
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

What Can We Learn From MIMO Graph Convolutions?

Andreas Roth1 , Thomas Liebig1,2

1 Artificial Intelligence, TU Dortmund University
2 Lamarr Insitute for ML and AI, TU Dortmund University

{andreas.roth, thomas.liebig}@tu-dortmund.de

Abstract
Most graph neural networks (GNNs) utilize ap-
proximations of the general graph convolution de-
rived in the graph Fourier domain. While GNNs
are typically applied in the multi-input multi-output
(MIMO) case, the approximations are performed
in the single-input single-output (SISO) case. In
this work, we first derive the MIMO graph con-
volution through the convolution theorem and ap-
proximate it directly in the MIMO case. We find
the key MIMO-specific property of the graph con-
volution to be operating on multiple computational
graphs, or equivalently, applying distinct feature
transformations for each pair of nodes. As a local-
ized approximation, we introduce localized MIMO
graph convolutions (LMGCs), which generalize
many linear message-passing neural networks. For
almost every choice of edge weights, we prove that
LMGCs with a single computational graph are in-
jective on multisets, and the resulting representa-
tions are linearly independent when more than one
computational graph is used. Our experimental re-
sults confirm that an LMGC can combine the ben-
efits of various methods.

1 Introduction
Graph neural networks have emerged as an effective method
for many challenging applications involving graph-structured
data, e.g., molecular prediction [Hu et al., 2021]. These uti-
lize convolutional operations typically derived from the gen-
eral graph convolution obtained in the Fourier domain, as
given by the convolution theorem [Hammond et al., 2011;
Bruna et al., 2014]. Initially, approximations of the general
graph convolution were based on polynomials, e.g., Cheby-
shev polynomials [Hammond et al., 2011]. The graph con-
volutional network (GCN) [Kipf and Welling, 2017] ap-
proximates these polynomials as a first-order localization.
Many other message-passing approaches are derived from
the GCN [Velickovic et al., 2018; Bo et al., 2021]. How-
ever, these approximations are based on the single-output
single-input (SISO) case, where the input and output contain
a single feature for each node. GNNs are typically applied
in the multi-input multi-output (MIMO) case, where each

node has multiple feature channels assigned, and the output
also contains multiple features. Extending from the SISO to
the MIMO case is achieved by applying these methods for
each input and output channel combination and learning dis-
tinct parameters [Bruna et al., 2014; Defferrard et al., 2016;
Kipf and Welling, 2017].

Instead of first approximating the graph convolution in the
SISO and then extending to the MIMO, we propose directly
performing the approximation in the MIMO case to benefit
from MIMO-specific properties. We first derive the general
graph convolution in the MIMO case through the convolu-
tion theorem and the graph Fourier transform. We find the
key property that allows the MIMO-GC to represent arbitrary
transformations to be operating on multiple computational
graphs or, equivalently, applying distinct linear feature trans-
formations between each pair of nodes. This form allows a
direct approximation in the MIMO case by localizing the ag-
gregation step. The resulting localized MIMO-GC (LMGC)
presents a general framework for linear message-passing neu-
ral networks (MPNN) that inherits the beneficial properties
for multi-channel learning. While we show that the LMGC
can represent most MPNNs, the LMGC cannot represent the
graph isomorphism network (GIN) [Xu et al., 2019] due to
its non-linear feature transformation. However, we show that
LMGCs are injective on multisets for almost every choice of
edge weights even for a single computational graph. When
further utilizing multiple computational graphs as motivated
by the MIMO-GC, we prove that representations are linearly
independent for almost every choice of edge weights. We
summarize our main contributions as follows:

• Based on the convolution theorem, we derive the MIMO
graph convolution (MIMO-GC) for node representa-
tions with multiple feature channels. A key property
of MIMO-GCs is to operate on multiple computational
graphs, or equivalently, to apply distinct linear feature
transformations for each pair of nodes (Section 3).

• We introduce the framework of localized MIMO-GCs
(LMGCs) by localizing the aggregation step of the
MIMO-GC. It merges the key idea of operating on mul-
tiple computational graphs with the efficient message-
passing scheme (Section 4).

• We prove that LMGCs are injective on multisets for a
single computational graph and produce linearly inde-
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SISO

MIMO =

Graph convolution Message-PassingPolynomials

(Equation 1)

θ ∗ x = Udiag(w)UTx

X ′
:,q =

∑d
p=1 θ(p,q) ∗X:,p

(Equation 4)

MIMO-GC (Equation 7a)

Θ ∗X =
∑

k∈[n] A
(k)XW (k)

x′ = wAsymx

(Equation 3)

X ′ = AsymXW

(Equation 6)

X ′ =
∑

k∈[K] Ã
(k)XW (k)

LMGC (Equation 11b)

x′ =
∑K

k=0 wkA
k
symx

(Equation 2)

X ′ =
∑K

k=0 A
k
symXW (k)

(Equation 5)

[Kipf and Welling, 2017]

[Kipf and Welling, 2017][Bruna et al., 2014]

[Hammond et al., 2011]

[Defferrard et al., 2016]

Definition 1

Propositio
n 2

Example 2

Figure 1: Connections between the graph convolution, polynomial filters, and message-passing approaches in the SISO and the MIMO case.
Parts in yellow ( ) indicate existing contributions, parts in pink ( ) our contributions.

pendent representations when more than one computa-
tional graph is used for almost every choice of edge
weights (Section 4).

2 Preliminaries

Let G = (V, E) be a connected and undirected graph con-
sisting of a set of n nodes V and a set of edges E . Let
A ∈ {0, 1}n×n be the corresponding adjacency matrix with
Ai,j = 1 if (i, j) ∈ E and 0 otherwise. The diagonal degree
matrix is D ∈ Nn×n. The symmetrically normalized adja-
cency matrix is given by Asym = D−1/2AD−1/2 and the
graph Laplacian by Lsym = In −Asym. Its eigendecomposi-
tion is L = UΛUT where Λ ∈ Rn×n is a diagonal matrix
containing its eigenvalues, and U ∈ Rn×n is an orthonormal
matrix containing the corresponding eigenvectors as columns.
We refer to a vector x ∈ Rn as a single-channel graph signal
and to a matrix X ∈ Rn×d as a multi-channel graph signal.
These can be initial features or expressive and informative
node embeddings. In the graph domain, the Fourier base is
given by the eigenvectors UT of the graph Laplacian. Thus,
the Fourier transformation F = UT is performed by pro-
jecting a graph signal onto the eigenvectors, and its inverse
transformation is given by F−1 = U . We further refer to
Ui,:x ∈ R as the component of x corresponding to vector
Ui,:.

2.1 Graph Convolutions
Given a graph signal, the graph convolution or a similar
method derived from it are designed to obtain a more infor-
mative graph signal. In the SISO case, the input and output
are single-channel graph signals, while in the MIMO case,
they are multi-channel graph signals. Graph neural networks
(GNNs) are typically constructed by interleaving these op-
erations with non-linear activation functions. The following
derivations and approximations of the graph convolution are
visualized in Fig. 1.

The general graph convolution is defined in the SISO case
through the convolution theorem using the graph Fourier
transform as

θ ∗ x = Udiag(w)UTx (1)
where w = UTθ ∈ Rn [Hammond et al., 2011; Bruna et
al., 2014]. As x and θ ∗x are single-channel signals, we will
refer to this as the SISO graph convolution (SISO-GC).

Due to the runtime and memory complexity and inability to
apply the same graph Fourier transform across graphs, most
GNNs utilize approximations of the SISO-GC. Polynomials
in Asym (or equivalently Lsym) provide a K-localized approx-
imation

θ ∗ x ≈
K∑

k=0

w(k)A
k
symx (2)

of the SISO-GC where wk ∈ R are scalars for k ∈ [K] [Ham-
mond et al., 2011]. Examples of such approximations are
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Chebyshev [Hammond et al., 2011] and Cayley polynomi-
als [Levie et al., 2019].

Similarly, the graph convolutional network (GCN) [Kipf
and Welling, 2017] was derived as a first-order localization

θ ∗ x ≈ wAsymx (3)
of SISO polynomials using a single parameter w ∈ R.

The graph convolution has not yet been derived for the
MIMO case. Instead, following Bruna et al. [2014], the graph
convolution and the described approximations are extended to
the MIMO case by applying it to each combination of input
channel p ∈ [d] and output channel q ∈ [c]. For the graph
convolution, the output

X ′
:,q =

d∑
p=1

θ(p,q) ∗X:,p (4)

is obtained by defining distinct filters θ(p,q) ∈ Rn.
SISO polynomials are equivalently extended to the MIMO

case by applying distinct parameters W
(k)
p,q ∈ R for each

combination of input and output channels [Defferrard et al.,
2016]. Based on Equation 2, we have

X ′
:,q =

d∑
p=1

K∑
k=0

W (k)
p,q A

k
symX:,p (5)

where W (k) ∈ Rd×c.
Equivalently, the GCN is applied in the MIMO case using

distinct parameters Wp,q ∈ R for each combination of input
channel p and output channel q [Kipf and Welling, 2017].
This led to the typical form of

X ′
:,q =

d∑
p=1

Wp,qAsymX:,p = [AsymXW ]:,q . (6)

Most other message-passing methods were then further de-
rived from the GCN. In this work, we show the advantages of
directly obtaining the graph convolution and approximations
in the MIMO case.

3 MIMO Graph Convolution
We now consider the MIMO case. Let X ∈ Rn×d be a
multi-channel graph signal with d channels for each node.
The multi-channel output signal Y ∈ Rn×c can have a dif-
ferent number of channels c. We first derive the general
graph convolution for the MIMO through the convolution the-
orem [O’Neil, 1963] and the graph Fourier transform. The
filter Θ ∈ Rn×c×d contains the necessary element-wise map-
pings from d to c dimensions. To the best of our knowledge,
this has not yet been derived.
Theorem 1 (MIMO Graph Convolution (MIMO-GC)). Let
X ∈ Rn×d, Θ ∈ Rn×c×d, and the Fourier transform
F = UT ∈ Rn×n be given by the eigenvectors of the graph
Laplacian Λ. Then, their convolution is given as

(Θ ∗X)(i) =

[
n∑

k=1

A(k)XW (k)

]
i,:

(7a)

=
n∑

j=1

W(i,j)Xj,: ∈ Rc (7b)

where A(k) = U:,k(U:,k)
T ∈ Rn×n,

W (k) = (F (Θ)k,:,:)
T ∈ Rd×c and W(i,j) =

(
∑n

k=1 Ui,kUj,kW
(k))T ∈ Rc×d.

We provide all detailed proofs as supplementary material1.
The MIMO-GC is unique because it does not require addi-
tional definitions from us. As such, MIMO operations on
graphs should closely approximate the MIMO-GC. We note
that the MIMO-GC is equivalent to extending the SISO-GC
to multi-channel signals by applying it to every pair of input
and output channels, as introduced by Bruna et al. [2014].
The MIMO-GC can be interpreted in two ways.

Based on Eq. (7a), each A(k) ∈ Rn×n can be seen as
a fully connected computational graph with edge weights
A

(k)
i,j = Ui,k · Uj,k ∈ R given by the corresponding Fourier

basis vector U:,k. This form is also similar to multi-head
self-attention [Vaswani et al., 2017]. However, they normal-
ize edge weights by the softmax activation, preventing them
from being orthogonal across heads. The corresponding pa-
rameter matrix W (k) specifies how much this component is
amplified or damped from each input channel to each output
channel. Utilizing n computational graphs allows the MIMO-
GC to amplify distinct components for each output channel.
Assuming all components are present in the input signal, the
MIMO-GC can produce any output signal:
Proposition 1 (Universality of the MIMO-GC). For any
X ∈ Rn×d with UTX ̸=em 0 element-wise non-zero and
any Y ∈ Rn×c, there exists a Θ ∈ Rn×c×d, such that

Θ ∗X = Y . (8)

Based on Eq. (7b), the MIMO-GC can also be interpreted
as applying distinct feature transformation W(i,j) for each
pair of nodes. Each W(i,j) is a unique linear combination
of a shared set of n feature transformations. Relatedly, uti-
lizing distinct feature transformations was recently popular-
ized as Neural Sheaf Diffusion [Hansen and Gebhart, 2020;
Bodnar et al., 2022]. The MIMO-GC provides an additional
theoretical justification for such methods.

However, computing the MIMO-GC exactly is typically
not desirable, as with the SISO-GC. It is inherently transduc-
tive, as the graph Fourier transform is graph-dependent, and
thus, a learned filter cannot be applied to novel or changed
graphs. Most importantly, the computational complexity of
the graph convolution scales quadratically with the number
of nodes:
Computational Complexity. Equivalently to computing
the SISO-GC exactly, the total complexity of the MIMO-GC
is dominated by the graph Fourier transform as it requires
dense matrix multiplications. The overall complexity is thus
O(n2 · c · d).
Benefiting from the MIMO-GC. Instead of directly com-
puting the MIMO-GC, we aim to improve the approximations
previously derived from the SISO-GC, which were then ex-
tended to the MIMO case. We first confirm that these MIMO
polynomials are also approximations of the MIMO-GC with
constraints on the allowed filters Θ:

1Our appendix is available at https://arxiv.org/abs/2505.11346
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Proposition 2 (Every MIMO polynomial filter is a MI-
MO-GC with a specific filter). Let X ∈ Rn×d for some
d ∈ N. For any V (0), . . . ,V (K) ∈ Rd×c with c,K ∈ N,
there exists a Θpoly ∈ Rn×c×d, such that

K∑
k=0

Ak
symXV (k) = Θpoly ∗X . (9)

As one such example of a first-degree polynomial, the
GCN is a MIMO-GC with specific constraints on Θ:
Example 1 (GCN is a MIMO-GC). Let X ∈ Rn×d,V ∈
Rd×c. Then,

AsymXV =
n∑

k=1

λjU:,k(U:,k)
TXV

=
n∑

k=1

U:,k(U:,k)
TXW (k)

= ΘGCN ∗X

(10)

where W (k) = λjV and corresponding ΘGCN ∈ Rn×c×d.
As a first step, the MIMO-GC helps us with the under-

standing of properties of various approximations and can
consequently improve these approximations. Based on Ex-
ample 1, the GCN utilizes a single shared parameter ma-
trix V across all components. Each component is then
amplified according to its respective eigenvalue, which is
shared across all combinations of input and output chan-
nels. Other message-passing operations may utilize a dif-
ferent matrix Ã instead of Asym. However, as using any
single computational graph Ã can be similarly decomposed,
the amplification of components is fixed and shared across
all feature channels for any given Ã. We refer to this phe-
nomenon as shared component amplification (SCA) When re-
peatedly applying such filters or message-passing operations,
SCA leads to the well-known phenomenon of over-smoothing
and, more generally, rank collapse [Oono and Suzuki, 2020;
Roth and Liebig, 2023]. We provide further details on this
phenomenon in our appendix.

Contrarily, the MIMO-GC requires multiple computational
graphs to amplify different components across feature chan-
nels. Equivalently, applying distinct feature transformations
for each node pair can improve approximations. Developing
approximations with these properties can lead to more effec-
tive learning on graph-structured data.

4 Localized MIMO Graph Convolutions
Based on Eq. (7b), we localize the MIMO-GC by aggregating
over the neighboring nodes instead of all nodes of a given
graph:
Definition 1. We define the Localized MIMO Graph Convo-
lution (LMGC) as:

x′
(i) =

∑
vj∈Ni

W(i,j)x(j) (11a)

=

 ∑
k∈[K]

Ã(k)XW (k)


i,:

(11b)

where K ∈ N and each W(i,j) =
∑

k∈[K] α
(i,j)
(k) W (k) ∈

Rc×d is linear combination based on α
(i,j)
(1) , . . . α

(i,j)
(K) ∈ R

and W (1), . . . ,W (K) ∈ Rd×c. The entries A
(k)
i,j = α

(i,j)
(k)

are given by the corresponding coefficients.
In this definition, the number of terms K and the coeffi-

cients or edge weights α(i,j)
(k) can be freely chosen, which al-

lows methods that do not use the expensive eigenvector com-
putation. The LMGC is permutation equivariant if the coeffi-
cients α(i,j)

(k) are also equivariant, for example, when derived
from a function of the nodes vi and vj . The LMGC can also
be applied across different graphs and for directed graphs.
As with MIMO-GCs, the LMGC can be equivalently restated
as operating on K computational graphs. The edge weights
of the k-th computational graph are given by α

(i,j)
(k) . Conse-

quently, the LMGC can represent many linear MPNNs for
different values for α(i,j)

(k) . We provide three examples below:

Example 2 (GCN [Kipf and Welling, 2017]). Let V ∈ Rc×d

be a feature transformation. The update step

x′
(i) =

∑
vj∈Ni

1√
di
√
dj

V x(j) (12)

is an LMGC with K = 1, W (1) = V , and α
(i,j)
(1) = 1√

di

√
dj

where di, dj ∈ N are the degrees of nodes vi and vj , respec-
tively.

As the MIMO-GC is similar to multi-head self-attention,
the LMGC is related to local multi-head attention-based
methods while allowing for more flexible attention scores,
i.e., scores do not need to sum to one for every node:
Example 3 (GAT [Velickovic et al., 2018]). Let H be the
number of heads, V (h) the linear transformation of head h ∈
[H], and a

(i,j)
(h) ∈ R the attention score between nodes vi and

vj . The update step

x′
(i) =

∑
h∈[H]

∑
vj∈Ni

a
(i,j)
(h) V (h)x(j) (13)

is an LMGC with K = H , W (h) = V (h) and α
(i,j)
(h) = a

(i,j)
(h) .

The LMGC can also represent gating mechanisms, e.g.,
the GatedGCN [Dwivedi et al., 2023] or neural sheaf diffu-
sion [Hansen and Gebhart, 2020].

The general form of the LMGC allows for a more focused
development of novel and powerful methods. With specific
choices of α(i,j)

(k) , the LMGC can model a symmetric or di-
rected flow of information and can construct anisotropic or
isotropic messages.
Theoretical Properties. Studying theoretical properties of
LMGCs reduces to studying the effects of coefficients α(i,j)

(k) .
For example, the LMGC cannot represent non-linear feature
transformations, which are typically used to ensure injectiv-
ity, e.g., by GIN [Xu et al., 2019]. This allows GNNs to
match the expressivity of the Weisfeiler-Leman graph isomor-
phism test [Leman and Weisfeiler, 1968], a key property for
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graph-level tasks. However, we find that any LMGC with
K > 0 computational graphs is also injective for almost ev-
ery choice coefficients α

(i,j)
(k) without requiring a non-linear

feature transformation:
Proposition 3 (Injectivity). Let f(x(i), Ni) =∑

x(j)∈Ni
W(i,j)x(j) be an LMGC with K ≥ 1 and X

a countable set. Then, f(x(p),Xp) is injective for finite
multisets Xp ⊂ X and elements x(p) ∈ X for a.e. choice of

coefficients α(i,j)
(k) and a.e. W (k) for all k ∈ [K].

Different components can be amplified across feature
channels when further using K > 1 computational graphs.
The resulting node representations are linearly independent
for almost every choice of coefficients α

(i,j)
(k) . This prevents

the shared component amplification of methods utilizing a
single computational graph.
Proposition 4 (Linear Independence). Let f(x(i), Ni) =∑

x(j)∈Ni
W(i,j)x(j) be an LMGC with K > 1 and X a

countable set. Then, f(x(i),X1) is linearly independent to
f(x(j),X2) for all finite multisets X1,X2 ⊂ X with X1 ̸=
c · X2 for any c ∈ N and elements x(i),x(j) ∈ X for a.e.

choice of coefficients α(i,j)
(k) and a.e. W (k) for all k ∈ [K].

This result aligns with previous findings that identified
cases where multiple computational graphs can ensure lin-
early independent representations [Roth et al., 2024]. Im-
portantly, each α

(i,j)
(k) can be independently obtained, e.g., by

a function α
(i,j)
(k) = ϕk(x(i),x(j)) ∈ R of the correspond-

ing node states. Many functions ϕk satisfy Proposition 3
and Proposition 4. A neural network can then approximate
such a function. As a negative example of such a functions,
softmax-activated attention scores do not satisfy the a.e. con-
dition as the space of scores forms a measure-zero set, e.g.,
for GAT [Velickovic et al., 2018] and the more powerful
GATv2 [Brody et al., 2022]. As has been pointed out by sev-
eral works [Xu et al., 2019], such methods cannot distinguish
multisets of different multiplicities, e.g., when X1 = {{x1}}
and X2 = {{x1,x1}}. Other methods, such as FAGCN [Bo
et al., 2021] and GGCN [Yan et al., 2022], proposed to apply
the tanh activation function instead, which does not constrain
the outputs to a measure-zero set.

Thus, an LMGC can incorporate the advantages of
attention-based by filtering incoming messages and prevent-
ing the shared component amplification across feature chan-
nels by utilizing multiple computational graphs. At the same
time, it applies linear feature transformations and can be in-
jective on multisets, as in GIN.
An LMGC Instantiation. When constructing an LMGC
instantiation, only the number of computational graphs K and
the coefficients α(i,j)

(k) for all k ∈ [K] need to be defined. For
our empirical study, we define a simple LMGC instantiation
as a mix of GATv2 and FAGCN. We define the coefficients as

α
(i,j)
(k) = ϕk(x(i),x(j)) := σ2(v

T
(k)σ1(W

(1)x(i)||

. . . ||W (K)x(i)||W (1)x(j)|| . . . ||W (K)x(j))) (14)

Method MSE

GATv2 0.12± 0.04
FAGCN 0.68± 0.02
ACM 0.49± 0.02
GIN 0.08± 0.03
LMGC 25 · 10−9 ± 86 · 10−11

Table 1: Results for the universality task. Given representations
X,Y and a graph A, one layer of each method is optimized to
approximate the function f(X,A) = Y . Average and standard de-
viation of the minimal mean-squared error (MSE) during optimiza-
tion. Best MSE in bold, second-best underlined.

where v(k) ∈ R2·K·c are learnable vectors for k ∈ [K], σ1 is
the LeakyReLU activation and σ2 is the tanh activation func-
tion. The execution time is slightly favorable compared to
GATv2, as we do not normalize the messages.

5 Related Work
We now describe previous works related to various parts of
the MIMO-GC and the LMGC.
Graph Convolutions. Bruna et al. [2014] extend the SISO-
GC to the MIMO case by utilizing a filter between all pairs
of input and output channels. This extension is equivalent
to the MIMO-GC directly derived through the convolution
theorem. Approximations are derived in the SISO case and
mapped to the MIMO case using the same procedure after-
ward. Hammond et al. [2011] propose to approximate the
SISO-GC using Chebyshev polynomials in the SISO case.
Defferrard et al. [2016] employ separate filters for pairs of
input and output channels to extend Chebyshev polynomials
to the MIMO case. Sandryhaila [2013] define general poly-
nomial graph filters for the SISO case. Using the same pro-
cedure, Gama et al. [2018] extend these polynomial graph
filters to the MIMO case. Kipf and Welling [2017] de-
rive the GCN as a 1-localized approximation of the SISO
Chebyshev polynomials. They equivalently extend it to
the MIMO case afterward by applying separate parameters
for each combination of input and output channels. Most
other MPNNs are derived from the GCN to mitigate vari-
ous shortcomings [Velickovic et al., 2018; Xu et al., 2019;
Roth and Liebig, 2022]. Directly approximating the MIMO-
GC allows us to benefit from MIMO-specific properties of the
graph convolution.
MIMO Improvements. While most MPNNs are applied to
the MIMO case, many of these are well-known to be unable to
amplify distinct components across channels, a phenomenon
known as over-smoothing [Oono and Suzuki, 2020], over-
correlation [Jin et al., 2022], or rank collapse [Roth and
Liebig, 2023; Roth, 2024]. Various methods have been pro-
posed to improve multi-channel learning within MPNNs.
Luan et al. [2022] propose to apply separate graph filters
for different feature channels. In ADR-GNNs [Eliasof et
al., 2023], feature channels are separately aggregated using
channel-specific edge weights. Other works similarly pro-
pose to apply distinct filters across channels [Liu et al., 2025].
Zhou et al. [2020] propose the multi-channel graph neural

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Method Basic + LapPE + Jumping Knowledge + Residual + All three

GATv2 0.377± 0.024 0.341± 0.040 0.388± 0.017 0.311± 0.016 0.294± 0.019
FAGCN 0.365± 0.018 0.349± 0.038 0.352± 0.042 0.289± 0.019 0.232± 0.012
ACM 0.278± 0.006 0.281± 0.019 0.288± 0.008 0.266± 0.017 0.238± 0.006
GIN 0.272± 0.009 0.259± 0.012 0.267± 0.020 0.240± 0.005 0.228± 0.014
LMGC 0.241± 0.018 0.234± 0.009 0.233± 0.019 0.215± 0.006 0.203± 0.004

Table 2: Test MAE results on ZINC12k. LapPE indicates that a Laplacian position encoding is concatenated to the initial features. For
Jumping Knowledge, the channel-wise maximum value after each iteration is used for each after the message-passing steps. Residual indicates
that the input to each message-passing step is added to its output. With + All three, these three techniques are simultaneously applied. Best
scores in bold, second-best underlined.

Method Texas Cornell Wisconsin Film Chameleon Squirrel

GATv2 71.6± 1.0 66.1± 0.6 79.1± 2.0 35.1± 0.2 47.1± 0.3 35.1± 0.2
FAGCN 73.5± 1.8 68.1± 1.9 80.2± 1.8 36.0± 0.3 46.9± 0.5 34.6± 0.3
ACM 72.3± 0.4 65.1± 0.7 74.2± 0.9 35.8± 0.3 45.5± 0.9 34.5± 0.1
GIN 70.5± 1.1 66.1± 1.0 79.0± 0.6 34.1± 0.3 46.1± 0.4 34.6± 0.5
LMGC 74.2± 2.2 68.9± 2.2 81.4± 1.1 36.3± 0.4 49.8± 0.8 35.9± 0.5

Table 3: Test accuracy on heterophilic node classification tasks. Best scores in bold, second-best underlined. All models contain at most
100 000 parameters and the same hyperparameter optimization was applied.

network that obtains multiple computational graphs through
a pooling operation and learns interaction scores between
graphs. Utilizing multiple computational graphs has been ex-
tensively studied in mitigating over-smoothing and represen-
tational rank collapse [Roth et al., 2024]. Applying different
linear transformations between pairs of nodes has also been
derived within neural sheaf diffusion [Hansen and Gebhart,
2020; Bodnar et al., 2022]. As the MIMO-GC and LMGC
naturally allow multi-channel learning, these frameworks can
be closer aligned as approximations of the MIMO-GC. The
LMGC can equivalently be interpreted as message-passing
on multigraphs. Butler et al. [2023] introduced convolutional
multigraph neural networks that utilize polynomial filters on
multigraphs.

Approaches Related to the LMGC. The LMGC is closely
related to several existing methods. As described in Exam-
ple 3, multi-head attention-based methods like GAT [Velick-
ovic et al., 2018] and GATv2 [Brody et al., 2022] are LMGCs
with constraints on the attention scores by applying the soft-
max activation. By lifting this constraint, LMGCs can be
injective on multisets (Proposition 3). Several other meth-
ods have been proposed to replace the softmax activation.
The FAGCN [Bo et al., 2021] instead applies the tanh activa-
tion function to amplify high-frequencies or low-frequencies.
Similarly, the GGCN [Yan et al., 2022] allows learning of
signed edge weights. Other studies considered replacing
the softmax activation function within transformers and self-
attention modules. Wortsman et al. [2023] apply the ReLU
activation in vision transformers. Saratchandran et al. [2024]
found empirical success using polynomial activation func-
tions for self-attention. However, as self-attention typically
considers a fully connected graph, these works did not study
distinguishing structural differences. Contrarily, Proposi-
tion 3 shows that differences in the number of neighbors can

be distinguished without the softmax activation.

6 Experiments
We now want to confirm the beneficial properties of LMGCs.
As the LMGC can match the expressive power of GIN, we
want to evaluate whether it can match the performance of GIN
for graph-level tasks. We also evaluate whether the LMGC
can match the performance of attention-based methods for
node-level tasks. All experiments are run on an H100 GPU.
Additional details on all models, datasets, and hyperparame-
ters are provided as supplementary material.2

6.1 Methods
We consider the following four message-passing methods
across all experiments. We conduct all results ourselves using
the same hyperparameter ranges across methods.
GATv2. This method extends GAT with dynamic atten-
tion [Brody et al., 2022]. Attention-based methods are
particularly effective for node-level prediction tasks due to
their ability to filter information. We utilize the stan-
dard implementation that corresponds to an LMGC with
α
(i,j)
(k) = σ2(v

T
(k)σ1(W

(k)x(i) +W (k)x(j))) where σ1 is the
LeakyReLU activation function and σ2 is the node-wise soft-
max activation function and v(k) ∈ Rc is a learnable vector.
We set the number of heads to K = 4 for all experiments.
FAGCN. This method was designed for heterophilic node
classification tasks by allowing for negative edge weights [Bo
et al., 2021]. Stated in the LMGC framework, we evaluate a
method that sets K = 1 and α

(i,j)
(1) =

σ(v[x(i)||x(j)])√
di

√
dj

where σ

is the tanh activation function, v ∈ R2·d is a learnable vector
2Our implementation is available at https://github.com/roth-

andreas/mimo-graph-convolutions.
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and di, dj are the degrees of nodes vi and vj , respectively.
Despite the tanh activation, FAGCN is not always injective
due to the degree normalization.

ACM. Written in the LMGC framework, the adaptive chan-
nel mixing (ACM) [Luan et al., 2022] proposes to utilize
Ã(1) = Asym for amplifying low-frequency components and
Ã(2) = Lsym for amplifying high-frequency components.
They further propose a third computational graph Ã(3) = I ,
which we utilize whenever residual connections are used in
an experiment.

GIN. For graph-level tasks, the GIN [Xu et al., 2019] is
particularly effective as it can match the expressivity of the
WL-test due to the non-linear feature transformation. As the
non-linear feature transformation, we apply a two-layer MLP
with ReLU activations for all experiments.

LMGC. As the LMGC can combine the favorable proper-
ties of the other three methods, we utilize the instantiation of
the LMGC as described in Eq. (14). As with GATv2, we set
the total number of heads to K = 4 for all experiments.

6.2 Universality
Based on Proposition 1, the MIMO-GC can represent al-
most every mapping Θ ∗ X = Y with X ∈ Rn×d and
Y ∈ Rn×c. We evaluate the ability of message-passing ap-
proaches to approximate such a transformation. We sample a
random undirected and connected Erdős–Rényi graph [Erdős
and Rényi, 1959] with n = 16 nodes and an edge probability
of p = 10%. We set d = c = 16. Similarly, X ∈ Rn×d and
Y ∈ Rn×c are randomly sampled with Xi,j ∼ N (0, 1) and
Yi,j ∼ N (0, 1). We apply a single message-passing layer as
f(X,A). We minimize the mean-squared error (MSE) be-
tween f(X,A) and Y using the Adam optimizer for 40 000
steps. The learning rate is tuned in {0.03, 0.01, 0.003}.

The minimum achieved approximation error averaged over
three runs is presented in Table 1. LMGC achieves a signif-
icantly lower error than GATv2, FAGCN, and GIN. As the
MIMO-GC can represent such a function exactly, LMGCs
benefit from this property as a close approximation. While
these improved capabilities come with the risk of overfitting,
we expect LMGCs to be particularly beneficial for challeng-
ing tasks.

6.3 Graph-Level Prediction
GIN is typically used for graph-level tasks due to its expres-
sive power. Based on Proposition 3, we now want to vali-
date that the LMGC can match these results empirically. We
consider the challenging ZINC12k dataset [Sterling and Ir-
win, 2015]. It consists of around 12 000 molecular graphs,
with the task being to predict the constrained solubility of
each molecule. We integrate all models into the implemen-
tation of GraphGPS [Rampásek et al., 2022] and the Long
Range Graph Benchmark [Dwivedi et al., 2022]. Based on
Toenshoff et al. [2024], we optimize the number of layers
in {6, 8, 10} and the learning rate in {0.001, 0.0003, 0.0001}
using a grid search. Each model utilizes at most 100 000 pa-
rameters to ensure fairness.

In Table 2, we present results of a detailed study in which
we combine these base message-passing methods with vari-
ous other established techniques. These techniques are Lapla-
cian positional encoding (LapPE) [Kreuzer et al., 2021],
jumping knowledge [Xu et al., 2018] and residual connec-
tions [He et al., 2016]. We find all methods to benefit from
these techniques, with the LMGC achieving the best results
in all cases. We provide additional results, including runtimes
and training losses, as supplementary material.

6.4 Node Classification
While expressivity is a key property for graph-level tasks,
attention-based methods typically outperform GIN on node-
level tasks due to their ability to filter messages [Brody et al.,
2022]. Thus, we also evaluate whether the LMGC can match
the performance of GATv2 and FAGCN on these tasks. We
consider six heterophilic benchmark datasets for node clas-
sification: Texas, Cornell, Wisconsin, Film, Chameleon, and
Squirrel. We use the ten splits into train, validation, and test
sets proposed by Pei et al. [2020]. We integrate all models
into the implementation from Rusch et al. [2023]. As with
ZINC, each model uses at most 100 000 parameters. For each
method, we tune the learning rate in {0.01, 0.003, 0.001} and
dropout ratio in {0.0, 0.25, 0.5} using a grid search, as these
affected the results the most. Based on the optimal hyper-
parameters for the validation set, we rerun each method five
times for all ten splits and report average test results.

These average test accuracies are presented in Table 3. GIN
achieves the lowest accuracy, and LMGC achieves the highest
accuracy across all tasks. While the differences are only a few
percentage points, these experiments confirm that the LMGC
can combine the benefits of GATv2, FAGCN, GIN, and the
MIMO-GC into a single model.

7 Conclusion
This work derives the MIMO graph convolution (MIMO-GC)
using the convolution theorem and emphasizes the advan-
tages of approximating the graph convolution in the MIMO
case rather than the SISO case. A key property of the MIMO-
GC is operating on multiple computational graphs or equiva-
lently applying distinct linear transformations for each node
pair. We have proven that the localized form is injective
and results in linearly independent representations for al-
most every choice of edge weights. Due to our direct the-
oretical derivation from the MIMO-GC and the generality
of the LMGC framework, studying properties of message-
passing operations can now focus on analyzing the coeffi-
cients α

(i,j)
(k) . This allows the development of more effective

methods within a well-defined framework. While we have
confirmed the advantages and potential of the LMGC frame-
work, identifying optimal instantiations of LMGCs for spe-
cific tasks remains open.
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Yoshua Bengio. Graph attention networks. In 6th Interna-
tional Conference on Learning Representations, Vancou-
ver, BC, Canada, April 30 - May 3, 2018.

[Wortsman et al., 2023] Mitchell Wortsman, Jaehoon Lee,
Justin Gilmer, and Simon Kornblith. Replacing softmax
with relu in vision transformers. CoRR, abs/2309.08586,
2023.

[Xu et al., 2018] Keyulu Xu, Chengtao Li, Yonglong Tian,
Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jump-
ing knowledge networks. In Proceedings of the 35th
International Conference on Machine Learning, Stock-
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