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Separation

Zhaoxi Mu , Xinyu Yang∗ and Gang Wang
Xi’an Jiaotong University

{wsmzxxh, wanggang911}@stu.xjtu.edu.cn, yxyphd@mail.xjtu.edu.cn

Abstract
While contemporary speech separation technolo-
gies adeptly process lengthy mixed audio wave-
forms, they are frequently challenged by the intri-
cacies of real-world environments, including noisy
and reverberant settings, which can result in arti-
facts or distortions in the separated speech. To
overcome these limitations, we introduce SepALM,
a pioneering approach that employs audio language
models (ALMs) to rectify and re-synthesize speech
within the text domain following preliminary sep-
aration. SepALM comprises four core compo-
nents: a separator, a corrector, a synthesizer, and an
aligner. By integrating an ALM-based end-to-end
error correction mechanism, we mitigate the risk
of error accumulation and circumvent the optimiza-
tion hurdles typically encountered in conventional
methods that amalgamate automatic speech recog-
nition (ASR) with large language models (LLMs).
Additionally, we have developed Chain-of-Thought
(CoT) prompting and knowledge distillation tech-
niques to facilitate the reasoning and training pro-
cesses of the ALM. Our experiments substantiate
that SepALM not only elevates the precision of
speech separation but also markedly bolsters adapt-
ability in novel acoustic environments.

1 Introduction
Speech separation, also known as the cocktail party prob-
lem, involves isolating individual speech sources from a mix-
ture of audio signals. Prevailing state-of-the-art techniques
in speech separation are predicated on a time-domain dual-
path methodology [Luo et al., 2020; Subakan et al., 2021;
Mu et al., 2023b], characterized by an encoder-dual-path
separation network-decoder framework that adeptly man-
ages lengthy mixed audio waveforms. Despite these ad-
vancements, existing methods falter when tasked with sep-
arating speech from recordings captured in complex real-
world acoustics, such as those rife with noise and reverber-
ation, where residual artifacts or distortions persist in the
output. Recent endeavours have sought to surmount this

∗Corresponding author

challenge through multi-stage processing [Li et al., 2021;
Mu et al., 2023a; Neri and Braun, 2023] and the use of gen-
erative models [Chen et al., 2020; Wang et al., 2024a]. Yet,
the efficacy of these approaches in practical scenarios is of-
ten constrained, predominantly owing to the heterogeneity of
real-world interference that transcends the scope of typical
training datasets.

To tackle this issue, we propose a novel approach that in-
volves correcting and re-synthesizing preliminary separated
speech, which may contain artifacts and distortions, within
the text domain, as depicted in Figure 1. The underly-
ing insight behind our decision to perform error correction
in the text domain rather than the conventional speech do-
main is that speech is high-resolution data, while text is low-
resolution data, thus facilitating error correction in a simpler
form. Additionally, this textual correction is less suscepti-
ble to various types of noise, thereby enhancing the model’s
adaptability to novel acoustic disturbances.

To obtain transcriptions of the preliminary separated
speech and to correct these transcriptions, we propose lever-
aging the capabilities of large language models (LLMs).
These models have recently showcased exceptional profi-
ciency in logical reasoning and language generation, leading
to significant achievements and swift progress across various
natural language processing tasks [OpenAI, 2023; Touvron et
al., 2023]. Trained on extensive textual corpora, LLMs ex-
hibit a robust grasp of world knowledge and nuanced contex-
tual understanding. This has prompted exploration into the
application of LLMs for automatic speech recognition (ASR)
[Lakomkin et al., 2024; Fathullah et al., 2024] and the subse-
quent refinement of ASR outputs [Radhakrishnan et al., 2023;
Chen et al., 2023]. However, we have identified several chal-
lenges associated with employing a cascade of ASR models
and LLMs for error correction. Initially, LLMs can only as-
sess potential errors based on the context provided by the
N-best hypotheses decoded by ASR models, lacking the ca-
pacity to perceive and utilize the original speech information.
This limitation can lead to grammatically coherent yet con-
textually inaccurate outcomes [Hu et al., 2024]. Furthermore,
the cascade of ASR models and LLMs escalates computa-
tional expenses and the risk of error accumulation, while in-
compatibilities between the models can complicate optimiza-
tion and diminish expressive capability.

In light of these insights, we have turned to audio language
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"I am going to the store."

"I will call you email you."

"I will call you and email you."

Separator

Transcription
Speech Recognition

Error Correction
Corrected transcription

Preliminary separated speech

Re-synthesis

Refined separated speech

Separator

(b) Error correction in the text domain(a) Error correction in the speech domain

"I am going and to the store."

Error Correction

Figure 1: The illustration contrasts (a) the conventional method of error correction for preliminary separated speech in the audio domain, and
(b) our proposed method of error correction for preliminary separated speech in the text domain.

models (ALMs) [Latif et al., 2023], which are derived from
LLMs and exhibit remarkable capacity in processing and gen-
erating both textual and auditory information. We advocate
for a streamlined, end-to-end error correction strategy utiliz-
ing a single ALM. This approach presents two key benefits.
First, it capitalizes on the ALM’s cross-modal competencies
to incorporate original speech data, thereby enhancing the
correction process. Second, by integrating a solitary ALM,
we alleviate the complexity associated with optimization and
inference. To bolster the precision of our single ALM and
mitigate potential hallucinations, we have adopted Chain-of-
Thought (CoT) prompting [Wei et al., 2022]. This technique
bifurcates the error correction into two phases, enhancing the
ALM’s reasoning capabilities. Given the paucity of annotated
data, we have crafted a knowledge distillation technique that
harnesses a pre-trained ASR model as a teacher to direct the
ALM’s training. Our empirical findings suggest that this CoT
strategy rivals the efficacy of more intricate cascaded systems.

Upon securing the corrected transcription, we utilize it
alongside the preliminary separated speech to re-synthesize
the refined speech, diverging from the conventional use of
transcription as a conditional input for speech separation.
This decision stems from the recognition that straightfor-
ward feature fusion techniques that incorporate transcription
information as a condition may precipitate modality imbal-
ance issues [Mu and Yang, 2024], where the textual modal-
ity is prone to ineffectiveness. We experimented with two
speech synthesis methods based on the neural codec lan-
guage model1: autoregressive (AR) generation [Borsos et
al., 2023a; Wang et al., 2023] and non-autoregressive (NAR)
masked generation [Kharitonov et al., 2023; Borsos et al.,
2023b] to resynthesize the refined speech. In our approach,
the transcription and the preliminary separated speech are
treated equally, being encoded into tokens that serve as in-

1This can also be referred to as the audio language model. How-
ever, for the sake of differentiation from the previously referenced
audio language model, we term this the speech synthesis model
based on the neural codec language model.

puts to the language model, thereby mitigating the modality
imbalance issue. Additionally, we capitalize on the gener-
ative model’s ability to effectively learn the distribution of
clear speech as a refined prior, enhancing the model’s gener-
alization capacity when confronted with novel acoustic dis-
turbances.

Due to the lack of phase information during the re-
synthesis of refined speech, the synthesized signal may un-
dergo phase shifts over time, which can diminish the preci-
sion of metrics evaluated on a time-sample basis, such as the
scale-invariant signal-to-noise ratio (SI-SNR) [Roux et al.,
2019]. To mitigate this issue, we implement a realignment
process for the refined speech against the preliminary sepa-
rated speech within the time-frequency domain.

Our contributions are summarized as follows:
• We propose a novel speech separation paradigm that

harnesses the prowess of the audio language model to
rectify and re-synthesize preliminary separated speech
within the text domain, thereby enhancing the system’s
ability to separate noisy mixed audio.

• We advocate for a streamlined, single ALM-based end-
to-end error correction mechanism, circumventing the
error accumulation and optimization challenges inherent
in the traditional sequential integration of ASR models
with LLMs. To further enhance the ALM’s reasoning
and training processes, we have developed techniques of
CoT prompting and knowledge distillation.

• We utilize a speech synthesis method based on the neu-
ral codec language model to re-synthesize the refined
speech, effectively neutralizing modality imbalance is-
sues and bolstering the model’s generalization capabil-
ity. Furthermore, we incorporate time-frequency do-
main alignment techniques to resolve phase shift issues,
thereby markedly elevating objective evaluation metrics.

2 Related Work
Recent advancements have led to significant improvements in
speech separation performance [Luo et al., 2020; Subakan et
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Separator
     ALM LoRA

Synthesizer (AR/NAR Mask)

Aligner

PT

G2P/T2SEncoder

CT

Decoder

Acoustic token

Phoneme/
Semantic token AR

NAR Mask

Known token
Current step token
Empty token

Time steps 

Figure 2: The structural framework of our proposed SepALM. For
clarity, the diagram illustrates the processing flow for a single sepa-
rated speech signal. In the diagram, ‘PT’ signifies Preliminary Tran-
scription, and ‘CT’ denotes Corrected Transcription.

al., 2021]. Despite these strides, existing models frequently
struggle to maintain separation quality under more demand-
ing acoustic scenarios, such as the presence of more intrusive
noise types or diminished signal-to-noise ratios. To surmount
this challenge, some studies have put forth generative cor-
rection techniques to refine the separated speech further [Lu-
tati et al., 2024; Erdogan et al., 2023; Hirano et al., 2023;
Wang et al., 2024a]. The underpinning logic of these tech-
niques is that generative models aim to learn the prior distri-
bution of data, can approximate intricate data distributions,
and typically exhibit superior generalization capabilities, re-
sulting in the production of more natural and higher-quality
samples. Notable approaches similar to ours include Separate
and Diffuse [Lutati et al., 2024] and TokenSplit [Erdogan et
al., 2023]. The method proposed in Separate and Diffuse [Lu-
tati et al., 2024] amalgamates the strengths of deterministic
models with those of stochastic generative models to augment
the efficacy of speech separation and perform linear combi-
nations in the time-frequency domain. In TokenSplit [Erdo-
gan et al., 2023], the authors propose a scheme for predict-
ing enhanced audio tokens derived from the speech separated
by conventional speech separation models and their transcrip-
tions, aiming to eliminate distortions and artifacts present in
the separation estimates.

3 Methodology
3.1 Overall Framework
In this section, we introduce SepALM, a cutting-edge sys-
tem designed to separate mixed speech and re-synthesize tar-
get speech in complex acoustic environments. As depicted in
Figure 2, SepALM consists of four principal components: 1)
a separator for the preliminary separation of mixed speech;
2) a corrector for error correction of the preliminary sepa-
rated speech within the low-resolution text domain; 3) a syn-
thesizer that refines the preliminary separated speech by re-
synthesizing it based on the corrected text transcription; and
4) an aligner that carries out phase compensation and align-
ment on the refined speech. Each component will be elabo-
rated upon in the subsequent sections.

3.2 Separator
Given a noisy mixed speech signal x ∈ RT , our goal is to
estimate C individual speech sources, denoted as s(i) ∈ RT

for i = 1, 2, . . . , C . The mixed signal x can be expressed as:

x =
C∑
i=1

s(i) + n (1)

Here, n ∈ RT signifies the background noise component, T
represents the total number of data points in the signal, and C
corresponds to the count of individual speech sources. For the
sake of simplicity and without generality being compromised,
we assume a scenario with C = 2 sources.

We initially engage the widely used time-domain dual-
path speech separation network, SepFormer [Subakan et al.,
2021], as the separator. This network executes preliminary
separation on the noisy mixed speech, yielding preliminary
estimates ŝ(i) = fsep(x) for i ∈ 1, 2. The separator fsep
is trained to directly minimize the discrepancy between the
estimated signals ŝ and the true signals s. We utilize the SI-
SNR loss to optimize the separator’s parameters. However,
this conventional speech separation approach frequently en-
counters issues such as over-suppression or under-separation,
particularly in noisy environments. These issues can intro-
duce distortions and artifacts in ŝ. Consequently, additional
corrective measures and refinement processes are warranted
to enhance the quality of the preliminary separated speech.

3.3 Corrector
In lieu of the prevalent two-stage GER paradigm that incorpo-
rates ASR models and LLMs, we posit that employing a sin-
gular ALM can yield comparable GER efficacy while simul-
taneously curtailing the model’s computational inference ex-
penses and potential for error accumulation. This hypothesis
is substantiated in the experimental section of our study. We
harness the pre-trained and fine-tuned ALM, SpeechGPT2, to
rectify the preliminary estimates ŝ within the low-resolution
text domain. SpeechGPT undergoes training by segmenting
speech into 1,000 HuBERT units and integrating them into
the LLaMA-7b3 [Touvron et al., 2023] tokenizer, succeeded
by fine-tuning LLaMA-7b to learn cross-modal mappings.
Equipped with this multi-modal capability, we can adapt the
correction process to the source speech.

Our corrector, denoted as fcor(ŝ) = t̃, can be formulated as
a probabilistic model:

t̃ = argmax
t

Pcor(t | ŝ) (2)

Here, t̃ signifies the corrected transcription. To regulate the
response quality and mitigate the risk of potential hallucina-
tions within the ALM, we adopt a CoT approach, bifurcating
this task into two sub-steps:

(I) The ALM first acts as an ASR model to recognize the
speech ŝ, yielding a preliminary transcription t̂. This
step is mathematically formulated as:

t̂ = argmax
t

Pasr(t | ŝ) (3)
2https://huggingface.co/fnlp/SpeechGPT-7B-cm
3https://huggingface.co/yahma/llama-7b-hf

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

(II) Subsequently, the ALM functions as a GER model to
refine the preliminary transcription t̂ by leveraging the
original speech ŝ, resulting in the corrected transcription
t̃. This process can be represented as:

t̃ = argmax
t

Pger(t | t̂, ŝ) (4)

This methodical approach ensures a structured refinement of
the transcription, enhancing accuracy and reliability. To im-
plement this procedure, we have crafted an instructive prompt
template as follows:

[Human]: Please transcribe the following speech input,
and then use the speech input to correct any errors in the
transcribed text. You can do it step by step. This is the input:
{speech unit} <eoh>.

[SpeechGPT]: Preliminary transcription: {preliminary
transcription}. Corrected transcription: {corrected tran-
scription} <eoa>.

Notably, unlike prior studies that rely on N-best hypothe-
ses generated by ASR systems, we focus on the top-1 hy-
pothesis, which carries the highest probability and is gener-
ally deemed to be of the highest quality. This greedy decod-
ing strategy avoids heavy beam search decoding and rescor-
ing procedures, thereby rendering the decoding process more
expeditious and efficient. Experimental results presented in
Table 3 corroborate that the ALM with greedy decoding per-
forms comparably to, or even surpasses, the amalgamations
of ASR models and LLMs that are deployed with more intri-
cate decoding techniques.

Given the unavailability of ground-truth transcriptions for
these two steps, we have devised a knowledge distillation
strategy that employs a pre-trained ASR model as a teacher
to direct the training of SpeechGPT. Specifically, we engage
Whisper [Radford et al., 2023] to execute greedy decoding
on both the preliminary separated speech ŝ and the true clean
speech s, yielding the target transcriptions t̂∗ and t̃∗, respec-
tively. Overall, the optimization objectives are encapsulated
by the following equations:

Lasr =

N1∑
n=1

− logP(t̂∗n | t̂∗n−1, . . . , t̂
∗
1, ŝ) (5)

Lger =

N2∑
n=1

− logP(t̃∗n | t̃∗n−1, . . . , t̃
∗
1, t̂, ŝ) (6)

Here, Lasr and Lger signify the cross-entropy losses associated
with the ASR and GER steps, respectively. t̂∗n and t̃∗n corre-
spond to the n-th tokens of the transcriptions t̂∗ and t̃∗, re-
spectively. N1 and N2 denote the total count of tokens within
the transcriptions. Given the substantial scale of the ALM, we
employ the parameter-efficient low-rank adaptation (LoRA)
technique [Hu et al., 2022] to fine-tune SpeechGPT, thereby
reducing computational and memory overhead.

3.4 Synthesizer
Upon acquiring the corrected transcription, our objective is
to refine the preliminary separated speech utilizing the cor-
rected transcription. We eschew the conventional approach
of re-separating the speech conditioned on the transcription

[Rahimi et al., 2022], instead opting for a strategy that in-
volves re-generating the refined speech. This methodology
offers dual benefits: First, by affording equal significance to
both text and speech as inputs, we circumvent the potential
issue of modality imbalance, which might otherwise render
the text modality less effective. Second, by employing a gen-
erative model to learn the distribution of clear speech as a
prior for refinement, rather than training the model to learn
a direct mapping from preliminary separated speech to re-
fined speech, we enhance the model’s capacity to generalize
to novel acoustic environments.

Inspired by recent advances in neural codec language mod-
els for speech synthesis [Borsos et al., 2023a], we conceptu-
alize speech synthesis as a conditional language modelling
task utilizing neural codec codes, also known as acoustic to-
kens. Specifically, we utilize a pre-trained neural codec, DAC
[Kumar et al., 2023], to tokenize each audio sample into dis-
crete acoustic tokens. We subsequently train a decoder-only
language model to generate the acoustic tokens S∗ of the re-
fined speech s∗ using either an AR or NAR masked genera-
tion manner, conditioned on the corrected transcription t̃ and
the preliminary separated speech ŝ, represented by the acous-
tic tokens Ŝ. DAC is a convolutional residual vector quantiza-
tion audio codec that features a Q-level quantizer comprising
B entries. The preliminary separated speech ŝ is discretized
and encoded into Ŝ ∈ R2×T ′×Q, where T ′ denotes the length
of the downsampled acoustic tokens.

For the AR generation approach, aligning with methods
from prior studies [Borsos et al., 2023a; Wang et al., 2023],
we adopt a two-stage modelling strategy. In the first stage, an
AR language model generates the acoustic tokens for the first
quantizer in an AR fashion. In the second stage, a NAR lan-
guage model generates the acoustic tokens for the remaining
Q − 1 quantizers in parallel. This amalgamation of AR and
NAR generation strategies effectively balances the fidelity of
the synthesized speech with the inference speed. The training
process can be represented as:

P(S | Ŝ, p) =
T ′′∏
t=0

PAR(St,1 | S<t,1, Ŝ:,1, p)

×
Q∏
i=2

PNAR(S:,i | S:,<i, Ŝ, p)

(7)

where S ∈ R2×T ′′×Q denotes the acoustic tokens of the true
target speech s, with T ′′ indicating the length of S. The nota-
tion S:,<i represents the acoustic token layers in S where the
layer indices are less than i. The terms PAR and PNAR repre-
sent the AR and NAR generation processes, respectively. We
utilize a grapheme-to-phoneme (G2P) tool to convert the cor-
rected transcription t̃ into a phoneme sequence p. p is then
concatenated with the acoustic tokens Ŝ of the preliminary
separated speech to form the prefix tokens.

For the NAR masked generation approach, akin to meth-
ods employed in previous studies [Kharitonov et al., 2023;
Wang et al., 2024b], during training, at each time step t, we
randomly select a subset of tokens from the i-th quantizer S:,i

of the true target speech s’s acoustic tokens S for masking, re-
sulting in Sm,i. The synthesizer is then trained to generate the
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complete target acoustic tokens S:,i in a NAR manner, which
can be expressed as:

PMask(S:,i | Sm,i, S:,<i, Ŝ, P ) (8)

We utilize a pre-trained text-to-semantic (T2S) model based
on w2v-BERT [Chung et al., 2021], sourced from SPEAR-
TTS4, to transform the corrected transcription t̃ into semantic
tokens P . Subsequently, the embeddings of the semantic to-
kens P are added to the embeddings of the acoustic tokens Ŝ
and S:,<i to serve as the condition.

The optimization of the synthesizer is achieved by mini-
mizing the negative log-likelihood objective, which equates
to the cross-entropy loss between the generated acoustic to-
kens and the true acoustic tokens. Ultimately, the refined
speech s∗ is synthesized utilizing the DAC decoder from the
generated acoustic tokens S∗.

3.5 Aligner
The potential for phase shifts in the output generated by the
generation method necessitates a subsequent alignment pro-
cess to ensure the refined speech s∗ is accurately aligned with
the target. To address this, we integrate the preliminary sepa-
rated speech ŝ and apply phase compensation and alignment
to the refined speech s∗. Adhering to the approach outlined
in [Lutati et al., 2024], we align the two estimated speech sig-
nals through a linear combination in the time-frequency do-
main, yielding the final aligned refined speech s̃, which can
be expressed as:

s̃ = iSTFT(α1 ⊙ STFT(ŝ) + α2 ⊙ STFT(s∗)) (9)

Here, STFT and iSTFT denote the short-time Fourier trans-
form and its inverse, respectively, while ⊙ represents the
Hadamard product. The weighting coefficients α1 and α2 are
determined by the aligner A:

[α1, α2] = A(STFT(ŝ), STFT(s∗)) (10)

A detailed exposition of the alignment procedure is provided
in the technical appendix. In congruence with the preliminary
separated speech ŝ, the aligned refined speech s̃ is also evalu-
ated using the SI-SNR as the objective function. This guides
the training of the entire model by minimizing the divergence
between s̃ and the ground-truth speech s.

4 Experiments
4.1 Datasets
To bolster the generalization capability of our model, we
train it using a unified dataset comprising noisy mixed
datasets WHAM! [Wichern et al., 2019], WHAMR! [Ma-
ciejewski et al., 2020], and Libri2Mix [Cosentino et al.,
2020]. WHAM! is a noisy version of WSJ0-2mix [Hershey
et al., 2016], incorporating noise samples recorded in envi-
ronments such as cafes, restaurants, and bars. Building upon
WHAM!, WHAMR! introduces reverberation effects to the
speech sources, supplementing the pre-existing noise compo-
nents. Libri2Mix is constructed by simulating noise data from

4https://github.com/lucidrains/spear-tts-pytorch

WHAM! and speech segments from Librispeech [Panayotov
et al., 2015], and it encompasses two training subsets: train-
360 and train-100. All datasets are sampled at a rate of 16
kHz. The model was trained on the complete audio segments
from these datasets to produce semantically coherent tran-
scriptions. During training, the audio segments were padded
to ensure uniform length. Upon completion of training, we
conduct individual evaluations on each dataset’s respective
test set.

4.2 Setup
For the separator, we utilized SepFormer, which comprises
26M parameters. For the corrector, during fine-tuning, we
configured the rank of LoRA to 8, integrated LoRA weights
into the query, key, value, and output layers of each Trans-
former block, and trained the newly added LoRA parameters,
resulting in a total of 8M trainable parameters. The optimiza-
tion process was facilitated by the AdamW optimizer with a
peak learning rate of 2e−4. Training proceeded for 5 epochs
with a batch size of 128. During inference, we set the max-
imum sequence length to 1024 and implemented both Top-
k and Top-p sampling strategies, with k set to 40 and p to
0.9. The temperature parameter was set to 0.1, and the beam
search was configured with a size of 1. We utilized Whisper-
Tiny as the teacher model. For the synthesizer, we imple-
mented a Transformer-based model consisting of 12 layers,
16 attention heads, attention dimensions of 1024, and feed-
forward network dimensions of 4096, totaling 202M param-
eters. The AdamW optimizer was also applied here, with a
peak learning rate of 5e−4. For the NAR masked generation
method, we set the number of inference steps to 25. Dur-
ing the training of the synthesizer, we employed classifier-
free guidance [Ho and Salimans, 2022], randomly discarding
prompts with a probability of 0.1. For the neural codec DAC,
we configured B and Q to 1024 and 12, respectively. For
the aligner A, we employed a two-layer convolutional neural
network with residual connections, which has 0.13M param-
eters. For the entire model, the training strategy commenced
with the fine-tuning of SpeechGPT, after which its parame-
ters were frozen while the remaining model components were
trained. We employed a permutation-invariant loss function
throughout the training process.

4.3 Evaluation Metrics
For objective evaluation, we utilized reference-based percep-
tual evaluation metrics, encompassing scale-invariant signal-
to-noise ratio improvement (SI-SNRi), signal-to-distortion
ratio improvement (SDRi), perceptual evaluation of speech
quality improvement (PESQi), and extended short-time ob-
jective intelligibility improvement (ESTOIi). To quantify
speech intelligibility, we measured the word error rate (WER)
of the generated audio when transcribed by ASR. We utilized
Whisper-Tiny to perform ASR on the separated speech to as-
sess the transcription accuracy. To establish a benchmark,
we also applied Whisper-Tiny to the original clean speech,
treating the resulting transcription as the true reference. To
measure the retention of the target speaker’s voice by our re-
synthesis-based approach, we utilized a speaker verification
system based on WavLM [Chen et al., 2022] to calculate the
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Method Libri2Mix WHAM! WHAMR!
SI-SNRi SDRi NMOS SMOS SI-SNRi SDRi NMOS SMOS SI-SNRi SDRi NMOS SMOS

Conv-TasNet [2019] 12.1 12.5 3.23±0.13 3.01±0.21 12.7 13.2 3.32±0.30 3.25±0.34 8.3 7.8 2.82±0.24 3.17±0.32

DPRNN [2020] 11.3 11.6 3.21±0.28 3.04±0.19 13.7 14.1 3.48±0.35 3.31±0.40 10.3 9.7 3.06±0.37 3.29±0.16

Wavesplit [2021] 15.1 15.8 3.67±0.27 3.28±0.42 16.0 16.6 3.50±0.40 3.34±0.38 13.2 12.2 3.17±0.12 3.38±0.44

SepFormer [2021] 12.9 13.5 3.52±0.37 3.35±0.11 16.4 16.7 3.63±0.19 3.37±0.23 14.0 13.0 3.19±0.49 3.45±0.37

MossFormer2 [2024] 16.0 16.6 3.78±0.34 3.48±0.29 18.1 18.5 3.88±0.13 3.52±0.31 17.0 15.9 3.20±0.31 3.43±0.47

MossFormer2* [2024] 16.0 16.5 3.81±0.27 3.45±0.42 18.2 18.6 3.92±0.21 3.55±0.52 17.2 16.0 3.22±0.13 3.37±0.25

DiffSep† [2023] 8.9 9.5 3.60±0.13 3.08±0.26 12.4 12.9 3.67±0.34 3.15±0.42 9.5 8.6 3.16±0.49 3.13±0.19

SepALM‡* (AR) 17.4 17.9 3.91±0.33 3.29±0.28 18.8 19.3 4.01±0.14 3.43±0.33 18.1 17.2 3.44±0.54 3.36±0.29

SepALM‡* (Mask) 17.6 18.2 3.86±0.08 3.36±0.22 18.7 19.2 3.98±0.13 3.40±0.26 18.2 17.4 3.37±0.45 3.38±0.17

Table 1: Performance comparison of SepALM with other state-of-the-art speech separation models on the Libri2Mix, WHAM!, and
WHAMR! benchmark datasets. The symbol † denotes methods based on generative models, while ‡ signifies methods that integrate both
discriminative and generative models. AR represents AR generation, and Mask signifies NAR masked generation. The superscript ∗ signifies
training conducted with the combined dataset of three sources.

Method MUSAN DEMAND
SI-SNRi ↑ PESQi ↑ ESTOIi ↑ SIM ↑ SI-SNRi ↑ PESQi ↑ ESTOIi ↑ SIM ↑

SepFormer [2021] 9.1 0.50 0.20 0.65 9.9 0.67 0.21 0.66
DiffSep† [2023] 8.4 0.41 0.19 0.48 9.5 0.62 0.20 0.55
Refiner‡ [2023] 8.8 0.51 0.20 0.53 9.6 0.60 0.20 0.56
Fast-GeCo‡ [2024a] 12.3 0.75 0.30 0.58 13.3 0.92 0.29 0.61
SepALM‡ (AR) 13.7 0.82 0.38 0.63 14.5 1.15 0.46 0.67
SepALM‡ (Mask) 13.9 0.86 0.39 0.62 14.4 1.19 0.47 0.65

Table 2: Performance comparison of SepALM with other state-of-the-art speech separation models on the MUSAN and DEMAND out-
of-domain noise datasets. The symbol † signifies methods based on generative models, while ‡ marks generative correction methods that
integrate both discriminative and generative models.

cosine similarity (SIM) between the speaker embeddings of
the generated samples and the real audio. Additionally, We
report the real-time factor (RTF) for each method when pro-
cessing 5 seconds of speech on an A100 GPU to compare in-
ference efficiency. For subjective evaluation, we utilized two
metrics: the naturalness mean opinion score (NMOS) and the
similarity mean opinion score (SMOS), to assess the natural-
ness and speaker similarity of the separated speech, respec-
tively. A panel of fifteen human evaluators rated 30 randomly
selected speech segments on a scale from 1 to 5, where 1 in-
dicated the lowest quality and 5 the highest.

4.4 Comparison with State-of-the-Art
We conducted a comprehensive comparison of our proposed
SepALM method against various state-of-the-art techniques,
as detailed in Table 1. For previously published results, we
reference the original data; otherwise, we present our re-
produced outcomes. All baseline methods were trained and
evaluated on individual datasets by default. The comparative
analysis reveals that SepALM, whether based on AR or NAR
masked generation, consistently outperforms baseline meth-
ods in most evaluation metrics. This highlights the efficacy
of our integrated approach of separation, correction, synthe-
sis, and alignment in processing noisy mixed audio.

Furthermore, it is observed that speech separation meth-
ods based on generative models, such as DiffSep [Scheibler
et al., 2023], tend to underperform on objective metrics, in-

cluding simulated exact reconstruction and signal-to-noise ra-
tio (SNR), as well as on the subjective metric SMOS, which
measures speaker similarity. However, these methods excel
in the subjective metric NMOS, which assesses naturalness.
This discrepancy arises because, under conditions of high dis-
tortion, multiple distinct clean samples may yield identical
observed samples post-distortion, compounded by the inher-
ent sampling randomness of generative models. Our method
combines the strengths of discriminative and generative mod-
els, refining the generative output through alignment to miti-
gate the non-positive definite issue, thus achieving robust per-
formance across both objective and subjective metrics. In ad-
dition, the results presented in rows 5 and 6 of Table 1 demon-
strate that a simple increase in the quantity of training data
did not lead to a noticeable improvement in the performance
of MossFormer. This finding suggests that the performance
gains observed in our method are predominantly attributed to
the error correction and re-synthesis processes we employ.

Evaluation on out-of-domain data. To assess the gen-
eralization capability of our method when faced with un-
seen noise types, similar to the WHAM! dataset, we uti-
lized the test set of WSJ0-2mix as the speech source and
noise audio from the MUSAN [Snyder et al., 2015] and DE-
MAND [Hadad et al., 2014] datasets as the noise source
to simulate out-of-domain noisy mixed audio. Noise is in-
troduced by randomly sampling SNR values from a uni-
form distribution that spans from -6 to +3 dB. All evalu-
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Exp. Method SI-SNRi ↑ SDRi ↑ NMOS ↑ SMOS ↑ WER (%)↓ RTF ↓
(a) Re-separation model 14.5 15.1 3.64±0.52 3.31±0.14 3.76/4.79 1.83
(b) SepALM (AR) 17.4 17.9 3.91±0.33 3.29±0.28 3.76/4.10 2.58
(c) SepALM (Mask) 17.6 18.2 3.86±0.08 3.36±0.22 3.76/4.03 1.91
(d) - Separator only 13.2 13.8 3.62±0.27 3.35±0.12 −/5.68 0.52
(e) - Cascaded method 17.4 17.9 3.93±0.29 3.32±0.30 3.85/4.32 2.95
(f) - w/o Fine-tuning 16.3 16.8 3.64±0.45 3.28±0.45 4.56/4.96 2.95
(g) - w/o Aligner 15.7 16.2 3.98±0.19 3.34±0.42 3.76/3.99 1.89
(h) - w/o Fine-tuning 17.2 17.8 3.79±0.24 3.30±0.19 3.93/4.25 1.91

Table 3: Ablation study on the Libri2Mix dataset. The first and second WER values correspond to the word error rates of the corrected
transcriptions and the model’s output speech, respectively.

ated methods were trained on the Libri2Mix dataset. The
results, as depicted in Table 2, indicate that compared to
other speech separation methods that apply generative cor-
rection directly in the speech domain [Hirano et al., 2023;
Wang et al., 2024a], our text-domain error correction ap-
proach exhibits superior generalization performance in out-
of-domain noise scenarios.

4.5 Ablation Study
In this section, we validate the efficacy of each key design
within our method through ablation studies. All models were
trained on a unified training set comprising the training sets
from WHAM!, WHAMR!, and Libri2Mix and evaluated on
the Libri2Mix test set.
Ablation study on the corrector. Initially, we aimed to
substantiate the merit of our proposed text-domain error cor-
rection by excluding all elements bar the separator. The
outcomes are delineated in Exp. (d) of Table 3, revealing
that the correction process significantly improves the qual-
ity of the separated speech and reduces the WER. To further
validate the feasibility of employing a standalone ALM for
GER, we devised a two-stage cascaded model for compari-
son. Specifically, following Whispering-LLaMA [Radhakr-
ishnan et al., 2023], we deployed Whisper-Tiny to decode the
preliminary separated speech into 3-best hypotheses and then
employed LLaMA-7B to perform GER on these hypotheses.
The corrected transcriptions were subsequently employed to
re-synthesize the separated speech. The training regimen mir-
rored that of our method. As depicted in Exp. (e) of Table 3,
our CoT reasoning-based ALM approach rivals the cascaded
paradigm using more intricate decoding techniques and even
evinces minor advantages in certain metrics, with a lower
RTF. This underscores the superior efficiency of our method
compared to the more intricate cascaded paradigm. Further-
more, our method remains effective even without fine-tuning
the ALM, as evidenced in Exp. (h) of Table 3. This effec-
tiveness is primarily attributed to the CoT prompts we em-
ploy, which enhance the zero-shot reasoning capabilities of
the ALM. This feature is absent in traditional two-stage cas-
caded systems, as illustrated in Exp. (f) of Table 3.
Ablation study on the synthesizer. To verify the efficacy
of the synthesis process within our method, we substituted
the synthesizer with a re-separation module analogous to the
separator, employing the corrected transcriptions as a condi-
tion. This is akin to target speech extraction (TSE) meth-

ods [Zmolı́ková et al., 2023; Mu et al., 2024] under given
conditions. Specifically, we employed a G2P tool to convert
the text into phoneme sequences, which were subsequently
mapped onto a series of learnable embedding vectors. We
utilized the audio embeddings from the intermediate layers
of the SepFormer as the value and key, while the phoneme
embeddings served as the query for feature fusion based on
cross-attention. The outcomes are presented in Exp. (a) of Ta-
ble 3, revealing that our re-synthesis method surpasses the re-
separation method. We attribute this superiority to two prin-
cipal factors. Initially, for source separation tasks, the perfor-
mance upper bound of generative models is higher than that
of deterministic models [Lutati et al., 2024], thereby bolster-
ing the model’s generalization capabilities. Second, by har-
nessing a neural codec language model for speech synthesis,
we positioned the corrected transcriptions and the preliminary
separated speech on an equal footing, effectively neutralizing
the modality imbalance issue. Furthermore, comparing the
results of Exp. (b) and (c) in Table 3 reveals that the NAR
masked generation method outperforms the AR generation
method in terms of generation quality and inference speed.
This superiority is largely due to its bidirectional attention to
the full context and its parallel generation approach.
Ablation study on the aligner. To assess the contribution
of the alignment phase, we omitted the aligner from our pro-
cess and assessed its impact. The findings, as depicted in Exp.
(g) of Table 3, indicate that including the aligner markedly
improves objective metrics calculated on time samples, such
as SI-SNRi. However, it has a minor detrimental effect on the
naturalness (NMOS) of the separated speech. Nonetheless,
this trade-off is deemed justifiable given the overall enhance-
ment in the quality of the separated speech.

5 Conclusion
This paper introduces SepALM, a novel approach that cap-
italizes on the prowess of audio language models to correct
errors in the preliminary separated speech within the text do-
main and subsequently re-synthesize it. Our method has been
shown to significantly enhance the separation of noisy mixed
audio. Ablation studies further substantiated the efficacy of
each key component of SepALM. Collectively, our findings
highlight the potential of the speech separation-correction-
synthesis-alignment paradigm within the text domain, offer-
ing new avenues for future research on speech separation un-
der more intricate acoustic conditions.
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and Dong Yu. Neural target speech extraction: An
overview. IEEE Signal Process. Mag., 40(3):8–29, 2023.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


