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Abstract

Training a universal controller for robots with dif-
ferent morphologies is a promising research trend,
since it can significantly enhance the robustness
and resilience of the robotic system. However, di-
verse morphologies can yield different dimensions
of state space and action space, making it diffi-
cult to comply with traditional policy networks.
Existing methods address this issue by modular-
izing the robot configuration, while do not ade-
quately extract and utilize the overall morpholog-
ical information, which has been proven crucial
for training a universal controller. To this end,
we propose GCNT, a morphology-agnostic policy
network based on improved Graph Convolutional
Network (GCN) and Transformer. It exploits the
fact that GCN and Transformer can handle arbi-
trary number of modules to achieve compatibility
with diverse morphologies. Our key insight is that
the GCN is able to efficiently extract morphology
information of robots, while Transformer ensures
that it is fully utilized by allowing each node of the
robot to communicate this information directly. Ex-
perimental results show that our method can gener-
ate resilient locomotion behaviors for robots with
different configurations, including zero-shot gen-
eralization to robot morphologies not seen during
training. In particular, GCNT achieved the best per-
formance on 8 tasks in the 2 standard benchmarks.

1 Introduction

In recent years, Deep Reinforcement Learning (DRL) has
been widely used for continuous control tasks of mobile
robots and has achieved satisfactory performance [Mnih et
al., 2015; Lillicrap et al., 2015; van Hasselt et al., 2016;
Fujimoto et al., 2018; Ye et al., 2020; Xie et al., 2022;
Sun et al., 2023]. However, in traditional reinforcement
learning, for each robot configuration, a specific policy net-
work for control needs to be trained from scratch, that is,
one network corresponds to one configuration. Since training
each policy network requires substantial time and resources
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Figure 1: Learning universal controllers with various morphologies.

to interact with the environment, the overall cost is unaccept-
able when dealing with multiple robots. To address this issue,
some scholars brought up the concept of the universal control
network that allows all robot configurations to share a sin-
gle policy network [Wang et al., 2018; Pathak er al., 2019;
Huang et al., 2020; Kurin et al., 2021; Hong et al., 2022;
Chen et al., 2023], that is, one policy network corresponds to
multiple configurations. Such reinforcement learning models
are called morphology-agnostic RL, inhomogeneous multi-
task RL, or modular RL. Obviously, compared with tra-
ditional reinforcement learning, morphology-agnostic rein-
forcement learning has broader applications: First, it can
significantly enhance the robustness and resilience of robots
[Zhang et al., 2017]. For example, a field exploration robot
with a broken leg can still operate normally through the orig-
inal policy network. Second, for unstructured terrain in the
wild, we can focus on optimizing the configurations of robots
that are best adapted to the current environment, without hav-
ing to train a separate motion controller for each morphology
[Wang et al., 2019]. Third, as in the fields of Natural Lan-
guage Processing (NLP) [Devlin et al., 2019; Brown et al.,
2020] and Computer Vision (CV) [Dosovitskiy ef al., 2021;
He et al., 2022; Han et al., 2022; Tian et al., 2024], it can
serve as a pre-trained prior for fine-tuning new morphologies
[Gupta et al., 2022]. That is, for brand new robot config-
urations, we can use the parameters of the universal policy
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network as initialization and achieve satisfactory control per-
formance through a small number of iterative training. This
saves a lot of training time and resources. Last, by providing
a unified representation for robots of different morphologies,
it makes training large models in the field of robotic control
possible [Furuta er al., 2023].

Since robots of different configurations have different
numbers of joints and sensors, they have different state spaces
and action spaces [Zhao et al., 2024a; Zhao et al., 2024b].
However, the traditional MLP-based reinforcement learning
model requires the input and output dimensions of the policy
network be fixed, so they cannot control variably-configured
robots. A natural idea is that any robot can be represented as
a combination of multiple modules, and we can assume that
the dimensions of the state and action space of each mod-
ule are the same. If our policy network operates on a single
module rather than the entire robot ( that is, the policy net-
work receives local observations from individual modules as
inputs and produces local actions for them as outputs), and
the local actions cooperate to form the overall actions of the
robot, then the problem that a single network cannot adapt to
different robot configurations is solved.

However, there is a core problem that needs to be solved:
how to better coordinate the discretized limbs of robots, so
that the local actions of each module can be combined into
the overall actions of the robot to accomplish various tasks.
In other words, the key to solving the problem is how to de-
termine the influence of the states of other modules on the
current module. Previous studies generally opts for message
passing mechanisms or Transformer architectures to address
this issue. However, this approach is not ideal for the follow-
ing two reasons. First, similar to the hidden state in Recurrent
Neural Network (RNN) [Hochreiter and Schmidhuber, 1997,
Guo et al., 2020], message passing mechanisms face the
problem of limited capacity. After messages pass through
multiple nodes, the original information contained in them is
greatly diminished. This results in ineffective communication
between nodes that are far apart (e.g., the hand and foot nodes
of a humanoid robot). Second, the purely Transformer-based
architecture neglects the robot’s morphological information,
which has been proven to be crucial for training a univer-
sal controller. Therefore, we propose GCNT, a morphology-
agnostic robot control network architecture based on Graph
Convolutional Network (GCN) [Kipf and Welling, 2017] and
Transformer. Our key insight is that GCN is able to efficiently
extract morphology information of robots, while Transformer
ensures that it is fully utilized by allowing each node of the
robot to communicate this information directly. GCNT con-
verts the robot’s morphology into a corresponding graph, uses
the local observations of individual modules as input, and
generates local actions for each module as output, thereby
achieving universal control for robots of different morpholo-
gies. In summary, our main contributions are as follows:

e We propose GCNT, a novel network architecture for
morphology-agnostic reinforcement learning. It decom-
poses the problem into two independent processes: mor-
phological information extraction and node communica-
tion, providing a new insight into robot control.

* To fully extract the morphological information of the
robot, we designed complementary GCN module and
Weisfeiler-Lehman module in GCNT to overcome the
indexing inconsistency of traversal-based methods. Be-
sides, we improve the structure of GCN by adding ad-
ditional linear layers and residual connections to avoid
gradient vanishing caused by network depth increasing.

* We conducted comparative experiments with 7 baselines
in 2 standard benchmarks. Our method achieves leading
performance in all 8 tasks and zero-shot generalization.

2 Problem Formulation

To enable the policy network to handle different state space
and action space dimensions of various robots, we modular-
ize the robots. In this manner we treat any morphology of a
robot as a combination of multiple modules, where each mod-
ule has identical state space and action space dimensions. The
policy network takes the local state of each module as input
and generates local actions for each module as output. Specif-
ically, consider an agent with K limbs, where we regard each
limb and its corresponding joint (actuator) as a module. At
each discrete time step ¢, the agent’s state s; is composed of
the local states s¢, that is, s; = {s},57,...,s5} and the ac-
tion output by the policy network is a; = {a},a?,...,al},
where a! is the torque value for the corresponding actuator of
the limb k. Note that for Vi,j € {1,2,..., K}, we ensure
dim(st) = dim(s]) and dim(al) = dim(a}).

To represent the relationship among modules, we use an
undirected graph G := (V, &) to describe the robot’s mor-
phology. Each node v; € V fori € {1,..., K} represents a
limb of the agent, and each undirected edge (v;, v;) € £ indi-
cates that limb v; and limb v; are directly connected through
one or more joints. In practical applications, £ can be rep-
resented by an adjacency matrix A € {0, 1}5*K  where
A% = 1if v; and v; are connected, otherwise A*/ = 0.

In this work, we assume there are N agents with different
morphologies in the configuration space. As shown in Figure
1, a universal policy network 7y is trained to control them for
locomotion, where 6 represents the learnable parameters of
the policy. We adopt a joint policy optimization approach to
achieve morphology-agnostic reinforcement learning, which
follows Markov Decision Process (MDP). For each discrete
time step ¢, the policy network 7y generates appropriate com-
posite action {af};", based on the current state {s}'} ", of
agent n. After the agent n executes the actions, the environ-
ment returns the next state {s¥ 1 }f:"l and the corresponding
reward r*. Since the aim of our policy network is to perform
well for all morphologies of robots, we need to consider the
reward returns of all agents. Thus, our objective function is:

N oo

F(0) =Ea, >0 [t (Lsh 1 (a3 i2) | )
n=1t=0

where af = mg(sF) and v is the discount factor. We aim

to find the optimal solution #* that maximizes the expected
cumulative return on discounts for all agents.

0" = arg max F(0) ()
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Figure 2: Overview of GCNT’s network architecture, mainly composed of five modules: the limb observation module processes state infor-
mation, the GCN and Weisfeiler-Lehman modules extract morphological information, the learnable distance embedding module considers
the impact of physical distances among limbs, and the Transformer module is used for communication between limbs.

3 Methodology

In this work, we present GCNT, a novel network architecture
based on GCN and Transformer, for morphology-agnostic re-
inforcement learning in continuous control tasks. Our moti-
vation is: GCN is able to aggregate information from neigh-
boring nodes to the current node via graph convolution, which
makes it naturally suitable for structural information extrac-
tion. Moreover, the Transformer allows each node to com-
municate directly and assess the importance of information
through attention weights, thus preventing information loss
during transmission. Therefore, we use these characteristics
to solve the problem that discrete robot limbs cannot effec-
tively cooperate with each other. More details of GCNT are
shown below.

3.1 Overview of GCNT

The network architecture of GCNT is shown in Figure 2. For
robots of any morphology, the input to GCNT can be divided
into four parts, represented by the four blue arrows in Figure
2. They go through the limb observation module, the GCN
module, the Weisfeiler-Lehman module, and the learnable
distance embedding module, respectively. The limb obser-
vation module includes the current state information of each
limb, which is the main basis for generating actions. The
GCN module is proposed to extract the robot’s local mor-
phological information. The Weisfeiler-Lehman module is a
complement to the GCN module and is used to extract the
overall morphological information. The learnable distance
embedding module determines the influence of limbs at dif-
ferent distances on the current limb. Afterwards, all infor-
mation is aggregated in the Transformer module, and com-
munication among limbs is completed through its attention
mechanism. Finally, the results of communication are passed
through a linear layer to obtain the actions that each limb
should execute.

3.2 Limb Observation Module

This module is mainly used to process limb observations. As
mentioned, the dimension of each limb’s local observation
are same. GCNT takes the local observation of each limb as
input and generates local actions for each joint. In this work,
the observation space of each limb in the two benchmarks
remain the same as in previous work [Huang et al., 2020;
Kurin et al., 2021; Hong et al., 2022; Gupta et al., 2022;
Xiong et al., 2023], which includes the motion state informa-
tion and hardware attribute information of limbs and joints.
The detailed information can be found in the Appendix D.
All observations are uniformly passed through an MLP and
mapped to a higher dimension for subsequent processing.

3.3 GCN Module

In this paper, we propose the improved GCN module to ex-
tract the local morphology information of the robot. The
mathematical principle behind GCN is based on spectral
graph theory. It uses the normalized graph Laplacian for fea-
ture aggregation and approximates the convolution operation
on the graph as a polynomial filter. This updates each node’s
features as a weighted combination of its own features and
those of its neighbors, so that the structure information in the
graph can be captured effectively. The process of extracting
information by GCN can be expressed as the following equa-
tion:

HUD — (ﬁ*%gﬁ*%H(l)Wﬂ)) 3)

where A = A + I, A is the adjacency matrix, and I is
the identity matrix of size K, INDii => j gij, WO isa layer-
specific trainable weight matrix, o(-) is an activation func-
tion, H®) € RE*D is the feature matrix in the [t" layer, and
H®© = X. X represents the original attributes of each node.
In this work, we use one-hot encoding to represent different
types of limbs and include them as the original attributes X of
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Figure 3: The four experiment environments in UNIMAL: Flat Terrain (FT), Incline, Mixed Terrain (MT), and Obstacles. Images credit to

Gupta et al. [2021; 2022]
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Figure 4: Internal structure of the GCN block.

each node in the GCN operations. Notably, we made changes
to the structure of GCN, as shown in Figure 4. To enhance
the extraction performance, we added additional linear layers
to the network structure and we incorporated residual con-
nections similar to those in ResNet [He et al., 2016] to pre-
vent vanishing gradient caused by the excessive depth of the
GCNT network [Ying et al., 2021]. The computation process
of the improved GCN is as follows:

H = o (DA HOW ) W) + HO @)

3.4 Weisfeiler-Lehman Module

The Weisfeiler-Lehman (WL) algorithm is widely used for
graph isomorphism testing and graph classification tasks
[Weisfeiler and Leman, 1968]. In this work, we use the WL
algorithm to capture the overall morphological information of
the robots. We believe that the color string obtained through
the WL algorithm can reflect the global structural informa-
tion of the graph to a certain extent. The more similar the
morphology of two robots is, the more similar the results ob-
tained by the WL algorithm will be, and their control policy
should also be more similar. Therefore, we use the WL mod-
ule as a complement to the GCN module to capture the overall
morphological information of the robot. In practical applica-
tions, we use the type of each limb as the initial color of each
node and adopt a fixed number of iterations for all robot mor-
phology. After the iteration ends, we use a vector to represent
the occurrence times of each color during the iteration and use
this vector as the overall morphological information, concate-
nating it with the local morphological information generated
by the GCN module for each node.

3.5 Learnable Distance Embedding Module &
Transformer Module
The learnable distance embedding module is proposed to

work with the Transformer module, considering the influence
of distance in the communication between different limbs.

For a given robot configuration represented by an undirected
graph G = (V, &), we denote the distance value of two di-
rectly connected nodes as 1 and use the Floyd algorithm
to calculate the shortest distance D among all nodes in the
graph, as shown by the green matrix in Figure 2. We input
this into the Transformer module, as shown in Figure 5. We
propose a learnable distance embedding layer to map the limb
distance information to each head of the multi-head attention
layer. Specifically, R* = g,(D%7), where g, (-) is a map-
ping function with parameters ¢, and R*J is a vector with
each element corresponding to a head in the multi-head atten-
tion. When calculating the attention weights, R*7 is added to
the attention score and then passed through the Softmax func-
tion to reflect different impact of limbs at different distances
on the current limb. This process can be expressed by Equa-

tion 5, where the subscript(h) denotes the h-th head and Rz;f)
is a h-th entry of R%J.
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Figure 5: Internal structure of the Transformer block.

3.6 Optimization Method

In order to optimize the parameter § in GCNT, we use an
actor-critic architecture based on the deterministic policy gra-
dient algorithm to find the optimal value of the objective func-
tion in Equation 1, which is a standard practice for continuous
control tasks [Lillicrap et al., 2015]. The actor and critic have
the same network architecture, which remains the same as
Figure 2. Specifically, we use the TD3 algorithm [Fujimoto
et al., 2018] in benchmark 1 and the PPO algorithm [Schul-
man et al., 2017] in benchmark 2 to ensure a fair comparison
with previous works.
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Figure 7: Average rewards across all agents in environments of FT, Incline, MT and Obstacles in UNIMAL.

4 Experimental Results

We conducted experiments across 8 different scenarios on
two standard benchmarks and compared with 7 baselines,
ensuring thorough testing. The benchmarks are SMPENV
[Huang et al., 2020] and UNIMAL [Gupta et al., 2021]. All
tests are based on the MuJoCo [Todorov et al., 2012].

In SMPENV, we set up four test environments: (1)
Walker++, (2) Cheetah++, (3) Humanoid++, (4) Cheetah-
Walker-Humanoid-Hopper++ (CWHH++). These four envi-
ronments can be divided into two categories, in-domain and
cross-domain. For the first three test environments, robots of
different morphologies in the environment have some simi-
larities. Each test environment contains complete morpholo-
gies and variants with missing limbs of the same category of
robots. For example, Humanoid++ includes both the com-
plete humanoid_2d_9_full and the humanoid_2d_7_left_leg,
which is missing the left leg. While the last CWHH++ en-
vironment is a comprehensive test environment. The mor-
phologies and the movement manner of the robots in the envi-
ronment vary significantly. For example, the walker needs to
move by alternately coordinating its left and right legs, while
the hopper can only move by jumping with a single leg.

In UNIMAL, we conducted experiments in four environ-
ments. As shown in Figure 3, they are: (1) Flat Terrain (FT),
(2) Incline, (3) Mixed Terrain (MT), and (4) Obstacles. In all
environments, the goal of the robot is to pursue the farthest
possible travel distance. Additionally, the terrain in MT and
the pillars in Obstacles are randomized in each round. So the
last two environments provide a height map centered around

the robot as an extra external observation input, allowing the
agent to perceive and respond to different terrains or obsta-
cles. Finally, it is worth noting that in UNIMAL we need to
control 100 robots with different morphologies. So UNIMAL
has greater complexity than SMPENV.

4.1 Training Results in SMPENV

To demonstrate the effectiveness of our method, GCNT, we
compare it with three baselines: the message passing method
SMP [Huang et al., 2020], the Transformer-based method
AMORPHEUS [Kurin et al., 2021], and the Structure-aware
Transformer method SWAT [Hong et al., 2022]. We run all
experiments with 3 random seeds to report the mean and the
standard error. For fairness, we use the TD3 algorithm to train
the policy network for all methods. The results are shown in
Figure 6, where the solid line represents the mean and the
shaded area represents the standard error.

It can be observed that our method, GCNT, has the high-
est sample efficiency and achieves the best performance in
all test environments. The experimental results validate our
analysis. SMP, which uses the message-passing mechanism,
suffers from severe information loss during multi-hop trans-
mission, making it difficult for two distant limbs to coor-
dinate. Thus it performed the worst in all environments.
AMORPHEUS did not utilize morphological information.
While it performed well for simpler robot configurations like
Walker++ (each robot consisting of only a torso and two legs),
it showed poor performance for more complex robot con-
figurations. SWAT incorporated morphological information
into the Transformer, but the information extracted based on
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traversal and graph methods does not always have a positive
effect. For example, in the Walker++ environment, SWAT’s
performance is inferior to that of AMORPHEUS, which uses
a pure Transformer architecture. This indicates that the mor-
phological information extracted by SWAT actually hinders
the training of the policy network. In contrast, the morpho-
logical information extracted by our GCNT is useful in all
scenarios. Moreover, GCNT consistently outperforms SWAT,
demonstrating that our method has a stronger ability to extract
morphological information.

4.2 Training Results in UNIMAL

In UNIMAL, we compare the method with four baselines:
the depth-first traversal-based method MetaMorph [Gupta et
al., 2022], the variant MetaMorph* [Xiong et al., 2023],
the hypernetwork-based method ModuMorph [Xiong er al.,
2023], and the methods SR-fair and SR-top, which train a
separate policy network for each robot. Both SR-fair and
SR-top use an MLP with 3 hidden layers and 256 hidden
units in each layer. The difference is that SR-fair trains each
robot with the same budget as used in multi-robot training
(1M steps), while SR-top trains each robot until convergence
(10M steps). SR-top can be viewed as an approximate upper
bound. All methods use the PPO algorithm for training (using
4 seeds) and the experimental results are shown in Figure 7.
As can be seen, all methods exhibit higher sample efficiency
than SR-fair, and our method, GCNT, achieves leading per-
formance across all scenarios. It is worth noting that although
ModuMorph has similar effects to our method, the number of
parameters of ModuMorph is 2-3 times that of our method be-
cause it uses a Hypernetwork to generate different encoders
and decoders for each limb. More importantly, it has worse
generalization, as detailed in the zero-shot experiments. Ad-
ditionally, our method can also integrate Hypernetworks to
generate different encoders and decoders for each body part
to enhance performance. The corresponding experimental re-
sults can be found in the Appendix G.

gent swat amorpheus smp

w3 171+4 417434 651136 142+6
wé 2933+116 935+22 1463+£110 1424+76
h7  3509+9 24644+60 883+53 1056427
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c3  96+8 -157+£2 87+6 211+8
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Table 1: Zero-shot generalization to unseen morphologies. The w,
h, and c in the first column are abbreviations for walker, humanoid,
and cheetah, respectively.

4.3 Zero-Shot Generalization to Unseen
Morphologies

The goal of learning a universal controller is not limited to

training on specified morphologies but also includes zero-

shot generalization to new morphologies without any further

fine-tuning. Table 1 shows the results of the zero-shot gener-

alization to unseen morphologies in SMPENV. Each method

was trained on the training sets of Walker++, Humanoid++,
and Cheetah++ and evaluated on their corresponding test sets.
We evaluated the average performance and the standard error
over 3 random seeds, with each seed evaluated on 100 roll-
outs. It can be seen that GCNT achieved the highest aver-
age score in 5 out of the 7 tests. The cases where GCNT’s
generalization was not as good as other methods occurred in
simpler configurations with fewer limbs (walker_3_main and
cheetah_3_balanced both have only 3 limbs). However, as the
number of limbs increased, GCNT’s performance improved.
This further validates that GCNT can effectively extract and
utilize morphological information of robots. To sum up, we
believe that GCNT’s performance in zero-shot generalization
is superior to other methods.
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Figure 8: Zero-shot generalization to kinematics and dynamics vari-
ations. Error bars denote 95% bootstrapped confidence interval.

4.4 Zero-Shot Generalization to Kinematics and
Dynamics Variations

We also conducted generalization experiments on dynamics
and kinematics in UNIMAL. In this test set, the topological
structure of each robot remains the same as in the training
set, while the attributes of the limbs and joints are changed
(including armature, density, damping, gear, module shape,
and joint angle). We performed generalization experiments
on 400 new robots, and the corresponding results are shown
in Figure 8. As can be seen, our method, GCNT, exhibits
the strongest generalization ability to both kinematics and dy-
namics.

4.5 Ablation Study

To demonstrate the role of each module in GCNT, we con-
ducted the ablation study. Specifically, we removed the GCN
module, Weisfeiler-Lehman module, and learnable distance
embedding module separately. All methods were evaluated
on Humanoid++ because it has the most limbs and the most
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complex configuration, providing a complete test for validat-
ing the effectiveness of each module. The specific experimen-
tal results are shown in Figure 9. It can be seen that removing
each module led to a performance drop, but the network still
outperformed the pure Transformer AMORPHEUS.
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Figure 9: The results of ablation study of GCNT.

4.6 Morphological Information Embedding

Previous work has shown that the morphological informa-
tion of a robot is crucial for training a universal controller.
However, previous methods use depth-first traversal for ex-
traction [Hong et al., 2022; Gupta et al., 2022], which does
not guarantee that limbs of the same type have the same index
in different robots, as shown in the Appendix H. To observe
whether GCNT extracts the information effectively, we visu-
alize the structural information learned in the CWHH++ en-
vironment. Specifically, we use the t-SNE algorithm [Van der
Maaten and Hinton, 2008] to map the 128-dimensional struc-
tural vectors extracted by GCNT and SWAT into 2 dimen-
sions. The corresponding results are shown in Figures 10,
where the color of the points represents the type of limb,
and the shape of the points represents the robot configura-
tion to which it belongs. It can be seen that for GCNT,
limbs with similar functions in different robot formation are
mapped closely, while for SWAT, limbs with similar func-
tions in different robot formation are mapped very scattered.
This shows that SWAT’s traversal-based method has differ-
ent performance on different robot configurations and can-
not effectively extract the robot’s structural information. In
contrast, the method based on GCN blocks and Weisfeiler-
Lehman blocks in GCNT is effective for all robot configura-
tions. This also explains why GCNT performs better in loco-
motion tasks and zero-shot generalization experiments.

5 Related Work

In general, research on morphology-agnostic reinforcement
learning can be categorize as three stages. In the first stage,
the core of related work is the use of message-passing mech-
anisms. Wang et al. [2018] proposed NerveNet, which is
based on Graph Neural Network (GNN) [Sanchez-Lengeling
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Figure 10: Morphological information embedding learned by GCNT
and SWAT from different robot configurations.

et al., 2021]. Pathak et al. [2019] and Huang et al
[2020] converted the robot’s configurations into correspond-
ing graphs, and proposed Dynamic Graph Network (DGN)
and Shared Modularization Policy (SMP) as the policy net-
works shared among robot modules. In the second stage, the
focus of research shifted to the utilization of Transformers.
To address the issue of critical information loss during multi-
hop communication in message-passing mechanisms. Kurin
et al. [2021] propose a Transformer [Vaswani et al., 2017]
policy network AMORPHEUS. It utilizes a multi-head self-
attention mechanism, allowing direct communication among
robot modules without the need for multiple hops through dif-
ferent nodes. Notably, the work by Kurin ef al. [2021] ini-
tiated a trend in research on Transformer-based policy net-
works, and most subsequent work has been based on this
architecture. In the third stage, researchers began to inte-
grate the robot’s morphological information into the Trans-
former. Hong et al. [2022] proposed SWAT, a Transformer-
based policy network that incorporates traversal-based posi-
tional embeddings in node attributes and graph-based rela-
tional embeddings in the multi-head attention mechanism to
encode this information. Gupta et al. [2022] and Xiong et al.
[2023] tried to use morphological information on larger robot
benchmarks and proposed MetaMorph and ModuMorph re-
spectively. Patel and Song [2024] leveraged embodied graph
connectivity for structural bias in attention mechanism.
Although the aforementioned research has made some
progress in morphology-agnostic reinforcement learning
tasks, there are still many shortcomings. For instance, it
does not ensure efficient communication between nodes or
adequately extract the morphological information of robots.
These are areas worth further exploration in the future.

6 Conclusion

In this work, we propose GCNT, a modular network archi-
tecture based on GCN and Transformer, for morphology-
agnostic reinforcement learning. Through the effective ex-
traction of robot morphological information by the GCN
module and the direct communication among different limbs
by the Transformer module, GCNT can provide resilient lo-
comotion control for robots of any morphology. Compared
to previous work, our method achieves leading performance
in all eight environments and zero-shot generalization exper-
iments under Mujoco platform.
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