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Abstract

This paper introduces a novel mechanism for online
allocation with multi-phase, non-separable regular-
izers, termed Cap-and-Penalize (CNP), inspired by
real-world applications such as cap-and-tax poli-
cies in carbon pricing. The CNP regularizer models
a multi-phase cost structure, imposing a monotone
convex penalty when total allocation exceeds a pre-
defined level (soft cap) and enforcing a strict limit
(hard cap) beyond which allocation is prohibited.
Our contributions are twofold: (1) we propose an
online mechanism for CNP-regularized allocation
without per-step resource constraints, which oper-
ates as a simple and intuitive posted-price mech-
anism, but achieves the best-possible guarantee
among all possible online algorithms; (2) we tackle
the more complex setting with per-step resource
constraints by decomposing the regularizer into lo-
cal components, yielding a similar mechanism with
time-dependent marginal pricing functions. To es-
tablish the tightness of our results in both set-
tings, we introduce a representative function-based
approach that transforms the lower-bound proof
into the problem of solving an ordinary differen-
tial equation with boundary conditions. We believe
that this technique has the potential to be applied to
other similar online optimization problems.

1 Introduction
Online allocation problems address the challenge of allo-
cating limited resources to an online sequence of requests
while maximizing social welfare or revenue and adhering to
supply constraints. Compared to resource allocation in of-
fline settings, online allocation problems introduce an addi-
tional layer of complexity, as decisions must be made with-
out complete knowledge of future requests. Motivated by nu-
merous high-stakes applications, online allocation problems
have been extensively studied in computer science and op-
erations research, with applications spanning Internet adver-
tising [Mehta, 2013; Buchbinder et al., 2007], ride-sharing
[Dickerson et al., 2021], electric vehicle charging [Guo et al.,
2017; Gerding et al., 2011; Sun et al., 2018], and revenue

management [Ball and Queyranne, 2009; Ma and Simchi-
Levi, 2020].

Despite extensive studies, the literature on online allo-
cation problems predominantly focuses on optimizing ob-
jectives that are additive and separable. For instance, in
the online knapsack problem [Chakrabarty et al., 2008],
items arrive sequentially, each associated with a value and
weight. The objective is to maximize the total value of
packed items, which is separable among items and across dif-
ferent steps, while adhering to the knapsack’s capacity con-
straint. However, in many real-world scenarios, decision-
makers must address non-separable objectives due to cou-
pling effects, such as production costs [Tan et al., 2020c;
Huang and Kim, 2015; Azar et al., 2016; Tan et al., 2025; Jazi
et al., 2025], fairness among participants [Zargari et al., 2025;
Balseiro et al., 2021], or regulatory constraints, such as load
balancing [Balseiro et al., 2021], that inherently couple all
participants throughout the allocation process. For example,
[Tan et al., 2025] investigates an online allocation problem
with convex production costs, where the objective is inher-
ently non-separable. Similarly, [Balseiro et al., 2021] shows
that fairness among participants can be achieved by incorpo-
rating a regularizer that is not separable over time into the
objective function.

Motivated by practical applications such as the cap-and-tax
carbon pricing policy implemented in countries like Canada
[Government of Canada, 2025], this paper focuses on a novel
regularized online allocation problem with a multi-phase,
non-separable regularizer termed Cap-and-Penalize (CNP).
The CNP regularizer incorporates a multi-phase cost model
for resource provision and imposes a penalty when the total
allocation exceeds a predetermined production level, referred
to as the soft cap—the maximum production level allowed
without incurring additional charges (i.e., the penalty-free re-
gion). Additionally, the CNP regularizer enforces a strict up-
per limit on total resource production, referred to as the hard
cap, beyond which no further allocation is permitted. Our ob-
jective is to maximize social welfare, defined as the difference
between the aggregate individual utilities (which are separa-
ble across agents) and the cost imposed by the non-separable
CNP regularizer. Given the inherent trade-off between these
two factors in the objective, we aim to identify the optimal
balance between aggregate utility and regulatory costs.
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Value Resource Resource
Papers functions types constraints Regularizer Main Results

[Sun et al., 2021] Concave Divisible ✓ None Near-optimal CRs
[Azar et al., 2016] Linear Divisible ✗ Non-Separable Tight CRs
[Balseiro et al., 2021] General Divisible ✓ Non-Separable Sub-linear regret; Asymptotic CR
[Ma et al., 2024] General Divisible ✓ Non-Separable Optimal regret
[Tan et al., 2020c] Linear Indivisible ✓ Separable Optimal CRs
[Tan et al., 2020a] Linear Indivisible ✓ Separable Optimal CRs
This paper Concave Divisible ✗ Multi-Phase; Non-Separable Optimal CRs

✓ Multi-Phase; Non-Separable Best-known CRs

Table 1: Comparison of our work with the existing literature on online allocation problems. The term “CRs” refers to competitive ratios,
formally defined in Section 2.3. In [Balseiro et al., 2021], “asymptotic CRs” are defined under the assumption that the time horizon approaches
infinity (i.e., T → ∞), whereas all other competitive ratios, including the one in this paper, are defined without this assumption.

1.1 Main Results, Techniques, and Insights
Our main results can be summarized as follows:

• We initiate the study of CNP-regularized online alloca-
tion with a multi-phase, non-separable regularizer. Unlike
prior studies that focus on developing online mechanisms
with sublinear regret over the time horizon, our work em-
phasizes competitive analysis, deriving the optimal online
mechanism with the best-possible competitive ratio in the
setting without resource constraints. Our upper-bound re-
sults build upon recent advancements in threshold-based al-
gorithms and online primal-dual analysis. To establish the
optimality of the proposed mechanism, we propose a novel
representative function-based approach, transforming the
proof of the lower bound into the search for key functions
(we call them utilization functions) represented by an ordi-
nary differential equation with two boundary conditions.

• We extend our optimal design to the more challenging set-
ting with per-step resource constraints. The core of this ex-
tension lies in decoupling the non-separable, non-smooth
regularizer across time slots, resulting in the design of a
series of time-dependent marginal pricing functions. We
theoretically prove that this online mechanism achieves a
bounded competitive ratio in the general setting when the
CNP regularizer is convex and further demonstrate that it
provides a near-optimal guarantee in the linear case.

Our mechanisms belong to a family of online mechanisms
known as posted price mechanisms (PPMs) [Einav et al.,
2018; Parkes, 2007], where the supplier posts a price sig-
nal to sequentially arriving agents, allowing them to solve
their own local utility-maximization problems. PPMs are
incentive compatible [Nisan et al., 2007] and, more impor-
tantly, are typically easy to implement, logistically simple,
and intuitive. As a result, they are widely used in practice
for welfare and revenue maximization [Ferreira et al., 2021;
Feldman et al., 2015; Tan et al., 2020b; Etzion et al., 2006;
Tan et al., 2020c]. An interesting insight from our results is
the close connection between the proposed multi-phase regu-
larizer and the resulting optimal multi-phase pricing scheme.
Specifically, we show that the penalty-free region of the reg-
ularizer plays a key role in shaping the multi-phase pricing
function design. While expected in theory, this insight offers

valuable guidance for designing pricing models in real-world
applications like carbon pricing.

1.2 Related Work
This work builds on extensive research in resource alloca-
tion problems across computer science, economics, and op-
erations research. Below, we review them based on the pres-
ence of (non-separable) regularizers.

Online allocation without regularizers. Online allocation
problems without regularizers have been extensively studied
in various forms, including online knapsack [Chakrabarty et
al., 2008; Sun et al., 2021], bin packing [Lee and Lee, 1985;
Angelopoulos et al., 2023], one-way trading [El-Yaniv et
al., 2001; Lorenz et al., 2009; Lin et al., 2019], online
matching [Mehta et al., 2007; Devanur and Jain, 2012;
Ma and Simchi-Levi, 2020] (see [Mehta, 2013] and [Huang et
al., 2024] for a comprehensive survey), online routing [Awer-
buch et al., 2005; Buchbinder and Naor, 2006], and online
auctions [Blum et al., 2003]. For example, [Ma and Simchi-
Levi, 2020] examines an extension of online matching where
resources are offered at multiple prices, achieving the best
competitive ratio of 1− 1

e for deterministic algorithms. A par-
ticularly challenging variant is the generalized one-way trad-
ing problem with inventory constraints, optimally addressed
in [Lin et al., 2019]. Our problem, involving multiple time
slots, is closely related to [Sun et al., 2021], which studies
an online fractional multiple knapsack problem with assign-
ment restrictions, where each item can only be assigned to a
subset of knapsacks [Kellerer et al., 2004]. They propose an
algorithm with a competitive ratio between 1 + ln(U/L) and
2 + ln(U/L), where U/L is the ratio of maximum to mini-
mum marginal utilities. However, their work focuses solely
on maximizing aggregate utilities without regularizers.

Online allocation with regularizers. A closely related line
of research examines allocation problems with regulariz-
ers, modeled as negative rewards or penalties that are non-
separable over time [Tan et al., 2020c; Tan et al., 2025;
Ma et al., 2024; Balseiro et al., 2021; Huang and Kim, 2015;
Azar et al., 2016]. [Tan et al., 2020c] studies online mech-
anism design for a single knapsack, proposing an optimal
posted price mechanism for convex and linear cost functions,
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but their work is limited to single-period, single-resource set-
tings. Extensions to multi-period or multi-resource alloca-
tion appear in studies like [Tan et al., 2020a; Balseiro et al.,
2021]. For example, [Tan et al., 2020a] develops an optimal
algorithm for online combinatorial auctions with convex sep-
arable cost functions, while [Balseiro et al., 2021] addresses
non-separable regularized problems, achieving sublinear re-
gret and bounded asymptotic competitive ratios. In adver-
sarial environments, the optimal competitive ratio for prob-
lems with non-separable regularizers and multiple allocation
options remains open, with no optimal design yet available.
[Azar et al., 2016] explores online convex packing problems,
proposing a competitive algorithm under specific structural
assumptions but without capacity constraints. In contrast, our
work focuses on decoupling multi-phase, convex regularizers
while incorporating capacity constraints, avoiding additional
restrictive assumptions.

Table 1 summarizes key related works in the online alloca-
tion domain and compares them with our problem.

2 Problem Statement
We first formally define the resource allocation model and
then discuss the required background and assumptions.
Throughout the paper, we denote [N ] = {1, 2, · · · , N} for
any positive integer N .

2.1 CNP-ROA: The Model
We consider a generic online allocation problem with divisi-
ble resource and a finite time horizon T , and assume the fol-
lowing agent and supply models.
Agents and Valuations. A sequence of N agents arrives
sequentially, each characterized by a type vector θn =
(vn,Xn, Tn), where vn : Xn → R+ represents a private val-
uation function, Xn denotes the feasible set of allocation ac-
tions, and Tn = {ton

n , ton
n +1, · · · , toff

n } specifies the availabil-
ity interval during which the agent can receive resources (i.e.,
agent n arrives at time ton

n and departs at time toff
n ). Upon

the arrival of agent n ∈ [N ] at time ton
n , an immediate and

irrevocable decision xn := {xt
n}∀t∈Tn ∈ Xn is made, and

the agent will receive a valuation of vn(xn). In particular,
we assume that Xn = {xn |

∑
t∈Tn

xt
n ≤ Dn, and xt

n ∈
[0, dn], ∀t ∈ Tn}. Here, dn represents the rate limit for the
resource consumption per step, and Dn denotes the total de-
mand of resources requested by agent n.
Multi-Phase Regularized Supply. We consider a regular-
ized supply model in which resource production incurs multi-
phase regulatory costs. Specifically, given the allocation pro-
file {xn}∀n∈[N ] for all the agents, let y be defined as

y =

T∑
t=1

N∑
n=1

wtx
t
n,

which represents the total resource production weighted by
the coefficient wt ≥ 0, ∀t ∈ [T ]. For any given y ≥ 0, let
R(y) be the function defined as

R(y) =


0 if y ∈ [0, Csoft],

f(y − Csoft) if y ∈ (Csoft, Chard],

∞ if y ∈ (Chard,∞),

(1)

where Csoft represents the penalty-free cap, or the soft cap,
which allows the supplier to produce up to Csoft without in-
curring penalties. The parameter Chard denotes the hard cap,
imposing a strict upper limit on the total amount of resources
being produced. Hereinafter, we refer to R as the Cap-and-
Penalize (CNP) regularizer and the above CNP-regularized
resource allocation problem as CNP-ROA.
Social Welfare and Mechanisms. We focus on designing
an online mechanism comprising an allocation rule and a pay-
ment rule. For each agent n ∈ [N ], let the allocation and
payment be denoted by xn and πn, respectively. The utility
of agent n is then given by vn(xn)−πn. The objective of the
mechanism is to maximize social welfare:

N∑
n=1

vn (xn)−R(y),

where the payment terms cancel out. We consider a strate-
gic setting where agents may act strategically regarding their
valuation vn to improve their outcomes. If all agents are as-
sumed to be non-strategic, the CNP-ROA problem reduces to
a standard online optimization problem, and the online mech-
anism simplifies to an online algorithm with only an alloca-
tion rule.

2.2 Illustrating Examples
The CNP-ROA problem can capture many interesting prob-
lems. Below we give two illustrative examples.

• Carbon-regularized online job scheduling. The pri-
mary application motivating CNP-ROA is the carbon-
regularized job scheduling problem in data centers [Acun
et al., 2023; Anderson et al., 2023] and electric vehicle
charging [Cheng et al., 2022; Lechowicz et al., 2023]. For
instance, agents can represent electric vehicles that arrive
sequentially in an online manner to connect to a charger
during their parking periods Tn. The weight coefficient wt

represents the carbon intensity of energy generation at time
t, while y denotes the total carbon emissions over the en-
tire charging process. The supplier is allowed to emit up to
Csoft units of carbon without incurring a penalty (i.e., zero
cost if y ≤ Csoft). The hard cap, Chard, represents the max-
imum allowable carbon emissions, enforcing the constraint
y ≤ Chard at all times.

• Online resource allocation with production costs. If
wt = 1 for all t ∈ [T ], y represents the total amount of
resources produced. Under this assumption, the CNP regu-
larizer generalizes the production cost model employed in
prior online allocation studies. Specifically, when Csoft =
0, CNP-ROA recovers the allocation problems examined
in [Tan et al., 2020c]. Furthermore, when both Csoft = 0
and Chard = ∞ hold, CNP-ROA reduces to the online con-
vex packing problem studied in [Huang and Kim, 2015;
Azar et al., 2016].

In addition, if we set f(y−Csoft) = 0 for all y ∈ (Csoft, Chard],
the CNP-ROA problem simplifies to a typical online allo-
cation problem without a regularizer or cost, a setting ex-
tensively studied in various contexts. For instance, if we
assume T = 1 (i.e., a single-period allocation problem)
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and further assume that the valuation function is linear (e.g.,
vn (xn) = νnxn) and dn = Dn = 1, then CNP-ROA re-
duces to the well-known online (fractional) knapsack prob-
lem [Chakrabarty et al., 2008; Sun et al., 2021]. In this case,
Chard can be interpreted as the capacity of the knapsack.

2.3 Competitive Ratios
To specify all the information available to the mechanism de-
signer in the online setting, we define Iknown as:

Iknown = {R, T,w}.
Given Iknown, the mechanism has complete knowledge of the
regularizer R (including Csoft, Chard, and f ), the time horizon
T , and the weight vector w = {wt}∀t∈[T ]. However, all in-
formation about the agents’ types {θn}∀n∈[N ], including the
total number of agents N , remains unknown a priori.

To quantify the performance of an online mechanism,
we follow the celebrated competitive analysis framework
[Borodin and El-Yaniv, 1998] to define the competitive ratio
(CR) of an online mechanism as follows:

α = max
I

OPT(I)
ALG(I)

,

where I = {θ1, · · · , θN} denotes an arrival instance. Given
an arrival instance I , ALG(I) is the welfare achieved by our
online mechanism (only knows Iknown), and OPT(I) is the
optimal social welfare achievable in an offline setting assum-
ing the type information of all arrival agents in I (in addition
to Iknown) is given in advance. We say an online mechanism
is α-competitive if it achieves a competitive ratio of α. Intu-
itively, α ≥ 1 holds all the time and a smaller α indicates a
better performance.

2.4 Assumptions
Throughout the paper we make the following assumptions.
Assumption 1 (VALUATION FUNCTIONS). For any agent n,
the value function vn satisfies the following conditions

(i) vn is concave, monotone, and differentiable.
(ii) vn(0) = 0, i.e., agents have zero utility if they are not

receiving any resource.
(iii) The partial derivative of vn(xn) is bounded, i.e.,

∂vn

∂xt
n
/wt ∈ [L,U ] for all t ∈ Tn and n ∈ [N ], where

{wt}t∈[T ] are coefficients given from the regularizer. We
also assume that L and U are given a priori.

We also define ∆ = U/L, which represents the fluctuation
ratio of agents’ valuations. For instance, ∆ = 1 indicates that
all agents are homogeneous, with identical linear valuation
functions, whereas a larger ∆ signifies greater variation and
heterogeneity among agents.
Assumption 2 (COST FUNCTION). The cost function f is
convex, monotonically non-decreasing, and differentiable. In
addition, f(0) = 0, i.e., the regularizer R(y) is a continuous
function for y ∈ [0, Chard].

In practice, the cost function f may be piecewise linear,
such as the taxation rate implemented under the cap-and-
tax policy in countries like Canada [Government of Canada,

2025]. We argue that assuming f to be convex and differen-
tiable provides a reasonable approximation of the piecewise
linear, convex tax function while being technically more con-
venient.
Assumption 3 (TRUTHFUL IN DURATIONS). Agents do not
lie about their availability durations, i.e., each agent n ∈ [N ]
is truthful in following their true Tn (but may be strategic
about the valuation vn).

Assumption 3 is common in the online mechanism design
literature, also known as limited misreport [Parkes, 2007], in-
dicating that the strategic behaviors may exist for the valua-
tions, but not with respect to the durations.

3 Optimal Online Mechanism for CNP-ROA
In this section, we present our main results regarding the de-
sign of an optimal online mechanism for solving the CNP-
ROA problem.

3.1 PPM-Φ: How It Works
We propose a posted-price mechanism in Algorithm 1,
termed PPM-Φ, where Φ denotes the marginal pricing func-
tion, a key function that guides the execution of the online
mechanism and also its competitive analysis.

Algorithm 1 Online Mechanism for CNP-ROA (PPM-Φ)

1: Inputs: Iknown and Φ
2: Initialization: Capacity utilization u(0) = 0
3: while a new agent n arrives do
4: Post pricing function p(n) for agent n:

p(n)(z) =

∫ u(n−1)+z

u(n−1)

Φ(s) ds. (2)

5: Agent n decides its own profile x̂n:

x̂n = arg max
xn∈Xn

vn(xn)− p(n)

(∑
t∈Tn

wtx
t
n

)
. (3)

6: Agent n makes the payment πn:

πn = p(n)

(∑
t∈Tn

wtx̂
t
n

)
. (4)

7: Update the utilization:u(n) = u(n−1) +
∑

t∈Tn
wtx̂

t
n.

8: end while

When an agent arrives, PPM-Φ posts the pricing function
based on Eq. (2), and the agent determines their allocation
profile by solving the utility maximization problem in Eq.
(3). The marginal pricing function Φ must strike a balance
between accepting agents too readily and delaying in antici-
pation of future better arrivals. For instance, if Φ is set too low
(e.g., Φ(y) = f ′(y)), most agents will find the price inexpen-
sive and consume as many resources as possible according to
Eq. (3). Conversely, if Φ is set too high (e.g., Φ(y) = Uy),
most agents will find the price unaffordable and walk away
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with zero consumption (i.e., x̂n = 0). Thus, ensuring the
effective performance of PPM-Φ hinges on designing an ap-
propriate marginal pricing function Φ. In the next section, we
show that there exists an optimal marginal pricing function Φ
so that PPM-Φ achieves the best-possible competitive ratio
among all online mechanisms.

3.2 Optimal Design of Φ
We begin by giving a lemma characterizing the major param-
eters in our design.

Lemma 1. Let F (u|α) be defined as:

F (u|α) =
∫ u

s=Csoft

−α

Chard
exp

(
− αs

Chard

)
f ′(s) ds. (5)

There exists a unique pair of α ≥ 1 and β ∈ [Csoft, Chard]
which satisfy the following system of equations:

α = ln(U)− ln
(
F (Chard|α)−

F (max(β,Csoft)|α) + Le
− αβ

Chard

)
, (6a)

Lβ −R(β) =
1

α

(
LChard −R(Chard)

)
. (6b)

Based on Lemma 1, we introduce our design of the
marginal pricing function Φ in the theorem below.

Theorem 1 (CNP-ROA: CONVEX). Given Iknown and un-
der Assumptions 1-3, PPM-Φ is α-competitive when Φ is de-
signed as follows:

• (Low-Soft-Cap) If Csoft ≤ β:

Φ(u) =

{
L u ∈ [0, β),

exp
(

αu
Chard

)
· (F (u|α) + Λ) u ∈ [β,Chard].

• (High-Soft-Cap) If Csoft > β:

Φ(u) =


L u ∈ [0, β),

L exp
(

α
Chard

(u− β)
)

u ∈ [β,Csoft),

exp
(

αu
Chard

)
· (F (u|α) + Λ) u ∈ [Csoft, Chard].

For both cases, Λ = Le
− αβ

Chard − F (max(β,Csoft)|α); α and
β are the solution to the system of equations in Eq. (6).

Here, we outline some key intuitions. Figure 1 illustrates
the design of Φ for both the Low-Soft-Cap and High-Soft-
Cap cases. In both scenarios, the marginal pricing func-
tion Φ begins with a flat phase, where Φ(u) = L for all
u ∈ [0, β], with L representing the minimum marginal val-
uation, as specified in Assumption 1. Beyond the threshold
β, Φ transitions to an increasing phase for u ∈ [β,Chard].
In the High-Soft-Cap case, where Csoft ≥ β, the marginal
pricing function continues to increase in a third phase for
u ∈ [Csoft, Chard].

• About the flat phase during [0, β]. Lemma 1 demon-
strates that for any given α ≥ 1, there exists a unique
β ∈ [Csoft, Chard] satisfying Eq. (6b), which determines
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(b) High-Soft-Cap

Figure 1: Illustration of the marginal pricing function Φ designed
based on Theorem 1. Red curves denote the marginal pricing func-
tion Φ(u) and blue curves denote the marginal cost function f ′(u).
The gray regions illustrate the gap between Φ and f ′.

the threshold β such that the marginal price remains con-
stant for all u ∈ [0, β] (i.e., Φ(u) = L), as established in
Theorem 1. The rationale behind Eq. (6b) is to ensure that
the first β-portion of the resource is always allocated, even
to agents with the minimum marginal valuation L. This de-
sign guarantees that PPM-Φ remains α-competitive in the
worst-case scenario, where all arriving agents have the low-
est marginal valuation.

• About the increasing phase during [β,Chard]. For both
cases in Theorem 1, the marginal pricing function Φ en-
ters the increasing phase after exceeding the threshold β,
reflecting the fundamental principle that “scarcity of re-
sources leads to higher prices.” Notably, the soft cap Csoft
plays a critical role in shaping the design of the increas-
ing phase. A lower Csoft implies that a single increasing
phase is sufficient, whereas a higher Csoft necessitates a
two-segment design for the increasing phase. This distinc-
tion highlights the key difference between our results and
existing studies with single-phase regularizers, including
the special case without a regularizer.

Theorem 2 (LOWER BOUND). Under Assumptions 1-3,
PPM-Φ with the marginal pricing function Φ specified in
Theorem 1 achieves the optimal competitive ratio.

Theorem 2 demonstrates that PPM-Φ is not only an opti-
mal posted price mechanism but also optimal among all on-
line algorithms, including those with randomization. This
result indicates that the existence of strategic behaviors in
CNP-ROA does not introduce additional difficulty in the on-
line setting. In other words, focusing on posted price mecha-
nisms does not result in any loss of generality when aiming to
achieve the best possible competitive ratio among all online
algorithms.

We provide the following remark to illustrate how Theorem
1 and Theorem 2 generalize existing state-of-the-art results
for specific choices of the soft cap Csoft.
Remark 1 (CONNECTION TO EXISTING RESULTS). If
Csoft = 0, the multi-phase regularizer simplifies to a single-
phase penalty (i.e., R(y) = f(y) for all y ∈ [0, Chard]). In
this case, Theorem 1 reproduces the optimal design proposed
in [Tan et al., 2020c]. Conversely, if Csoft = Chard, then
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R(y) = 0 for all y ∈ [0, Chard]. In this scenario, PPM-Φ,
with the pricing function design specified in Theorem 1, re-
produces the design proposed in [Sun et al., 2021], achieving
the optimal competitive ratio:

α = 1 + ln∆,

where ∆ = U/L denotes the fluctuation ratio of agents’
marginal valuations.

3.3 Case Study: Linear Cost (f(y) = σy)
To illustrate the design of the marginal pricing function Φ
more clearly, we consider the special case where f(y) = σy.
This allows us to refine the results of Theorem 1 by provid-
ing a more explicit characterization of Φ and calculating key
parameters, such as α and β.
Proposition 1 (CNP-ROA: LINEAR). Given Iknown and un-
der Assumptions 1-3, PPM-Φ is α-competitive when Φ is de-
signed as follows:
• (Low-Soft-Cap) If Csoft ≤ β:

Φ(u) =

{
L u ∈ [0, β),

(L− σ)e
α

Chard
(u−β)

+ σ u ∈ [β,Chard],

where the competitive ratio α and β are given by

α = ln
( U

Le
(
σ(Chard−Csoft)

LChard
−1) − σ(e

−Csoftα
Chard − e−α)

)
,

β =
Chard

α
−

σCsoft(α− 1)

α(L− σ)
.

• (High-Soft-Cap) If Csoft > β:

Φ(u) =


L u ∈ [0, β),

Le
α

Chard
(u−β)

u ∈ [β,Csoft),

Ae
α

Chard
(u−Csoft) + σ u ∈ [Csoft, Chard],

where α, β, and A are given as follows:

α = 1 +
1

1 +
Csoft

Chard
· σ
L−σ

· ln
(U − σ

L− σ

)
,

β =
Chard

α
−

σ(Chard − Csoft)

αL
,

A = L exp
( α

Chard
(Csoft − β)

)
− σ.

Proposition 1 directly follows from Theorem 1 by substi-
tuting f ′(y) = σ into Eq. (6a), resulting in an analytical ex-
pression for F (u|α). According to Proposition 1, if Csoft =
Chard or σ = 0, PPM-Φ is (1 + ln∆)-competitive, which is
known to be optimal based on prior studies [Chakrabarty et
al., 2008; Tan et al., 2020c; Sun et al., 2021].

4 Extensions to CNP-ROA with Resource
Constraints

The mechanism PPM-Φ, designed in Section 3, solves CNP-
ROA optimally in the absence of resource constraints for
each time slot. In this section, we demonstrate that the de-
sign can be extended to address the more complex scenario
where resource supply is limited at each step.

4.1 PPM-ϕ: A Modified PPM-Φ
Let ct denote the resource constraint at time t ∈ [T ]. Thus,
the total allocation must satisfy the following constraint:∑

n∈[N ]

xt
n ≤ ct ∀t ∈ [T ].

To extend PPM-Φ to account for the above resource con-
straints, a key step is to change the design of a single marginal
pricing function Φ to a set of time-dependent marginal pric-
ing functions, denoted as ϕ = {ϕt}t∈[T ]. We can then modify
PPM-Φ based on ϕ as follows:

• The supplier posts the pricing functions {p(n)t }t∈Tn
to

agent n upon its arrival:

p
(n)
t (z) =

∫ u
(n−1)
t +z

u
(n−1)
t

ϕt(s) ds ∀t ∈ Tn. (7)

• Agent n decides its consumption profile by solving the fol-
lowing utility-maximization problem

x̂n = arg max
xn∈Xn

vn (xn)−
∑
t∈Tn

p
(n)
t

(
xt
n

)
, (8)

and makes the payment πn =
∑

t∈Tn
p
(n)
t (x̂t

n).
• The supplier updates the total utilization for each time slot
u
(n)
t = u

(n−1)
t + x̂t

n, ∀t ∈ Tn.
Hereinafter, we refer to PPM-Φ as PPM-ϕ to highlight the

role of time-dependent marginal pricing functions ϕ. While
the execution of PPM-ϕ is similar to PPM-Φ, its analysis re-
quires a different approach due to the non-separability of the
regularizer across time slots. To address this, we decompose
the regularizer into multiple local regularizers, each tied to a
specific time slot. Details of this decomposition are provided
in the next subsection.

4.2 Core Idea: Decoupling the Regularizer
The CNP framework considers an aggregate soft cap for the
entire allocation process across all time slots. To facilitate
the design of a marginal pricing function for each time slot,
Definition 1 introduces a method to decompose this global
soft cap and assign an appropriate share, bt, to each time slot,
referred to as the local soft cap.
Definition 1 (LOCAL SOFT-CAP). Given Csoft as the global
soft-cap, let bt denote the local soft-cap at time t, defined as

bt =
ct∑T

t=1 wtct
· Csoft, ∀t ∈ [T ].

Intuitively,
∑

t wtbt = Csoft, indicating that bt represents
the normalized soft cap for each time slot, weighted by the
consumption rate wt. Using the local soft cap bt, we define
the local regularizer rt to decouple the regularizer cost across
time slots.
Definition 2 (LOCAL REGULARIZER). Let rt denote the lo-
cal regularizer at time t, defined as

rt(y) =


0 if y ∈ [0, bt),

(y − bt) · ∂
∂yR

(
wty +

∑
τ ̸=t

wτ cτ

)
if y ∈ [bt, ct].
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For the local regularizer rt defined in Definition 2, we com-
pute the partial derivative of R with respect to the utilization
level of the t-th time slot, while keeping the utilization lev-
els of all other time slots fixed at their respective capacities
to eliminate interdependencies. Note that the partial deriva-
tive always exists because wty +

∑
τ ̸=t wτ cτ > Csoft always

holds.
Based on Definition 2, we show that a similar group of

design parameters, α and {βt}∀t, still exist and the details
are given in the lemma below.
Lemma 2. Let Ft(u|α) be defined as:

Ft(u|α) =
∫ u

s=bt

−α

ct
exp

(
−αs

ct

)
r′t(s) ds. (9)

There exists a unique set of α ≥ 1 and {βt}∀t that satisfy the
following system of equations:

α = ln(U)− min
t∈[T ]

ln
(
Ft(ct|α)−

Ft(max(βt, bt)|α) + Le−
αβt
ct

)
, (10a)

Lβt − rt(βt) =
1

α
(Lct + Lβt), ∀t ∈ [T ]. (10b)

Lemma 2 extends Lemma 1 by introducing a time-
dependent βt ∈ [0, ct] for each slot t ∈ [T ]. The next sub-
section demonstrates that the design of βt is crucial for devel-
oping a time-dependent marginal pricing function ϕt for each
time slot t ∈ [T ].

4.3 Design of {ϕt}∀t
Building on Lemma 2, we extend Theorem 1 to design ϕ =
{ϕt}∀t∈T by modifying (F, β,Λ) to (Ft, βt,Λt). To better
illustrate this approach, we consider the specific case where
the cost function is linear, e.g., f(y) = σy, and extend Propo-
sition 1 to solve CNP-ROA under resource constraints. The
full details are presented in Proposition 2 below.
Proposition 2 (CNP-ROA WITH RESOURCE CON-
STRAINTS: LINEAR COSTS). Given Iknown with resource
capacity c = {ct}∀t and under Assumptions 1-3, PPM-ϕ is
α-competitive when ϕt is designed as follows:
• (Low-Soft-Cap) If Csoft ≤ 1

α−1 · Chard:

ϕt(u) =

{
L u ∈ [0, βt),

(L− qt)e
α
ct

(u−β) + qt u ∈ [βt, ct],

where the competitive ratio α and βt are given by

α− α ·
L− α · qmax · Csoft

Chard

(α− 1)L− αqmax
= ln

(
U − qmax

L− qmax

)
,

βt =
ctL− αqtbt

(α− 1)L− αqt
, ∀t ∈ [T ].

• (High-Soft-Cap) If Csoft >
1

α−1 · Chard:

ϕt(u) =


L u ∈ [0, βt),

Le
α
ct

(u−βt) u ∈ [βt, bt),

Ate
α
ct

(u−bt) + qt u ∈ [bt, ct],

where α, βt, and At are given as follows:

exp

(
α−

αCsoft

Chard

)
=

U − qmax

L exp
(

αCsoft

Chard
− α

α−1

)
− qmax

,

βt =
ct

α− 1
, ∀t ∈ [T ],

At = L exp

(
α

ct
(bt − βt)

)
− qt, ∀t ∈ [T ].

In both cases, qt = σwt and qmax = maxt∈[T ] σwt.
The following corollary shows that PPM-ϕ achieves a

near-optimal competitive ratio in the High-Soft-Cap case.
Corollary 1 (LOWER BOUND). For the High-Soft-Cap case
in Proposition 2, the competitive ratio of PPM-ϕ is O(2 +

ln ∆̂), where ∆̂ = U−qmax

L−qmax
, and the optimal competitive ratio

of this problem is Ω(1 + ln ∆̂).
Corollary 1 demonstrates that when the soft-cap is suffi-

ciently large, such that the forced flat segment concludes be-
fore the penalty cost impacts the pricing functions, the in-
fluence of the regularizer on the competitive ratio remains
bounded.
Corollary 2 (CONNECTION TO EXISTING RESULTS). When
Csoft = Chard, namely, R(y) = 0 holds for all y ∈ [0, Chard],
PPM-ϕ with the time-dependent marginal pricing functions
specified by Proposition 2 is α-competitive with α given by

α− 1− 1

α− 1
= ln∆, (11)

where ∆ = U/L denotes the fluctuation ratio of agents’
marginal valuations.

Notably, [Sun et al., 2021] examines a similar online al-
location problem without a regularizer, achieving the same
competitive ratio as in Eq. (11). Here, we demonstrate that
our design generalizes the results of [Sun et al., 2021] as a
special case when Csoft = Chard.

5 Conclusion and Future Work
Motivated by real-world applications such as cap-and-tax
carbon pricing, this paper introduces a novel online optimiza-
tion problem, cap-and-penalize (CNP)-regularized online al-
location (CNP-ROA). We derived an optimal online mech-
anism for CNP-ROA without per-step resource constraints
and presented the best-known results for the more challenging
setting with such constraints. To prove optimality, we intro-
duced a novel representative function-based approach, reduc-
ing the lower-bound proof to solving an ordinary differential
equation with boundary conditions.

This work opens several promising avenues for future re-
search. Two key directions include addressing the gap in
the CNP-ROA problem under resource constraints, which in-
volves solving a multi-knapsack problem with multidimen-
sional weights, and tackling the issue of temporal fairness.
The latter challenge stems from the increasing marginal pric-
ing function, which disproportionately penalizes later ar-
rivals. Incorporating fairness constraints into this framework
represents a significant theoretical and practical challenge.
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