the causal contribution difference v between
substructures before and after noise injection by incorporat-
ing stochastic interaction behaviours. + is represented by the
ratio of causal dependencies between substructures.

ENG@S G [GZS|GZ]] - ENGzi G [Gil sz]

v = = STATT 4)
ENG;i,GZj [Gw/ Gy ]

where G7° represents the substructure generated from G
after noise injection. G/ is the paired substructure of Gsb
belonging to molecules G, and G, respectively.

The numerator in Eq (4) denotes the average causal effect
of the perturbed substructure G7° on the paired substructure
Gy, while the denominator represents the causal dependency
of G%¢ on G’ The value of + indicates whether the causal
dependency between substructures changes before and after
noise injection. Based on 7, we identify the causal substruc-
tures G¢ between paired molecules. Specifically, if v > 0,
G7° is classified as causal substructure; otherwise, G35 is
considered causal substructure. The remaining substructures
are designated as confounding substructures G"™.

After CSDI screening, CausalGIB leverages SIB further
to optimize the representations of G¢ and G" and guide the
model learning. We identify the SIB-optimized causal sub-
structures as core substructures G°° and use them to generate
stable molecular representations Z(G*).

4.2 Synergistic Optimization of Subgraph
Information Bottleneck (SOSIB)

Considering that the nature of MRL is dynamic interaction
between substructures [Lee et al., 2023b], we extend GIB to
the subgraph level. We derive the optimization objective for
the SIB and exhibit its transformational solution process.

Subgraph Information Bottleneck
Based on the analysis of CSM, we need to generate a stable
MRL that meets the following conditions: perturbing the con-
founding information and maintaining the causal substructure
information. Therefore, we propose the optimization objec-
tive of SIB from the subgraph level.

Definition 1. (SIB) Given a pair of graphs and their inter-
action (G,Y,Gy), (G5,Gy) and (G}, Gy)) are the causal
and confounding subgraph pairs of (G, Gy) and Y, respec-
tively. Under the SIB principle, the optimal causal subgraphs
and the optimization objective are defined as:

I(Y; G5, Gy +1(G5,G™) ()

Optimizing Eq (5) maximizes the preservation of causal in-
formation while minimizing the perturbation of confounding
information on MRL. To simplify the computation of mutual
information, we reformulate and solve the upper bounds for
—1(Y; G5, Gy) and I(G€, G™) to optimize Eq (5).

Minimizing I(G¢, G™) in Eq (5)

The goal of minimizing I(G¢, G™) is to extract subgraphs
that contain less confounding information. Inspired by [Lee
et al., 2023a], we minimize the upper bound of I; as the con-
ditionally independent distribution between G¢, G", and R in
Eq (2). Since G°, G™ are subgraphs of G, according to prin-
ciples of information theory, we have I, = I(G°,G™) <
min(I(G°, G),I(G",G)). The minimization of the upper
bound of I; can be expressed as:

Is; < min( //]-'Cn GG dchG//]:Cn (G",G)dG"dG)

=min(L%, Lk )

G° = argmin (—

(6)
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where p is a posterior distribution function.

Eq (6) indicates that minimizing (L%, L% ) provides
an upper bound for I(G°,G™). In the context of MRL,
for a paired molecule (G, G,), the I(G°, G™) is refined as
1(Gg, Gy) + 1(Gy, GY).

Minimizing —1(Y’; G¢, Gy)) in Eq (5)

The goal of minimizing —I(Y; G5, GY)) is to capture the
stable representation of causal substructures that determine
molecular relationship learning. We maximize I.,, =

I(Y; G5, Gy) through v in Eq (4), the causal substructures
G¢, G;, and the prediction target Y:

Tea> / p(Y)( / / Fea(GS, GoY)dGSAGS)dY
= —Lprealg((G5,, G5 IY)Y)

where q(Gg,Gy|Y) is the variational approximation dis-
tribution used to approximate the posterior distribution
p(GE, GEIY).

The Eq (7) indicates that minimizing the prediction loss
Lyrea achieves the minimization of —I(Y; G5, Gy). Max-
imizing the mutual information between v and Y helps the
model identify the causal relationship between G¢ and Y in

the CSM backdoor paths.

(N

4.3 Model Loss and Analysis

We define the model training objective as the sum of L, cq
and L, as follows:

L= Lprea + Ly + BLY ®)

where «, 8 are hyperparameters. Lrr = min(L%,, L% )
controls the impact of confounding substructures on the
causal substructure representation. Ly..q is computed by
Mean Absolute Error Loss for regression task and Cross-
Entropy Loss for classification task.

S Experiments

In this section, we analyze the experiments to answer the fol-
lowing questions: RQ1: Can CausalGIB improve the stabil-
ity of MRL in distribution-shifted data? RQ2: How does the
performance of CausalGIB in MRL, and whether CausalGIB
is susceptible to backbone? RQ3: Can the results of ReAlign-
Fit be visually supported? RQ4: What is the key to Causal-
GIB’s performance improvement?

Following the related research [Lee er al., 2023a; Lee et al.,
2023b; Boulougouri et al., 2024], we conduct extensive MI
prediction and DDI prediction experiments on nine datasets.
To better simulate the real world data distribution, we set up
three different data distributions (Original Partitioning (Origi-
nal), Rule-based Partitioning (P1) and Graph-based Partition-
ing (P2)) in DDI prediction and use it for CausalGIB learning.

5.1 Stability Analysis of CausalGIB (RQ1)

We compared the stability of CausalGIB in distribution-
shifted data with four backbone models (GCN [Kipf and
Welling, 20171, GAT [Velickovié et al., 2018], MPNN
[Gilmer et al., 20171, and GIN [Xu et al., 2019]) and seven

domain models (MIRACLE [Wang er al., 2021], CIGIN
[Pathak et al., 2020], SSI-DDI [Nyamabo et al., 2021], DSN-
DDI [Li et al., 2023], CMRL [Lee et al., 2023b], CGIB [Lee
et al., 2023a] and MMGNN [Du er al., 2024]). We quantify
model stability by calculating the performance retention (PR)
in distribution shifts, inter-distribution performance variation
(PV) for AUROC, ACC, F1, Pre, and AUPR.

Eval:
PRy = 2L x 100% ©)
M
| Bvati — Evalrt
PV = 2ij | ZJZM 5 L 100%  (10)

where FEwva represents the evaluation metrics.  Eval;
and FEva{/® denote the prediction performance in the
original and drift distributions, respectively. M €
{AUROC, ACC,F1, Pre, AUPR} and P, € {P1, P2}. It
is important to clarify that we conduct model training and
testing separately in three distinct data distribution scenarios
(Original, P1, and P2), rather than directly applying the model
trained on distribution Original for inference in distributions
P1 and P2.

The experimental results are shown in Table 1 and Table
2. From Tables 1 and 2, the stability of the MRL models is
influenced by data distribution.

Overall Analysis of Model Stability: As data distribution
differences increase, MRL models exhibit varying degrees
of performance degradation. However, it is noteworthy that
CausalGIB consistently maintains the highest in different dis-
tributions. Compared to the second-best model, CausalGIB
achieves approximately 3% to 6% improvements in RPD, PR,
and PV. These experimental results indicate that CausalGIB
learns more stable molecular representations under distribu-
tion shifts, which we consider a key factor to its success.

Analysis of the Importance of Causal Dependency: As
shown in Table 2, methods that do not adequately account
for causal relationships (e.g., CIGIN, CGIB) exhibit at least
a 1.5% lower PVp,. in DDI prediction compared to meth-
ods that fully consider causal dependencies (e.g., Causal-
GIB). Similar trends are observed in the experimental results
shown in Table 1. This underscores the critical importance of
causal dependencies between prediction targets and substruc-
tures for the stability of MRL.

Adaptability to Distribution-Shifted Data: In Table 1,
backbone models demonstrate poor adaptability to data shifts,
showing significant performance drops and fluctuations. In
contrast, CausalGIB achieves the best results in multiple eval-
uation metrics on different datasets compared to other MRL
domain models. In P1 scenario, the performance fluctuations
of CausalGIB range from 15% to 20%, which is significantly
smaller than those of MMGNN and CMRL. These findings
suggest that CausalGIB exhibits acceptable adaptability to
data distribution shifts. We attribute this result to two main
reasons: the molecular representations generated by Causal-
GIB contain robust causal information between substructures
and prediction targets. On the other hand, CausalGIB mit-
igates the influence of confounding substructures on molec-
ular representations by weakening the associations between
confounding and causal substructures.
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ZhangDDI HetionteDDI DrugBankDDI
Model Original — P1 Original — P2 Original — P1 Original — P2 Original — P1 Original — P2
PRaccl PRaurT PRaccl PRaurT|PRacct PRavrt PRacct PRavrT|PRaccl PRaur? PRaccl PRaur?T
GCN (ICLR’17) 79.03 77.82 56.46 48.41 76.41 73.33 66.45 57.93 72.78 79.79 51.36 45.27
GAT (ICLR’18) 81.27 76.86 59.35 51.49 77.19 73.11 69.84 57.11 73.73 80.04 51.51 49.98
MPNN (ICML’17) 80.82 73.25 55.36 48.90 76.67 73.13 71.08 58.08 76.19 73.44 53.26 47.01
GIN (ICLR’19) 81.96 76.62 61.05 47.61 79.01 74.06 72.26 58.95 78.55 76.94 52.96 45.20
MIRACLE (WWW’21) 82.35 76.64 53.56 51.95 79.94 75.69 73.72 58.20 80.69 77.18 50.09 51.35
CIGIN (AAATI’20) 84.21 80.52 57.79 53.60 77.66 74.44 70.09 60.33 76.60 82.97 54.36 60.04
SSI-DDI (BIB’21) 83.81 87.60 56.30 51.76 76.62 71.45 67.64 57.82 85.34 78.37 50.92 59.74
DSN-DDI (BIB’23) 8491 81.69 60.58 55.95 76.00 74.50 68.24 61.09 77.81 80.85 52.07 59.92
CMRL (KDD’23) 84.44 81.96 62.21 60.59 76.34 72.11 69.95 60.28 78.78 77.09 57.02 60.14
CGIB (ICML’23) 85.02 85.08 63.24 61.67 80.02 77.36 70.17 64.10 81.35 79.25 58.54 60.21
MMGNN (IJCATI’24) 85.40 80.39 60.96 60.94 76.67 77.53 70.67 64.21 76.68 80.17 58.00 59.65
CausalGIB 88.14 8690 68.04 65.31 8286 8149 7550 70.64 | 86.27 87.36 65.51 67.34
PVaccl PVaurl PVril PVaurl|PVaccl PVaurl PVril PVaupl|PVaccl PVaurl PVril PVauprl
GCN (ICLR’17) 26.87 33.81 24.39 29.14 25.04 31.94 28.50 27.20 31.87 34.08 33.46 38.34
GAT (ICLR’18) 24.98 33.00 21.88 29.81 23.29 32.92 25.14 28.99 31.52 31.94 30.69 39.20
MPNN (ICML’17) 26.99 35.95 22.46 33.76 23.18 32.72 23.25 30.10 30.80 38.15 35.19 36.44
GIN (ICLR’19) 24.39 35.30 19.90 33.50 21.29 31.16 22.59 27.85 29.18 36.04 31.07 32.63
MIRACLE (WWW’21) 25.94 33.23 18.44 34.59 20.16 30.70 18.04 28.05 29.41 32.94 31.21 31.52
CIGIN (AAAI’20) 24.76 30.68 16.94 27.42 22.98 30.60 23.26 26.94 29.05 31.00 30.80 35.33
SSI-DDI (BIB’21) 25.95 27.63 21.61 21.93 25.43 33.71 27.88 29.01 28.84 29.43 37.47 32.47
DSN-DDI (BIB’23) 22.89 29.09 18.53 23.71 25.34 29.88 26.60 28.25 31.92 27.73 32.97 35.79
CMRL (KDD’23) 22.60 26.93 17.46 21.87 24.51 31.50 28.81 30.78 29.62 29.84 28.80 31.59
CGIB (ICML’23) 22.35 24.97 16.93 22.72 22.69 27.30 26.83 31.12 27.77 28.75 24.65 28.20
MMGNN (IJCAI’24) 22.89 27.35 16.56 23.79 23.87 27.54 25.72 32.71 30.58 28.62 29.89 30.23
CausalGIB 19.60 22.86 17.01 21.79 19.24  23.26 20.32  25.11 23.04 22.27 27.67 23.54

Table 1: The PRjs and PV of CausalGIB and comparison methods on DDI data in different distributions, with the best results highlighted
in bold and the second results highlighted in underline. — reflects the performance disparity between two data distributions, without

implying an inferential relationship. Unit: %.

Model ZhangDDI  HetionteDDI  DrugBankDDI
MIRACLE 19.21 24.14 25.34
CIGIN 18.70 25.01 26.31
SSI-DDI 20.74 25.21 18.33
DSN-DDI 18.30 23.62 19.00
CMRL 19.41 28.90 22.36
CGIB 20.96 25.75 22.29
MMGNN 19.44 27.14 23.64
CausalGIB 18.17 23.45 19.99

Table 2: The PVp,.. of CausalGIB and comparison methods on DDI
data in different distributions, with the best results highlighted in

bold and the second results highlighted in underline. Unit: %.

5.2 Predictive Performance Analysis (RQ2)

We further compared the predictive performance of Causal-
GIB and baseline methods on regular data to evaluate whether
CausalGIB remains competitive in independent and identi-
cally distributed data. The experimental results are reported
in Table 3. CausalGIB exhibits pronounced advantages even
in independent and identically distributed data.
Comprehensive Performance Analysis: CausalGIB
demonstrates the best overall performance in MI and DDI
predictions. In MI prediction, CausalGIB improves RMSE
by 4% to 6% in multiple datasets. CausalGIB’s comprehen-
sive performance outperforms other comparative methods in
DDI prediction. This results highlights the importance of

mitigating confounding information and strengthening causal
substructure-target relationships to enhance predictive perfor-
mance.

Substructure Importance Analysis: Methods integrating
substructure information demonstrate superior predictive per-
formance compared to those that disregard it, highlighting the
pivotal role of substructure interactions in MRL. Encourag-
ing models to capture substructure-level features significantly
enhances the prediction of molecular interactions, consistent
with the principle that substructures are fundamental determi-
nants of chemical reactivity.

5.3 Visualization Analysis (RQ3)

To validate CausalGIB’s ability to capture causal substruc-
tures, we visualize the node features and the interactions be-
tween substructures, as shown in Fig. 4.

CausalGIB effectively captures substructure information in
drug molecules, aligning closely with actual molecular sub-
structures and highlighting intra-molecular atomic interac-
tions. As shown in Fig. 4, it demonstrates strong recog-
nition of interactions between functional groups, such as
the symmetrical -COOH groups (green and orange areas) in
DBO00548 and Groupl (benzene ring marked by red box) in
DBO1117. This aligns with domain knowledge that chem-
ical reactions primarily occur between core substructures.
CausalGIB identifies critical substructures and underscores
their pivotal role in driving chemical reactions.
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Chromophore

Model Emission

Absorption Lifetime

MNSol

FreeSolv CompSol Abraham CombiSolv

Substructure X

GCN (ICLR’17)
GAT (ICLR’18)
MPNN (ICML’17)
GIN (ICLR’19)
CIGIN (AAATI’20)

25.75+1.48 31.87£1.70 0.866+0.015 0.675+0.021 1.19240.042 0.389+0.009 0.738+0.041 0.67240.022
26.19£1.44 30.90+1.01 0.859+0.016 0.73140.007 1.280+0.049 0.387+0.010 0.798+0.038 0.662+0.021
24.43+1.55 30.17£0.99 0.802+0.024 0.682+0.017 1.15940.032 0.359+0.011 0.601£0.035 0.568+0.005
24.92£1.67 32.31+0.26 0.829+0.027 0.669+0.017 1.015+0.041 0.331£0.016 0.648+0.024 0.595+0.014
19.324+0.35 25.094+0.32 0.804£0.010 0.607+0.024 0.905+0.014 0.308+0.018 0.411£0.008 0.45140.009

Substructure v/

CMRL (KDD’23)
CGIB (ICML’23)

17.934+0.31 24.30+0.22 0.776+0.007 0.551+0.017 0.81540.046 0.25540.011 0.374+0.011 0.421£0.008
18.11+0.20 23.90+0.35 0.77140.005 0.538-£0.007 0.85240.022 0.276£0.017 0.390+0.006 0.42240.005

MMGNN (IJCAT’24) 18.65+0.34 25.33+0.43 0.801£0/007 0.54640.011 0.902+0.026 0.267£0.012 0.385+0.008 0.303-£0.033

CausalGIB

16.82+£0.25 22.954+0.33 0.769+0.005 0.541£0.010 0.799+0.034 0.261+0.013 0.371+0.008 0.41940.008

Table 3: The performance of CausalGIB and comparative methods in MI prediction, with the best results highlighted in bold and the second

results highlighted in underline.
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(a) The node visualization results for DB00548.

(b) The Mantel test results of interaction between
substructures for DB00548 and DB01117. Darker and
thicker lines represent stronger interactions between
substructures.
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(¢) The node visualization results for DBO1117.

Figure 4: The visualization of node features and interaction strengths between DB01117 and DB00548.
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Figure 5: The experimental results of model analysis in Het-
ionteDDI dataset.

5.4 Ablation Experiment (RQ4)

To analyze the impact of confounding information and
causal information on the overall performance of the
model, we compared the following model variants:
CausalGIB,,one (no optimizations applied in the model archi-
tecture), CausalGIB,,, (only minimizing I(G¢,G™) ), and
CausalGIBc,, (only maximizing 1(Y;G5,Gy)). The exper-
imental results are shown in Fig. 5. As shown in Fig.

5, minimizing /(G°, G™) and maximizing I(Y;G5,Gy) im-
prove AUROC by 4%, 8% and 8%, 16%, respectively. No-
tably, the performance gain from maximizing /(Y;G5,GY)
significantly surpasses that of minimizing I(G¢, G™). While
minimizing I(G¢, G™) has limited impact on stability, maxi-
mizing I(Y; G¢, Gy,) enhances predictive stability, though its
contribution alone remains insufficient. The best performance
and stability are achieved when both objectives are optimized
concurrently, highlighting SIB’s role in refining substructure
differentiation and enhancing predictive stability.

6 Conclusion

In this paper, we propose the Causal Subgraph Information
Bottleneck to enhance the stability of MRL. CausalGIB lever-
ages causal dependencies to guide substructure representation
and integrates SIB to optimize the core substructure repre-
sentation, generating stable representations. Experimental re-
sults confirm that CausalGIB significantly enhances stability
in distribution shifts. Future work will explore its validation
in diverse datasets and tasks to establish broader applicability.
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