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Abstract

Large language models (LLMs) have shown sig-
nificant potential in scientific disciplines such as
biomedicine, particularly in hypothesis generation,
where they can analyze vast literature, identify pat-
terns, and suggest research directions. However,
a key challenge lies in evaluating the truthfulness
of generated hypotheses, as verifying their accu-
racy often requires substantial time and resources.
Additionally, the hallucination problem in LLMs
can lead to the generation of hypotheses that ap-
pear plausible but are ultimately incorrect, under-
mining their reliability. To facilitate the system-
atic study of these challenges, we introduce Truth-
Hypo, a benchmark for assessing the capabilities
of LLMs in generating truthful scientific hypothe-
ses, and KnowHD, a knowledge-based hallucina-
tion detector to evaluate how well hypotheses are
grounded in existing knowledge. Our results show
that LLMs struggle to generate truthful hypothe-
ses. By analyzing hallucinations in reasoning steps,
we demonstrate that the groundedness scores pro-
vided by KnowHD serve as an effective metric for
filtering truthful hypotheses from the diverse out-
puts of LLMs. Human evaluations further vali-
date the utility of KnowHD in identifying truth-
ful hypotheses and accelerating scientific discov-
ery. Our data and source code are available at
https://github.com/Teddy-XiongGZ/TruthHypo.

1 Introduction
Large language models (LLMs) have transformed the land-
scape of artificial intelligence, demonstrating remarkable ca-
pabilities across diverse applications, from natural language
understanding to creative content generation [Karanikolas et
al., 2023; Franceschelli and Musolesi, 2024; Raiaan et al.,
2024]. These models, trained on extensive corpora of text,
demonstrate an ability to analyze, summarize, and generate
human-like text, enabling advancements across diverse do-
mains. Recently, there has been a growing interest in lever-
aging LLMs for scientific discovery [Zhong et al., 2023;
Yang et al., 2023; Kumar et al., 2023; Liu et al., 2024;

Baek et al., 2024; Si et al., 2024]. Their capacity to pro-
cess and synthesize vast amounts of scientific literature po-
sitions them as valuable tools in aiding researchers, par-
ticularly for tasks such as literature reviews, summariza-
tion, and even generating new hypotheses [Qi et al., 2023;
Zhou et al., 2024; M. Bran et al., 2024; Wright et al., 2022;
Zeng et al., 2023; D’Arcy et al., 2024; Ifargan et al., 2025;
Yang et al., 2025].

One particularly promising application of LLMs is their
use in scientific hypothesis generation, where they can assist
in identifying promising research directions. By analyzing
extensive scientific literature, LLMs can uncover gaps in ex-
isting knowledge and propose novel hypotheses that may not
be immediately apparent to human researchers. For instance,
LLMs have been successfully applied to propose novel drug
combinations for breast cancer treatment, some of which
were later validated in laboratory experiments, showcasing
their potential to accelerate biomedical discoveries [Abdel-
Rehim et al., 2024].

Despite these advancements, there are substantial chal-
lenges that limit the practical utility of LLMs in scientific
hypothesis generation. A critical concern is the inability
to evaluate the truthfulness of generated hypotheses. While
LLMs can generate hypotheses that seem plausible, it remains
uncertain whether these hypotheses are valid and grounded
in existing knowledge or merely hallucinated and scientifi-
cally invalid. This issue is further exacerbated by the well-
documented “hallucination” problem, where LLMs confi-
dently produce information that is factually inaccurate or un-
supported, posing challenges to their reliability in scientific
contexts. While current research has largely focused on im-
proving the novelty and diversity of LLM-generated hypothe-
ses, their truthfulness and grounding in established knowl-
edge remain underexplored [Baek et al., 2024; Hu et al.,
2024; Si et al., 2024].

To address these challenges, we introduce TruthHypo1, a
comprehensive benchmark for evaluating the ability of LLMs
to generate truthful scientific hypotheses, and KnowHD,
a knowledge-based hallucination detection framework de-
signed to assess the groundedness of these hypotheses. Truth-
Hypo, built on a biomedical knowledge graph along with a

1An extended version of this paper with Appendix is available at
https://arxiv.org/abs/2505.14599.
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Figure 1: Overview of the TruthHypo benchmark, including dataset construction, task formulation, and truthfulness evaluation.

domain-specific corpus, provides a controlled environment to
evaluate how well LLM-generated hypotheses align with es-
tablished scientific knowledge. KnowHD focuses on analyz-
ing the reasoning processes of LLMs to identify hypotheses
that are likely hallucinated or untruthful. Our findings reveal
that LLMs face significant challenges in generating truthful
hypotheses. By analyzing hallucinations in the reasoning
processes behind generated hypotheses, we demonstrate that
groundedness scores from KnowHD serve as an effective sig-
nal for identifying truthful hypotheses from the diverse out-
puts of LLMs. Human evaluations on open-ended hypothe-
sis generation tasks further confirm the utility of KnowHD in
identifying scientifically valid hypotheses.

Our main contributions are summarized as follows:

• We introduce TruthHypo, a comprehensive benchmark
designed to evaluate the ability of LLMs to generate
truthful scientific hypotheses.

• We propose KnowHD, a knowledge-based hallucination
detection framework that assesses the groundedness of
LLM-generated hypotheses and identifies hallucinated
claims by analyzing the rationale behind the hypothesis
generation.

• We provide an extensive analysis of existing LLMs on
TruthHypo, highlighting their limitations and challenges
in generating truthful hypotheses.

• Our evaluation further reveals the connection between
hallucination and truthfulness of generated hypotheses,
showing the effectiveness of using KnowHD to select
truthful and grounded hypotheses.

2 Truthful Hypothesis Generation
Benchmark

To systematically evaluate the ability of large language mod-
els (LLMs) to generate truthful scientific hypotheses, we in-
troduce TruthHypo, a benchmark tailored for biomedical hy-
pothesis generation. TruthHypo is designed to simulate real-

world conditions by employing rigorous dataset construction,
task formulation, and truthfulness evaluation metrics. An
overview of the dataset construction, task formulation, and
evaluation framework is depicted in Figure 1.

2.1 Dataset Construction
The dataset for TruthHypo is derived from PubTator 3.0 [Wei
et al., 2024], a comprehensive biomedical knowledge graph
that includes annotated relations (also called edges) extracted
from scientific articles. To simulate the temporal progres-
sion of scientific discovery, we partitioned the graph into
“seen” and “unseen” subsets based on the publication years
of the corresponding articles. Relations in the “seen” sub-
set were extracted from papers published before 2023, identi-
fied by PMIDs ≤ 366000002. The “unseen” subset, designed
to represent new discoveries, comprises relations extracted
from papers published after 2024, identified by PMIDs ≥
38200000.

To ensure no overlap between the two subsets, we removed
the edges in the unseen subset that shared head and tail enti-
ties with those in the seen subset. In addition, to maintain
quality and validity, only relations discovered by multiple ar-
ticles in the test data were retained. This filtering process
guarantees that the unseen subset exclusively contains knowl-
edge unavailable before 2024, simulating the conditions of
future scientific research.

In building the dataset, we focused on three key relation
types: “Chemical & Gene”, “Disease & Gene”, and “Gene
& Gene”. These relation types were chosen for their com-
plementary nature, detailed annotations, and potential for ob-
jective evaluation. To construct comprehensive classification
tasks for evaluating different LLMs, we augment the dataset
with negative test cases to assess whether LLMs tend to make
false-positive predictions on entity pairs that lack a direct re-
lationship in the existing knowledge base. The number of

2PMID is the unique identifier of the paper where the edge was
extracted.
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negative samples (labeled as “no relation”) for each relation
type is controlled to align with the average number of in-
stances across other labels of the same relation type. The
final dataset has 1209 instances for the “Chemical & Gene”
task, 268 instances for the “Disease & Gene” task, and 547
instances for the “Gene & Gene” task. A summary of the
dataset statistics is presented in Table 1.

Task Label # Instance

Chemical & Gene
positive correlate
negative correlate

no relation

328
478
403

Disease & Gene
stimulate

inhibit
no relation

104
75
89

Gene & Gene
positive correlate
negative correlate

no relation

247
118
182

Table 1: Statistics of various tasks in the TruthHypo benchmark.

2.2 Task Formulation
The TruthHypo benchmark includes three tasks, correspond-
ing to the selected relation types: “Chemical & Gene”, “Dis-
ease & Gene”, and “Gene & Gene”. For each task, the input is
a hypothesis generation query with two entities, and the LLM
is required to hypothesize the potential relationship between
them based on available knowledge and reasoning.

To comprehensively assess LLM performance, we evalu-
ate their ability to generate hypotheses under various knowl-
edge augmentation settings. In the first setting, LLMs rely
solely on their parametric knowledge – information encoded
in their parameters during pretraining on large corpora. This
evaluates the model’s intrinsic understanding and reasoning
capabilities.

To enhance hypothesis generation, we introduce a second
setting in which LLMs are augmented with structured knowl-
edge from the “seen” knowledge graph. In this approach, key
entities from the input are mapped to nodes in the graph, and
multi-hop link chains connecting these nodes are explored.
These chains, representing relevant relationships, are trans-
formed into textual descriptions and provided as context for
the model to use during hypothesis generation.

Another setting leverages information from biomedical
literature using a retrieval-augmented generation (RAG)
pipeline. Relevant documents are retrieved from the PubMed
corpus3 using BM25 [Robertson et al., 2009]. To maintain
consistency with the knowledge graph’s temporal split, only
articles with PMIDs ≤ 36600000 are included in the retrieval.
This simulates the process of generating hypotheses based on
literature available at a given point in time.

Finally, we consider a combined setting, where both struc-
tured knowledge from the graph and unstructured information
from retrieved literature are used to support hypothesis gener-
ation. This comprehensive approach provides a more holistic

3https://pubmed.ncbi.nlm.nih.gov/

context, enabling the model to reason across both sources.
The LLM prompt templates we used to combine the external
information with the original user instructions can be found
in the Appendix.

2.3 Evaluation Metrics
To evaluate the quality of generated scientific hypotheses, we
employ a set of complementary metrics tailored to different
aspects of hypothesis generation. These metrics assess the
performance of LLMs in identifying valid connections be-
tween entities (link-level evaluation) and predicting specific
relations (relation-level evaluation).

For link-level evaluation, we focus on precision, recall, and
F1 score. Precision measures the proportion of correctly iden-
tified connections among all hypothesized connections, em-
phasizing the reduction of false positives. Recall evaluates
the model’s ability to comprehensively identify all valid con-
nections, capturing its sensitivity to true positives. The F1
score, as the harmonic mean of precision and recall, provides
a balanced measure of performance, combining both the ac-
curacy of predictions and the coverage of valid connections.
These link-level metrics are critical for assessing the LLM’s
ability to hypothesize plausible relationships between enti-
ties, regardless of the specific relation type.

For relation-level evaluation, we employ accuracy to mea-
sure how often the generated hypotheses match the correct
relation labels in the ground truth. Accuracy captures the
overall correctness of hypotheses by considering both the ex-
istence of a connection and the predicted relation type. While
precision, recall, and F1 focus on identifying potential con-
nections, accuracy provides a finer-grained assessment of the
model’s capability to generate accurate relation labels.

By combining link-level and relation-level evaluations, the
TruthHypo benchmark comprehensively measures the truth-
fulness of LLM-generated hypotheses, assessing the ability
of LLMs to produce scientifically valid outputs.

3 Knowledge-based Hallucination Detection
As discussed earlier, a critical concern regarding the truthful-
ness of LLM-generated hypotheses is the occurrence of hallu-
cinations, where models generate plausible-sounding but un-
supported claims. To address this, we introduce KnowHD,
a knowledge-based hallucination detection framework that
evaluates the groundedness of LLM-generated hypotheses by
analyzing the rationale behind their generation. KnowHD op-
erates using scientific literature, knowledge graphs, or a com-
bination of both as the knowledge base. An overview of the
framework is presented in Figure 2.

To evaluate groundedness, each hypothesis and its reason-
ing chain are first decomposed into a set of atomic claims.
This step is critical because hypotheses often consist of com-
pound reasoning steps, some of which may be supported by
existing knowledge while others may not. Parsing these into
atomic claims allows a more granular evaluation of grounded-
ness and isolates unsupported components. This step is im-
plemented by prompting LLMs with the template shown in
the Appendix.

When using scientific literature as the knowledge base, rel-
evant documents for each atomic claim are retrieved from
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Rationale of Generated Hypothesis

Claim Claim Claim Claim 

Knowledge
Graph 

Scientific
Literature 

groundedness

claim

context

claim

context

Figure 2: Overview of the KnowHD hallucination detection frame-
work. Hypotheses are parsed into atomic claims, which are then
evaluated for groundedness using a knowledge graph, scientific lit-
erature or both as knowledge sources.

the PubMed corpus, limited to articles published before 2023
(PMID ≤ 36600000). BM25 is employed to rank documents
based on their relevance to the claim. To ensure computa-
tional efficiency and focus on the most relevant information,
only the top-k documents are retained. The context retrieved
from the literature corpus D for a claim p is defined as:

contextD(p) = {d1, d2, · · · , dk|
di ∈ D,BM25(p; di) ≥ τ, rank(di) ≤ k}, (1)

where di represents a document in the corpus, BM25(p; di)
is the relevance score assigned to the document for the claim
p. τ is a threshold ensuring relevance, and rank(di) denotes
the rank of di in the BM25-retrieved list.

When using a knowledge graph G as the knowledge base,
the context for a claim is derived from the graph structure.
For a claim p, relevant knowledge is extracted as:

contextG(p) = {(eh, r, et) ∈ G |{eh, et} ⊆ V(p)} , (2)

where (eh, r, et) represents an edge in the knowledge graph
with head entity eh, tail entity et, and relation r. The set V(p)
contains all entities mentioned in the claim p.

The groundedness of a claim is determined based on
whether the given context information (contextD, contextG ,
or contextD ∪ contextG) can fully support the claim, which is
implemented by prompting LLMs to provide a judgment us-
ing the template in the Appendix. If the concatenated context
collectively entails the claim, it is considered grounded. The
overall groundedness of a hypothesis h is computed as:

groudedness(h) =
1

|C(h)|
∑

p∈C(h)

1[context(p) |= p], (3)

where C(h) represents the set of atomic claims for hypothesis
h, and 1[x |= y] returns 1 if x entails y and 0 otherwise. The
context(p) can be contextD(p), contextG(p), or contextD(p)∪
contextG(p).

By offering both literature-based and graph-based con-
texts, KnowHD provides a robust framework for hallucina-
tion detection, offering flexibility to adapt to the available

knowledge sources. This systematic evaluation of atomic
claims enables a detailed assessment of the groundedness
of hypotheses, identifying unsupported components and im-
proving the reliability of LLM-generated outputs.

4 Benchmark Analysis on TruthHypo
4.1 Experiment Settings
To assess the ability of existing LLMs to generate truthful
scientific hypotheses, we selected a diverse range of mod-
els varying in type and size. The Llama-3 family [Dubey
et al., 2024] represents open-source LLMs, while the GPT-4
family [Achiam et al., 2023] exemplifies proprietary models.
From each family, we evaluated two LLMs of different sizes
(Llama-3.1-8B & Llama-3.1-70B, GPT-4o-mini & GPT-4o)
to investigate size-related differences in performance. All
LLMs were trained on the knowledge available before 2024,
preventing recall of the exact knowledge for hypothesis gen-
eration. More implementation details are in the Appendix.

The TruthHypo benchmark evaluates LLMs across four
distinct settings: (1) parametric knowledge only, (2) paramet-
ric knowledge with knowledge graphs (KG), (3) parametric
knowledge with literature (Lit.), and (4) parametric knowl-
edge with both KG and literature. These settings allow us
to explore the impact of external knowledge sources on hy-
pothesis generation. The F1 and accuracy scores of different
models are reported in this section. More detailed results on
the precision and recall can be found in the Appendix.

4.2 Comparison of LLMs in Truthful Hypothesis
Generation

Table 2 presents the evaluation results for different LLMs and
knowledge settings on TruthHypo. Across all tasks, the re-
sults indicate that most LLMs struggle to generate truthful
scientific hypotheses, with only GPT-4o achieving mean ac-
curacies exceeding 60%. Additionally, we can observe that
link-level F1 scores are higher than relation-level accuracy
scores, which indicates that LLMs can identify potential con-
nections between entities but often fail to accurately predict
the specific relationships.

For models from the same family with different sizes,
larger LLMs tend to generate scientific hypotheses more
likely to be truthful. This can be attributed to two main fac-
tors. First, larger LLMs generally perform better because
they can store and leverage more knowledge in their param-
eters, as shown by the results of parametric knowledge-only
setting. Second, LLMs of different sizes have diverse capa-
bilities to process external knowledge for hypothesis genera-
tion. For example, GPT-4o-mini shows a modest 1.14% ac-
curacy improvement when augmented with KG and literature,
whereas GPT-4o achieves a more substantial 5.14% increase
under the same conditions. This suggests that larger LLMs
can better utilize additional context to reason about truth-
ful scientific hypotheses. Similar trends are observed when
comparing Llama-3.1-8B and Llama-3.1-70B. Interestingly,
smaller models, such as Llama-3.1-8B, sometimes experience
decreased performance when information from KG and liter-
ature is introduced. This degradation may stem from chal-
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Knowledge LLM
Chemical & Gene Disease & Gene Gene & Gene Average

F1 Acc F1 Acc F1 Acc F1 Acc

Parametric
[Wei et al., 2022]

Llama-3.1-8B 80.16 42.43 79.37 41.04 79.19 46.07 66.90 43.23
Llama-3.1-70B 81.36 52.44 83.29 54.48 76.66 49.91 71.54 52.03
GPT-4o-mini 83.31 61.29 81.84 59.33 79.32 53.02 75.49 58.79

GPT-4o 80.74 66.17 75.38 54.85 71.56 55.58 73.17 61.81

Parametric + KG
[Baek et al., 2024]

Llama-3.1-8B 81.37 40.61 79.59 48.13 79.61 48.45 70.65 43.73
Llama-3.1-70B 87.85 62.86 67.62 52.24 78.29 58.14 79.10 60.18
GPT-4o-mini 86.42 57.65 74.17 55.60 81.65 62.34 79.40 58.65

GPT-4o 88.66 63.85 79.50 56.72 82.73 61.06 81.62 62.15

Parametric + Lit.
[Lewis et al., 2020]

Llama-3.1-8B 80.78 46.07 80.46 43.28 79.91 42.60 68.58 44.76
Llama-3.1-70B 82.56 56.74 84.16 52.99 79.18 51.55 73.37 54.84
GPT-4o-mini 85.28 59.80 85.71 53.73 81.50 51.19 77.08 56.67

GPT-4o 79.52 65.92 75.84 55.97 64.69 51.92 71.84 60.82

Parametric + KG
+ Literature

Llama-3.1-8B 75.98 36.48 77.58 41.42 79.19 45.70 65.37 39.62
Llama-3.1-70B 84.80 59.31 77.64 56.34 81.24 55.76 77.37 57.95
GPT-4o-mini 88.34 60.96 84.47 58.21 84.17 58.50 81.42 59.93

GPT-4o 89.71 69.31 82.86 62.31 85.91 63.99 83.55 66.95

Table 2: Performance comparison of different LLMs on the TruthHypo benchmark across various knowledge settings. The metrics reported
are link-level F1 and relation-level accuracy (Acc) for each task (Chemical & Gene, Disease & Gene, Gene & Gene), as well as their
averages. “Param.” denotes parametric knowledge, while “KG” and “Lit.” refer to knowledge graphs and literature, respectively. All scores
are percentages (%).

lenges in effectively integrating internal and external infor-
mation, which can disrupt the model’s reasoning processes.

Performance differences are also observed across the three
relation types: “Chemical & Gene”, “Disease & Gene” and
“Gene & Gene”. Notably, all larger models, including GPT-
4o, GPT-4o-mini, and Llama-3.1-70B, tend to perform better
on “Chemical & Gene” tasks than on the other two types.
This trend suggests that the “Chemical & Gene” task may
be more aligned with the pre-trained knowledge or reason-
ing capabilities of these models. In contrast, the smaller
Llama-3.1-8B shows a more inconsistent pattern, with per-
formance varying across tasks and settings, likely reflecting
its more limited parametric capacity and reasoning abilities.
These variations in performance across relation types may
be attributed to differences in training data distributions or
the complexity of the relation types themselves. The rela-
tively stronger performance on the “Chemical & Gene” task
highlights potential domain-specific biases or strengths in the
LLMs, offering insights into their suitability for targeted ap-
plications in real-world scientific discovery.

4.3 Hallucination Detection on LLM-generated
Hypotheses

To assess the groundedness of the generated hypotheses,
we evaluated their rationales using KnowHD under various
knowledge settings. KnowHD measures how well a hypothe-
sis is supported by structured knowledge (KG), unstructured
knowledge (literature), or both combined. The groundedness
evaluation results for hypotheses generated by GPT-4o-mini
are presented in Table 3.

The results demonstrate distinct contributions of KG and
literature to grounding hypotheses. For example, KnowHD
with the literature as the support knowledge base can ver-

Task Knowledge
KnowHD

KG Lit. KG + Lit.

Chemical
& Gene

Parametric 44.77 67.34 74.49
+ KG 49.93 51.08 73.03
+ Lit. 47.19 76.30 83.20
+ KG + Lit. 50.57 65.25 78.90

Disease
& Gene

Parametric 45.44 71.56 78.91
+ KG 57.07 60.70 79.81
+ Lit. 49.34 78.65 85.32
+ KG + Lit. 51.11 75.26 86.68

Gene
& Gene

Parametric 42.94 67.81 76.16
+ KG 58.07 56.41 79.64
+ Lit. 44.49 76.43 84.48
+ KG + Lit. 54.03 67.96 82.87

Table 3: KnownHD (KG, Lit., and KG + Lit.) groudedness scores
of hypotheses generated by GPT-4o-mini under different knowledge
settings. All scores are percentages (%).

ify 76.30% claims in the rationales of literature-augmented
‘Chemical & Gene” hypotheses. However, the hallucination
detector can hardly verify the rationale generated based on
adding KG information to parametric knowledge with only
51.08% of the claims being grounded. Combining KG and
literature yields the highest groundedness scores, effectively
leveraging the complementary strengths of both sources to
identify grounded claims and detect hallucinations.

To further explore the relationship between hallucination
and truthfulness, Figure 3 examines mean accuracy as a func-
tion of groundedness scores. Hypotheses were grouped based
on their groundedness scores, and the average accuracy for
each group was calculated. The figure reveals a positive cor-
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Figure 3: Mean accuracy corresponding to different levels of groundedness. Hypotheses are grouped based on their groundedness scores
provided by KnowHD (KG + Literature). Only groups with no less than 10 hypotheses are shown in the plots. The dot size reflects the
number of samples in each level of groundedness.

relation between groundedness scores and hypothesis truth-
fulness. As groundedness scores increase, the likelihood
of the hypothesis being truthful also increases. For exam-
ple, GPT-4o-mini achieves a mean accuracy of 60.96% on
“Chemical & Gene” tasks under the combined KG + Liter-
ature setting, but this rises to 72.77% for hypotheses with
groundedness scores above 80%. These findings underscore
the potential of KnowHD to identify hypotheses with a higher
probability of being truthful, particularly in contexts enriched
with external knowledge.

4.4 Improving Generation of Truthful Hypotheses
with KnowHD

To validate the utility of KnowHD on enhancing hypothesis
generation, we prompted LLMs to generate five candidate hy-
potheses for each input and selected the one with the highest
groundedness score as the final output. This approach was
compared to two baselines: the greedy search method, where
the hypothesis is generated using greedy next-token selec-
tion by the LLM, and the self-consistency method [Wang et
al., 2022], which selects hypotheses based on majority voting
across multiple predictions.

As shown in Figure 4, groundedness-based hypothesis se-
lection generally outperforms both the greedy search and
majority-voting methods across most knowledge settings. In
the parametric knowledge-only setting, the majority-voting
method achieves slightly higher accuracy (61.86%) compared
to groundedness-based selection (59.83%). However, as ex-
ternal knowledge is introduced, groundedness-based selec-
tion demonstrates consistent improvements over both base-
lines. For example, in the combined parametric + KG + Lit-
erature setting, GPT-4o-mini achieves an average accuracy
of 63.44% when groundedness-based selection is used, ap-
proaching the performance of the larger GPT-4o model.

These results highlight the effectiveness of groundedness
scores in scenarios where external knowledge is incorporated,
as they help identify hypotheses that are more likely to be
truthful. By detecting hallucinations in reasoning steps and
focusing on grounded hypotheses, KnowHD provides a ro-
bust mechanism for enhancing the reliability and truthfulness
of LLM-generated scientific hypotheses.

Param. Param.+KG Param.+Lit. Param.+KG+Lit.
54
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Figure 4: Accuracy improvements of GPT-4o-mini using KnowHD
(KG + Lit.) groundedness scores for hypothesis selection. “Param.”,
“KG” and “Lit.” denote parametric knowledge, knowledge graphs,
and literature, respectively.

5 Human Study on Open-ended Tasks
To further assess the generalizability of KnowHD’s effective-
ness in selecting truthful hypotheses, we conducted exper-
iments on open-ended hypothesis generation tasks. These
tasks were designed to evaluate whether KnowHD could reli-
ably identify hypotheses with a higher likelihood of truthful-
ness across broader and less structured generation scenarios.
For this analysis, we utilized the publicly available hypothesis
generation dataset introduced by [Qi et al., 2024], which in-
volves generating free-form hypotheses based on given back-
ground information. We selected GPT-4o-mini as the tested
LLM and enhanced its hypothesis generation process by in-
corporating external knowledge from scientific literature and
knowledge graphs (KG). The model was prompted to gener-
ate five distinct scientific hypotheses for each input. These
hypotheses were then evaluated by KnowHD, which assessed
their groundedness based on their alignment with both struc-
tured (KG) and unstructured (literature) knowledge sources.

To analyze the relationship between groundedness scores
and hypothesis truthfulness, we filtered generated hypotheses
to create pairs with contrasting groundedness levels. For each
input, we identified one hypothesis with the highest ground-
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Group Groudedness GPT-4o Human

highly-grounded 83.94 61.11 59.26
lowly-grounded 40.61 38.89 40.74

p-value 7.84 ×10−11 1.05 ×10−2 2.71 ×10−2

Table 4: Results of analysis on open-ended hypothesis generation
tasks. “GPT” and “Human” denote the selection ratios by GPT-4o
and human experts, respectively. All scores are percentages (%). p-
values were calculated using Wilcoxon signed-rank test and Z-test.

edness score and another with the lowest. We retained pairs
where the higher groundedness score was at 30% greater than
the lower score. This filtering resulted in 54 pairs of hypothe-
ses with significant differences in groundedness levels. To
validate KnowHD’s effectiveness, we involved two domain
experts to annotate each pair (80% agreement), selecting the
hypothesis they deemed more likely truthful based on the
given information. Additionally, GPT-4o was prompted to
analyze the same pairs and provide its judgment. Results of
this annotation study, summarized in Table 4, report the se-
lection ratio for each group, defined as the proportion of hy-
potheses in each group identified as more truthful.

The results demonstrate a significant relationship between
groundedness scores and the perceived truthfulness of hy-
potheses. Hypotheses with higher groundedness scores were
consistently more likely to be selected as truthful by both hu-
man experts and GPT-4o, as indicated by the substantial dif-
ferences in selection ratios. These findings highlight the util-
ity of KnowHD in distinguishing truthful hypotheses, even
in unstructured, open-ended generation tasks. By effectively
leveraging groundedness as a criterion, KnowHD provides
a robust mechanism for improving the reliability of LLM-
generated hypotheses, reinforcing its potential for facilitating
real-world scientific discovery processes.

6 Related Work
6.1 Scientific Hypothesis Generation
The use of LLMs for scientific hypothesis generation is a
rapidly growing field, leveraging the ability of these models
to process and synthesize vast amounts of scientific litera-
ture [Qi et al., 2023; Yang et al., 2023; Zhou et al., 2024;
Ciucă et al., 2023; Park et al., 2024; Skarlinski et al., 2024;
Radensky et al., 2024]. LLMs have been applied in identi-
fying research gaps and generating novel hypotheses, with
notable successes in areas such as drug discovery, where
generated hypotheses have led to experimentally validated
drug combinations [Abdel-Rehim et al., 2024]. Despite these
advancements, most existing studies emphasize the novelty
and diversity of hypotheses without addressing the critical
aspect of truthfulness [Qi et al., 2024; Baek et al., 2024;
Wang et al., 2023; Hu et al., 2024; Li et al., 2024; Si et al.,
2024]. The prevalent hallucination problem exacerbates this
issue, as LLMs often generate hypotheses that appear plau-
sible but lack factual support [Huang et al., 2023]. This gap
motivates the development of TruthHypo, a benchmark ex-
plicitly designed to assess the ability of LLMs to generate
truthful and grounded scientific hypotheses.

6.2 Knowledge Graph Reasoning
Knowledge graph reasoning involves inferring missing facts
or relationships within a knowledge graph, with tasks such as
link prediction, entity classification, and relation extraction
being extensively studied [Lin et al., 2015; Ji et al., 2021;
Shu et al., 2024]. Traditional link prediction focuses on
predicting edges between entities based on graph structure.
These tasks primarily target structured graph completion,
emphasizing pattern detection rather than creative reason-
ing [Liu et al., 2023; Wu et al., 2023; Gu and Krenn,
2024]. TruthHypo introduces a novel benchmark that cen-
ters on LLM-driven scientific hypothesis generation, lever-
aging LLMs’ ability to flexibly integrate external knowledge
through contextual inputs. Unlike static graph reasoning,
TruthHypo evaluates how well LLMs generate grounded and
truthful hypotheses. This shift highlights the growing role
of LLMs in scientific discovery and bridges the gap between
symbolic graph reasoning and natural language creativity.

6.3 Retrieval-augmented Generation
Retrieval-augmented generation (RAG) has emerged as a
powerful approach for improving the factual accuracy and
relevance of LLM outputs by integrating external knowl-
edge during the generation process. This technique has been
applied with literature retrieval, as demonstrated by [Lewis
et al., 2020], to dynamically incorporate up-to-date infor-
mation into model outputs. Retrieval-augmented generation
methods enhance the ability of LLMs to ground their out-
puts in external knowledge, making them particularly valu-
able in tasks requiring factual accuracy, such as scientific
text generation [Lála et al., 2023; Munikoti et al., 2023].
In addition to literature retrieval, retrieval-augmented gen-
eration using knowledge graphs has gained attention for its
potential to provide structured, domain-specific knowledge
during text generation [Peng et al., 2024; Ma et al., 2024;
Wang et al., 2025]. TruthHypo builds on this paradigm by in-
tegrating both literature and knowledge graph retrieval to pro-
vide a robust evaluation of LLMs’ ability to generate truthful
scientific hypotheses. This dual approach enables a compre-
hensive analysis of the role of external knowledge in mitigat-
ing hallucinations and ensuring the groundedness of gener-
ated hypotheses.

7 Conclusion
We presented TruthHypo, a benchmark for evaluating the
ability of LLMs to generate truthful scientific hypotheses, and
KnowHD, a framework for detecting hallucinations by as-
sessing groundedness in reasoning. Through extensive eval-
uation, we highlighted the limitations of existing LLMs and
demonstrated that selecting highly grounded hypotheses im-
proves truthfulness. These contributions offer valuable in-
sights for improving the reliability and utility of LLMs in sci-
entific discovery.
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