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Abstract
Abductive Learning (ABL), a prominent neural-
symbolic learning algorithm, integrates percep-
tion models with logical reasoning via intermedi-
ate symbolic concepts, substantially improving the
interpretability and generalization of AI systems.
However, a significant challenge in this domain is
the issue of reasoning shortcuts, where the system
achieve high final prediction accuracy but generate
incorrect intermediate concept inferences, severely
undermining ABL’s interpretability and generaliza-
tion capabilities. Current mitigation methods to
this problem often neglect potential correlations
among training samples, leading to suboptimal per-
formances. This paper innovatively reveals that
simple samples can facilitate the learning of inter-
mediate concepts in complex samples, prompting
our proposed method Curriculum Abductive Learn-
ing (CurABL) technique. This approach employs
a curriculum training strategy, integrating a knowl-
edge transfer mechanism from simple to complex
samples, effectively addressing the issue of rea-
soning shortcuts. Comprehensive experimental re-
sults demonstrate that the CurABL method sub-
stantially improves the ABL framework’s capabil-
ity to extract intermediate concepts especially in
difficult tasks and accelerates the training conver-
gence rate, thus markedly enhancing its robustness
against reasoning shortcuts.

1 Introduction
Abductive Learning (ABL) [Zhou, 2019; Cai et al., 2021; Dai
et al., 2019] as a novel and flexible neural-Symbolic (NeSy)
framework has received significant attention recently [He et
al., 2024; Shao et al., 2025; Jia et al., 2025] for its effective
integration of data-driven machine learning and knowledge-
driven symbolic reasoning. Within the framework of ABL,
neural networks [LeCun et al., 2015] serve as the percep-
tion model extract symbolic concepts with practical mean-
ing from raw inputs (e.g., images or text), and the sym-
bolic Knowledge base KB utilizes its logical reasoning ca-
pabilities to infer the final target label based on the inter-
mediate symbolic concepts. While this is similar to most

Figure 1: Reasoning shortcuts example and curriculum mechanism.

NeSy frameworks [Xu et al., 2018; Badreddine et al., 2022;
Manhaeve et al., 2018], what sets ABL apart is that it does
not attempt to make symbolic knowledge differentiable. In-
stead, it leverages abductive reasoning to construct pseudo-
labels for the intermediate symbolic concepts, which are used
for updating the machine learning model. Benefiting from
the combination of the interpretability of symbolic knowl-
edge with the learning capabilities of neural networks, ab-
ductive learning exhibit enhanced potential for interpretabil-
ity, generalization, and adaptability to new tasks. This poten-
tial is largely attributed to the successfully learning of high-
quality intermediate concepts, which serve as a foundation
for their strengths.

Nevertheless, existing research [Marconato et al., 2023b]
has emphasized that the ABL framework is highly vulnera-
ble to reasoning shortcuts, which is a widespread problem
also affecting a variety of other typical NeSy algorithms. It
refers to the phenomenon where, through training, ABL can
attain high accuracy in predicting the final target label while
with the incorrect intermediate concepts, which severely
undermines its interpretability, generalization, and other core
advantages. For example, according to the first example in
Figure 1, the perception model acquires a reasoning shortcut
by confusing the digits 0 and 1 yet this does not affect the
prediction of the final label. Several analytical works [Mar-
conato et al., 2023b; Yang et al., 2024] on reasoning short-
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cuts have been proposed to investigate its causes and quan-
tify its harm. They collectively point out that the funda-
mental cause of reasoning shortcuts lies in the insufficient
constraint imposed by the knowledge base on the interme-
diate concepts. In particular, during the training process, the
knowledge base will generate multiple pseudo-labels for the
samples, only one of which is truly correct. As a result, the
perception model receives inexact supervision, which hinders
its ability to accurately extract the correct intermediate con-
cepts. Although some mitigating methods such as incorporat-
ing concept-supervised data [Huang et al., 2020], smoothing
labels [Müller et al., 2019] and Bears [Marconato et al., 2024]
have been proposed, they either introduce additional informa-
tion or adopt compromise strategies, failing to fundamentally
address reasoning shortcuts.

However, we notice that all previous works have over-
looked an important mechanism in ABL training: for a given
task, both simple and difficult samples exist, and the simple
samples seem to facilitate the learning of the difficult ones–an
aspect that we first to uncover. We will explain and analyze
this mechanism in detail in Section 4.1. This phenomenon
seems to play a significant role in fundamentally mitigating
the reasoning shortcuts, providing new insights into address-
ing this widespread issue.

Inspired by the significant finding, we further observe that
the curriculum learning paradigm can be seamlessly utilized
to address the issue of reasoning shortcuts. Curriculum learn-
ing [Bengio et al., 2009] involves presenting samples to a
model in a meaningful order, starting with simpler tasks and
gradually increasing complexity, enabling the model to learn
the easy concepts sooner and the advanced concepts later,
thus improving its accuracy, convergence speed, and stabil-
ity [Soviany et al., 2022]. Therefore, in this paper we propose
a highly innovative, effective algorithm, Curriculum Abduc-
tive Learning (CurABL) to alleviate reasoning shortcuts: in-
corporating curriculum learning paradigm into the ABL train-
ing process. Specifically, our algorithm consists of two main
components: (i) we first design a precise measure to evaluate
the complexity of the samples by considering the relation-
ships between samples to construct a graph and leveraging the
information from this graph to assess sample complexity; (ii)
we then construct a curriculum learning training framework
based on the information derived from the graph to train the
ABL model. We empirically evaluate our algorithm across
various datasets, validating its effectiveness in alleviating rea-
soning shortcuts in ABL framework and also increasing the
convergence speed of its training process.

We summarize the contributions of our work:
(i)We are the first to identify a key mechanism in the train-

ing process of ABL: simple samples play an effective role in
facilitating ABL learning from difficult samples, which offers
significant insights for the ABL framework and the issue of
reasoning shortcuts.

(ii)We propose a highly novel and ingenious algorithm
Curriculum Abductive Learning (CurABL) to mitigating the
reasoning shortcuts problem fundamentally without any ad-
ditional information: incorporating the curriculum learning
paradigm into the ABL training process to mitigating the rea-
soning shortcuts problem fundamentally.

(iii)Through extensive experiments, we valid that our algo-
rithm significantly enhances the ability of ABL to resist rea-
soning shortcuts on challenging datasets, while also offering
the benefit of improving the training convergence rate.

2 Related Work
Neural-symbolic Learning Neural-symbolic learning
paradigm [Besold et al., 2021; Raedt et al., 2020] seeks
to integrate neural networks with symbolic reasoning, in
order to achieve a more comprehensive form of Artifi-
cial Intelligence. Typical methods [Yang et al., 2022;
Xu et al., 2018; Fischer et al., 2019; Huang et al.,
2021a] propose neural-symbolic learning approaches
to incorporate symbolic rules as logic constraints, en-
suring that their outputs strictly adhere to the rules.
Furthermore, several techniques [Badreddine et al., 2022;
Manhaeve et al., 2018] have specifically focused on inte-
grating neural networks with established tools for logical
reasoning. However, regardless of the perspective from
which neural-symbolic methods are designed, they are prone
to reasoning shortcuts.

Abductive learning [Zhou, 2019] is a novel framework in
the field of neural-symbolic. The primary focus of this ap-
proach is to handle the discrete intermediate symbolic con-
cepts, which act as pseudo-labels to upadate the model during
the learning process and as variables for abductive reasoning.
Several variants of ABL have been proposed to optimize the
framework’s abductive process or adapt to different settings.
Cai et al. [2021] extend the ABL framework by utilizing a
logical domain knowledge base, represented through ground-
ings. Huang et al. [2021b] employs a similarity-based con-
sistency metric to determine the most suitable pseudo-label
among all possible abduction results, thereby improving the
optimization process of the ABL framework in speed and sta-
bility. In the semi-supervised setting, Huang et al. [2020]
applied the ABL framework to address the theft judicial sen-
tencing problem. Similarly, reasoning shortcuts severely un-
dermine the advantages and performance of ABL.

Reasoning Shortcuts Reasoning shortcuts is a significant
and challenging issue affecting ABL and most other neural-
symbolic frameworks problematically. Wang et al. [2023]
pointed out the existence of weak supervision on interme-
diate concepts in neuro-symbolic systems and Marconato
et al. [2023a] formally introduced the concept of reasoning
shortcuts. Several strategies have been proposed to mitigate
the reasoning shortcuts. Li et al. [2023] propose a minimax
objective that ensures the concepts learned by the model sat-
isfy the knowledge base and have fewer shortcuts. Manhaeve
et al. [2018] introduced the use of a pre-trained model, and
Bears [Marconato et al., 2024] utilizes ensemble techniques
to enhance the NeSy algorithm’s ability to identify shortcuts.
Besides, smoothing labels [Müller et al., 2019] is also a con-
cise trade-off strategy to prevent reasoning shortcuts from be-
coming overly severe. However, the aforementioned methods
either require additional information or adopt compromise
strategies, failing to fundamentally resolve reasoning short-
cuts.

Furthermore, there are also some theoretical analyses on
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reasoning shortcuts. Marconato et al. [2023b] formally de-
fined the reasoning shortcuts problem as representative, theo-
retically quantified its harm using permutations and analyzed
the causes of reasoning shortcuts. Yang et al. [2024] pro-
posed a very critical concept DKB , the complexity of the
knowledge base, which is closely related to reasoning short-
cuts, and established a theoretical framework quantifying the
severity of reasoning shortcuts. Both works identified that the
root cause of reasoning shortcuts lies in the insufficient con-
straints imposed by the knowledge base on intermediate con-
cepts, providing valuable insights and strong guidance. They
also concluded that the reasoning shortcuts is a challenging
problem to address. However, both works fail to consider
the critical factor we have uncovered, resulting in a discrep-
ancy between their theoretical quantification of the reasoning
shortcuts in a task and the actual in practice.

Curriculum Learning Paradigm Curriculum learning is
a classic machine learning paradigm that trains models in a
meaningful order, progressing from easy samples to harder
ones [Bengio et al., 2009]. The paradigm can achieve an in-
crease of the convergence speed of the training process and
a better accuracy over the standard training approach based
on random data shuffling [Soviany et al., 2022]. Curricu-
lum learning strategies have already been adopted in various
application domains, such as weakly supervised object local-
ization [Ionescu et al., 2016], object detection [Sangineto et
al., 2019], and neural machine translation [Wang et al., 2019]
among many others. However, despite its success in certain
domains, curriculum learning has not been adopted in main-
stream works. This is because, in most tasks, it is difficult to
define what “easy examples” mean. In the problem setting of
our paper, defining the complexity of a sample is explicit, and
straightforward. Therefore, the curriculum learning paradigm
can be seamlessly leveraged by us to address the reasoning
shortcuts problem, which is a highly novel and practical idea.

3 Preliminaries and Problem Setting
In this section, we will provide a concise overview of the ABL
system and the problem setting of our proposed algorithm.
Abductive learning consists of a perception model denoted as
f and a symbolic knowledge base denoted as KB. The percep-
tion model f : X → Z , typically implemented with a neural
network, maps the raw input x ∈ X into the intermediate
concepts z ∈ Z , where Z is a finite discrete symbol space.
The intermediate concepts z, which take on a finite number
of values, have precise and human-understandable meanings.
We define Z as a k–dimensional vector space, indicating that
there are k types of intermediate concepts, each taking dis-
crete positive integer values. The knowledge base KB con-
sists of a set of logical rules provided by experts, which can
infer the final target label y ∈ Y through the intermediate
concepts z, satisfying that z,KB |= y.

In the ABL training setting, we are given the training set
S = (x1, y1), (x2, y2), . . . , (xN , yN ), where the samples are
independently and identically distributed (i.i.d.). More for-
mally, we define a joint distribution P on the space X × Y ,
and S is sampled from distribution P . It is worth noting that
within the ABL framework, there are no definitive groundings

for the intermediate concept z. During the training process,
for each sample in S , the knowledge base KB will receive the
estimated concepts ẑ = f(x) and verify whether ẑ,KB |= y.
If inconsistent, KB will generate pseudo-labels z̄ satisfying
that z̄,KB |= y through abductive reasoning, which are used
for updating the model f .

However, as we mentioned earlier, due to the insufficient
constraints imposed by KB, the same final label can be rea-
soned by KB from multiple intermediate concepts, resulting
in the generation of multiple pseudo-labels for each sample,
only one of which is truly correct. This is the fundamental
reason for the emergence of reasoning shortcuts. Therefore,
ABL must rely on specifically designed metrics (e.g., random
selection or Hamming distance [Dai et al., 2019]) to select the
best pseudo-label from the set of all pseudo-label candidates,
which is often inaccurate, especially in challenging tasks. To
formalize this, we define C(x, y) = {z̄|z̄,KB |= y} as the
candidate set of all pseudo-labels for a sample (x, y). The
function Dis : C(x, y)→ z̄ maps the best pseudo-label from
the candidate set C(x, y), selected by the ABL framework us-
ing certain strategy. The optimization objective of Abductive
Learning can therefore be formalized as:

min
f

∑
(x,y)∈S

L(f(x), Dis(C(x, y)))

where L represents the cross-entropy loss. In our proposed
algorithm, the cardinality of the set can be used to C(x, y)
measure the complexity of the sample C(x, y), providing a
both simple and accurate strategy. A larger cardinality indi-
cates that the sample is more complex.

4 Curriculum Abductive Learning
In this section, we provide a detailed introduction to our pro-
posed algorithm Curriculum Abductive Learning CurABL,
which seeks to fundamentally alleviate the reasoning short-
cuts problem by integrating the curriculum learning paradigm
into the ABL framework. In Subsection 4.1, we elaborate on
the key mechanism in ABL training which we are the first
to uncover. Subsection 4.2 details our method for measuring
each sample’s complexity. In Subsection 4.3, we will then
introduce how we construct the curriculum learning training
framework.

4.1 Simple Samples help Hard Samples
Reasoning shortcuts hinder the perception model’s ability to
effectively learn and extract the correct intermediate con-
cepts. However, experimental results show that in some sim-
ple tasks such as MNIST-Addition [Manhaeve et al., 2018],
despite most samples in the training set having multiple
pseudo-labels, the ABL framework is sometimes able to re-
sist the reasoning shortcuts during training. Inspired by this
phenomenon, we uncover a highly critical mechanic we men-
tioned before: for a given task, both simple and difficult sam-
ples exist, and the simple samples play a role in facilitating
the learning of the difficult ones.

Specifically, simple samples, which are associated with
few pseudo-labels, can assist the perception model f in learn-
ing from difficult samples with more pseudo-labels when the
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simple and difficult samples share a subset of intermediate
concepts. This is because simpler samples can supervise the
perception model to acquire the ability to accurately extract
the corresponding intermediate concepts. Once the percep-
tion model has successfully learned these concepts, it can im-
plicitly eliminate the incorrect pseudo-labels of difficult sam-
ples with partially shared intermediate concepts during their
learning process, thereby reducing their complexity. Thus,
simpler samples play an effective role in facilitating the per-
ception model learning from difficult samples. We provide
an intuitive example below to explain this critical mechanism
more clearly.

Example 1. As illustrated in Figure 1, consider two samples
in the MNIST-Addition task: (x1 = ( ), y1 = 0) and
(x2 = ( ), y2 = 1) sharing the common intermediate
concept of digit 0 . The first sample is very simple because
it contains only one pseudo-label (0, 0) for the intermediate
concept. The second sample is relatively more difficult be-
cause it contains two pseudo-labels (0, 1) and (1, 0) for the
intermediate concept, both of which do not conflict with the
knowledge base KB while only (0, 1) is correct. The percep-
tion model can accurately learn the ability to extract the in-
termediate concept digit 0 thanks to the first sample, which
can implicitly reduce the interference of (1,0) on the second
sample and eliminate the incorrect pseudo-label (1,0) for the
second sample. Therefore, it can be inferred that the sam-
ple (x1 = ( ), y1 = 0) reduces the complexity of the
sample (x2 = ( ), y2 = 1) implicitly and facilitate the
perception model’s learning effect for the second sample.

The example intuitively and meticulously demonstrates
how simpler samples help facilitate the perception model
learning from difficult samples. Such sample interaction can
create a cascading effect among samples during the process
of training, which helps the ABL framework mitigate the rea-
soning shortcuts.

4.2 Complexity Measurer
Through the aforementioned critical mechanism, simple sam-
ples reduce the learning difficulty of difficult samples and
facilitate the perception model’s learning from them, which
helps the ABL framework potentially address reasoning
shortcuts. While since this effect is implicit, the mecha-
nism’s impact is neither strong enough nor stable. To en-
hance the effect, we attempt to propose an algorithm to in-
troduce the curriculum learning paradigm into the ABL train-
ing process, referred to as Curriculum Abductive Learning
(CurABL), which can explicitly leverage the positive impact
of this mechanism.

To implement the algorithm, designing a measurer to eval-
uate the complexity of each sample is essential and crucial.
An intuitive method to measure the difficulty of a sample
(x, y) is to use the cardinality of its candidate set of all
pseudo-labels, |C(x, y)|. However, this approach is less pre-
cise, as it fails to consider the effect of simple samples in
implicitly reducing the complexity of difficult samples that
share partially identical intermediate concepts. Therefore, it
is necessary to explore the relationships between samples in

the training set and construct a more accurate metric for mea-
suring sample complexity based on the relationships. Specifi-
cally, we can construct the relationships between samples that
share the same intermediate concepts in the form of a graph
and explicitly carry out the incorrect pseudo-label removal
process. Subsequently, we can directly use the cardinality
of the updated pseudo-label candidate set of the sample af-
ter removal to measure the complexity, which maximizes the
effectiveness of this mechanism.

How can we identify which samples share the same inter-
mediate concepts? Since there are no definitive groundings
for the intermediate concepts z in the training set, it is chal-
lenging without additional information. Fortunately, we have
discovered that after training for ABL, the perception model
f tends to have a clustering capability. While it can not map
inputs to the correct intermediate concepts due to reasoning
shortcuts, it consistently maps inputs with the same interme-
diate concept components to similar embeddings. Specifi-
cally, the encoder part E of the perception model f maps the
input x into k embedding spaces, and Ei(x) corresponds to
the embedding of the i-th intermediate concept encoded by
E. For two inputs x1 and x2, if Ei(x1) and Ei(x2) are suf-
ficiently similar, we can infer that their i-th intermediate con-
cepts are identical. We will validate this observation through
experiments presented in Subsection 5.1.

Based on this discovery, we can construct the relationships
between samples using a “cold start” approach. We first train
the ABL model on the training set S, and then leverage the
clustering capability of the encoder E in perception model
to identify whether two samples share the same intermediate
concepts. We use cosine similarity to measure the similar-
ity of their embeddings. For any two samples (x1, y1) and
(x2, y2), If the the cosine similarity ET

i (x1)Ei(x2)
∥Ei(x1)∥∥Ei(x2)∥ ≥ τ

exceeds a predefined threshold τ , we infer that that the i-th
intermediate concept of the two samples is the same. We use
k undirected graphs to store the relationship information be-
tween samples, where each graph has N vertices correspond-
ing to the N samples in the training set S. If the i-th inter-
mediate concept of two samples is the same, an edge is added
between the two corresponding vertices in the i-th graph. The
algorithm 1 provides a clear description of the graph con-
struction process.

Since we have already constructed the relationships be-
tween samples related to intermediate concepts in the form
of graph-based data structures, the next step is to design a
graph-based algorithm to explicitly implement the mecha-
nism where simple samples assist difficult samples by remov-
ing incorrect pseudo-labels from their candidate sets. First,
we compute and store the initial intermediate concept pseudo-
label candidate set C(x, y) for each sample (x, y). For sim-
plicity, we use Cj to denote the pseudo-label candidate set
of the j-th sample. The goal of our algorithm is to update
and refine the set Cj based on the information provided by
the graph structure. The update process is based on the fol-
lowing principle: if there exists an edge between the p-th and
q-th samples in the i-th graph (where i is a positive integer
less than or equal to k), it indicates that the ground truth of
the i-th intermediate concept of the p-th sample is identical
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Algorithm 1 Cold Start Graph Construction Algorithm
Input: Training set S = {(xi, yi)}Ni=1, encoder E, threshold
τ
Parameter: Number of intermediate concepts k
Output: k undirected graphs {G1, G2, . . . , Gk}

1: Initialize k undirected graphs {G1, G2, . . . , Gk}, each
with N vertices corresponding to the samples in S.

2: for i = 1 to k do
3: for each pair of samples (xa, ya) and (xb, yb) in S do
4:

similarity =
ET

i (xa)Ei(xb)

∥Ei(xa)∥∥Ei(xb)∥

5: if similarity ≥ τ then
6: Add an edge between vertices a and b in graph

Gi.
7: end if
8: end for
9: end for

10: return {G1, G2, . . . , Gk}

to that of the q-th sample. Therefore, if the i-th component
element z̄i of z̄ ∈ Cp does not match the i-th component of
any element in Cq , we can confidently determine that z̄ is an
incorrect pseudo-label for the p-th sample and remove it from
Cp. The same operation applies to the q-th sample. Based
on this principle, we only need to iterate over the edges in
the graph and perform the corresponding removal and update
operations. The algorithm 2 provides a complete and detailed
description of this process.

Using this algorithm, we obtain the updated pseudo-label
candidate set Cj for j-th sample, and we use its cardinality
|Cj | to measure its complexity. The algorithm not only helps
us accurately measure the difficulty of each sample but also
explicitly realizes the assistance of simple samples to difficult
ones, thereby maximizing the reduction of the difficulty of
challenging samples and mitigating the reasoning shortcuts.

4.3 Curriculum Training
Based on the aforementioned measurer, we rank the sam-
ples from easy to difficult and then train the ABL model in
batches. Notably, during the training process, it is no longer
necessary for the KB to generate pseudo-labels. Instead, the
pseudo-labels can be directly selected from the already up-
dated pseudo-label candidate set. The curriculum Abductive
Learning (CurABL) overflow is detailed in Algorithm 3. In
conclusion, the CurABL algorithm explicitly implements the
mechanism where simple samples assist difficult samples, in-
corporating a curriculum learning paradigm to train the ABL
model. This approach has the potential to mitigate reasoning
shortcuts and achieve an increase of the convergence speed of
the training process.

Complexity Analysis We analyze the additional overhead
of computation and space in our CurABL algorithm. The
main components contributing to the overhead are the Graph
Construction and Incorrect Pseudo-Label Removal steps. In
terms of the time complexity, CurABL introduces a time com-

Algorithm 2 Incorrect Pseudo-Label Removal Algorithm
Input: k undirected graphs {G1, G2, . . . , Gk}, initial
pseudo-label candidate sets {C1, C2, . . . , CN} for N sam-
ples
Parameter: Number of intermediate concepts k
Output: Updated pseudo-label candidate sets
{C1, C2, . . . , CN}

1: for i = 1 to k do
2: for each edge (p, q) in graph Gi do
3: for each element z̄ ∈ Cp do
4: if z̄i does not match the i-th component of any

element in Cq then
5: Remove z̄ from Cp

6: end if
7: end for
8: for each element z̄ ∈ Cq do
9: if z̄i does not match the i-th component of any

element in Cp then
10: Remove z̄ from Cq

11: end if
12: end for
13: end for
14: end for
15: return Updated pseudo-label candidate sets
{C1, C2, . . . , CN}

plexity of O(kN2) for graph construction and O(kNC) for
incorrect pseudo-label removal, where C is the size of the
concept space. The space complexity is O(kN2) due to the
storage of k graphs. The storage of pseudo-label candidate
sets does not introduce additional memory overhead, as these
sets are also required in the original ABL framework.

5 Experiments
In this section, we conduct experiments to verify our claims
and validate the superior performance of CurABL. In Sub-
section 5.1, we verify the clustering capability of the percep-
tion model of ABL after training on dataset MNIST-Additon.
In Subsection 5.2, we describe the experimental setup. In
Subsection 5.3, we evaluate the effectiveness of CurABL
on two datasets, MNIST-Additon and Handwritten Formula
Recognition, by comparing it with different ABL methods.

5.1 Clustering Capability of Perception Model
In this subsection, we attempt to validate the clustering ca-
pability of the perception model, demonstrating its ability
to map inputs with the same intermediate concept compo-
nents to similar embeddings. This capability serves as the
foundation of our proposed method. We employ the MNIST-
Even-Odd [Manhaeve et al., 2018] dataset to assess this ca-
pability; the specific settings of the dataset will be detailed in
Subsection5.2. The dataset MNIST-Even-Odd is significantly
more susceptible to reasoning shortcuts compared to the orig-
inal or other MNIST-Addition task, making it a compelling
choice for validating the clustering capability of the percep-
tion model. To evaluate the model’s performance, we present
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Algorithm 3 CurABL Training Overflow
Input: Training set S = {(xi, yi)}Ni=1, updated pseudo-label
candidate sets {C1, C2, . . . , CN}, batch size B, number of
epochs E
Parameter: Model f , learning rate η
Output: Trained ABL model f

1: Sort S based on Complexity Measurer, from easy to dif-
ficult.

2: for e = 1 to E do
3: for each batch Di ⊂ S with size B do
4: Compute batch loss:
5: Li =

∑
(x,y)∈Di

L(f(x),Dis(C(x, y)))

6: Update model parameters:
7: f ← f − η∇fLi

8: end for
9: end for

10: return Trained ABL model f

the classification results of the perception model using a con-
fusion matrix. The results are depicted in the first image of
Figure 2.

According to the figure, we find that due to the profound in-
fluence of reasoning shortcuts, the perception model achieves
an accuracy of less than 5% for predicting each intermediate
digit concept. However, each digit is consistently misclas-
sified into the same intermediate concept. This observation
validates our hypothesis regarding the clustering capability
of the perception model, providing a strong foundation for
the Graph Construction Algorithm.

5.2 Experimental Setup
Settings of MNIST-Addition The MNIST-Addition
task [Manhaeve et al., 2018] takes two images of handwritten
digits as input and outputs their sum. The dataset is one of
the most classic benchmarks in the neuro-symbolic domain,
containing a total of 30000 samples. Bears [Manhaeve et
al., 2018] introduced the variant of MNIST-Addition task
MNIST-Even-Odd, where all digits are significantly affected
by reasoning shortcuts. The dataset is highly susceptible
to Reasoning shortcuts, making it an ideal benchmark
for evaluating the effectiveness of mitigating algorithms.
However, since there are no inherently simple samples in
the MNIST-Even-Odd dataset, our approach struggles to
take effect. Therefore, we inject 10 samples with unique
pseudo-label into the MNIST-Even-Odd dataset to better
evaluate the effectiveness of our method.

Settings of Handwritten Formula Recognition Addition-
ally, we conduct experiments on the Handwritten Formula
Recognition HWF task [Li et al., 2020]. In this task, the in-
put is a formula composed of multiple handwritten images,
where the length of the formula corresponds to the number of
images, and the output is the computed result of the formula.
Each image represents an intermediate concept, which can
be one of the digits 1–9 or one of the four operators “+”,“-
”,“*”,“/”, resulting in a total of 13 classes. The output is
a real number. The dataset contains 10, 000 samples, with
equations of varying lengths in the set {1, 3, 5, 7}. To further

Method MNIST-Addition MNIST-Even-Odd
Z-ACC Y-ACC Z-ACC Y-ACC

ABL 0.73±0.05 0.63±0.08 0.17±0.00 0.14±0.00

ABL-Hamming 0.80±0.16 0.88±0.04 0.01±0.00 0.94±0.00

CurABL 0.99±0.00 0.98±0.00 0.49±0.01 0.89±0.00

Table 1: Accuracy on MNIST-Addition and MNIST-Even-Odd

increase the task’s difficulty and better evaluate the mitigation
effectiveness of our algorithm, we constructed two more chal-
lenging datasets, named HWF-M and HWF-H, by extracting
a subset of difficult samples from the HWF dataset. Specif-
ically, we selected all samples of length 7 from the HWF
dataset in a total of 6,000 samples. From this subset, we
removed samples where the cardinality of the candidate set
of all pseudo-labels was less than 10 to create the HWF-M
dataset. Similarly, we removed samples with a cardinality
less than 50 to construct the HWF-H dataset. Both datasets
contain nearly 6, 000 samples.

Comparison Methods
We compare our CurABL with two baseline methods, ABL
and ABL-Hamming [Dai et al., 2019], Here, ABL refers to
the original method, which randomly selects the pseudo-label
from all pseudo-label candidates. Our experiments focus on
evaluating and validating two key advantages of our algo-
rithm: (1) significantly mitigating reasoning shortcuts , and
(2) increasing the convergence speed during training. Specif-
ically, we conduct experiments on CurABL, ABL, and ABL-
Hamming using the MNIST-Addition and MNIST-Even-Odd
datasets to evaluate the effectiveness of CurABL in mitigating
Reasoning shortcuts. Additionally, we compare CurABL and
ABL-Hamming on the HWF, HWF-M, and HWF-H datasets
to further assess its ability. ABL is omitted from the HWF
experiments due to the overwhelming number of pseudo-
label candidates, which prevents ABL from converging on
this task. This further demonstrates the clear advantages of
CurABL over ABL. To evaluate the improvement in training
convergence rate, we conduct experiments on CurABL and
ABL-Hamming using the HWF dataset.
Experimental Details This paragraph provides a detailed
explanation of the implementation of the experiments. Due
to the relatively low difficulty of the original MNIST-Addition
dataset, it is unnecessary to utilize our precisely designed
Complexity Measurer to sort the samples. While for the
MNIST-Even-Odd dataset, which is highly sensitive to rea-
soning shortcuts, we need to employ the accurate Complexity
Measurer to sort the samples through the Cold Start Graph
Construction Algorithm and the Incorrect Pseudo-Label Re-
moval Algorithm. In the cold start method, we first train
the ABL model on the dataset for six epochs and we set
the threshold τ = 0.95. To ensure reliability of our results,
all experiments are repeated five times with different random
seeds. All experiments are implemented by Pytorch and are
conducted on an NVIDIA RTX 3090 GPU.

5.3 Empirical Analysis
In this Subsection, we will present our experimental results
and analyze them to demonstrate the superior performance
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Figure 2: Confusion matrix of intermediate concepts and loss convergence curve

Method HWF HWF-M HWF-H
Z-ACC Y-ACC Z-ACC Y-ACC Z-ACC Y-ACC

ABL-Hamming 0.994±0.00 0.967±0.00 0.986±0.00 0.924±0.00 0.647±0.03 0.390±0.05

CurABL 0.998±0.00 0.989±0.00 0.992±0.00 0.953±0.00 0.931±0.01 0.677±0.01

Table 2: Accuracy on HWF, HWF-M, and HWF-H

of our proposed algorithm CurABL. We showcase the ad-
vantages of CurABL in two aspects: mitigating reasoning
shortcuts and increasing the convergence speed during train-
ing. To evaluate the algorithm’s ability to mitigate RS, we
use the accuracy of the perception model in extracting inter-
mediate concepts on the test set as the evaluation metric. We
conducted the experiments as described in the Comparison
Methods, and the results are presented in Table 1 and Table 2
and the third image of Figure 2.

In the tables, Z-ACC represents the accuracy of intermedi-
ate concept extraction within the model and Y-ACC denotes
the accuracy of final label prediction. Each value in the ta-
bles corresponds to the mean accuracy, with the variance dis-
played in the lower-right corner. The highest accuracy for
each metric is highlighted in bold. The results show that our
method achieves consistent improvements across all datasets
and demonstrates significant advantages over the baselines on
challenging dataset tasks, validating its effectiveness in mit-
igating reasoning shortcuts. CurABL also exhibit very low
variance in performance, highlighting the stability advantage
brought by curriculum learning. What’s more, we conduct ex-
periments to evaluate its improvement in convergence speed.
As shown in the third image of Figure 2, the training loss of
the model using our CurABL method decreases rapidly com-
pared to the ABL-Hamming method.

Specifically, on the challenging MNIST-Even-Odd dataset,
we observed that the original ABL method struggles to learn
effectively. The ABL-Hamming method demonstrates high
accuracy in final label prediction, but fails almost entirely in
extracting intermediate concepts correctly. This phenomenon
is also clearly illustrated in Subsecton 5.1. In contrast, our
CurABL method achieves a similar level of performance in
final label prediction compared to ABL-Hamming but signif

icantly improves the accuracy of intermediate concept extrac
tion, reaching 50%, thus demonstrating a substantial mitiga
tion effect. To further investigate the mechanisim, we also
use a confusion matrix to present the classification results of
the perception model trained with CurABL, as shown in the
second image of Figure 2. We observe that the perception
model achieves high accuracy in predicting odd numbers but
performs poorly on even numbers, which is an intriguing phe-
nomenon that we plan to explore further in future work.

6 Conclusion

In this paper, we introduced Curriculum Abductive Learning
(CurABL), a novel and effective algorithm designed to ad-
dress the pervasive issue of reasoning shortcuts in Abductive
Learning. Through our study, we uncovered a key mechanism
in the ABL training process: simple samples play a crucial
role in facilitating learning from difficult samples by reducing
their complexity. Building upon this insight, we proposed a
curriculum learning paradigm tailored for ABL, which ranks
samples by complexity and processes them in order, seam-
lessly integrating the positive effects of simple-to-complex
learning into ABL training. Extensive experimental results
demonstrated the significant advantages of CurABL across
various benchmark datasets. Our work also provides key in-
sights into the dynamics between simple and complex sam-
ples in neural-symbolic frameworks like ABL. However, our
method becomes ineffective on datasets where the differences
in sample difficulty are minimal, as the assistance of simple
samples to difficult ones cannot be effectively utilized in such
training sets.
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