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Abstract
Node classification in heterophilous graphs, where
connected nodes often have different characteris-
tics, presents a significant challenge. We introduce
HAPPY, which combines heterophily-aware ran-
dom walks with targeted subgraph extraction. Our
approach enhances Personalized PageRank by in-
corporating both label and feature diversity into the
random walk process. Through theoretical anal-
ysis, we demonstrate that HAPPYeffectively cap-
tures both homophilous and heterophilous relation-
ships. Comprehensive experiments validate our
method’s state-of-the-art performance across chal-
lenging heterophilous benchmarks.

1 Introduction
Node classification in heterophilous graphs—where linked
nodes often exhibit significant dissimilarity in their attributes
or class labels—poses unique challenges [Luan et al., 2024].
For example, in a citation network, a groundbreaking paper
might be most relevant to works that challenge or diverge
from its approach rather than similar papers. The inherent
structure of heterophilous graphs presents a key challenge for
graph-based learning. A fundamental question emerges:

Can we identify truly relevant neighbors for a node when
traditional proximity-based assumptions break down?

Related Work. Research in heterophilous graphs has re-
ceived significant attention [Luan et al., 2024; Zheng et al.,
2022; Platonov et al., 2023b]. Below, we categorize existing
approaches most related to our work following Table 1.
(1) Multi-hop view: These methods leverage multi-hop neigh-
borhood information. H2GCN [Zhu et al., 2020] separates
ego and neighbor embeddings, while FSGNN [Maurya et al.,
2022] guides aggregation through feature similarity.
(2) Global Homophily: These approaches exploit global
graph properties. GloGNN [Li et al., 2022] integrates global-
local information, CPGNN [Zhu et al., 2021] uses compati-
bility matrices, Geom-GCN [Liu et al., 2021] leverages ge-
ometric relationships, and GPNN [Yang et al., 2022] learns
neighbors via attention.

Category Method Key Characteristics
Multi-hop view H2GCN [Zhu et al., 2020] Ego/neighbor-embedding separation

FSGNN [Maurya et al., 2022] Feature-similarity guided aggregation

Global Homophily

GloGNN [Li et al., 2022] Global-local information integration
CPGNN [Zhu et al., 2021] Prior-based compatibility matrix
Geom-GCN [Liu et al., 2021] Geometric relationships
GPNN [Yang et al., 2022] Learned neighbour via attention

Discriminative FAGCN [Bo et al., 2021] Adaptive edge-aware techniques
Message Passing GBK-GNN [Du et al., 2022] Bi-kernel transformation

New Neighbours
NLGNN [Liu et al., 2021] Non-local Neighbours
OGNN [Pirrò, 2023] Semantic Overlay Network

Spectral

GPR-GNN [Chien et al., 2021] Adaptive PageRank weights
BernNet [He et al., 2021] Bernstein polynomial filtering
JacobiConv [Wang and Zhang, 2022] Polynomial-based filtering
ChebNetII [He et al., 2022] Chebyshev polynomial-based GNN

Adaptive

Restruct-GCN [Li et al., 2023] Learned topology restructuring
ACM-GCN [Luan et al., 2022] Adaptive frequency band usage
ASCG [Chanpuriya and Musco, 2022] Heterophily-aware coefficients
CDE [Zhao et al., 2023] Cross-feature diffusion networks
ACMP [Wang et al., 2023] Interactive particle system
HeterGCL [Wang et al., 2024] Graph Contrastive learning

Subgraph-based HAPPY (Ours) Node-centric subgraph extraction using
heterophily-aware PPR scores.

Table 1: Characteristics of most related approaches to our work.

(3) Discriminative Message Passing: Methods like
FAGCN [Bo et al., 2021] and GBK-GNN [Du et al.,
2022] focus on adaptive edge-aware techniques and bi-kernel
transformations respectively.
(4) New Neighbours: Instead of using only original connec-
tions, NLGNN [Liu et al., 2021] and OGNN [Pirrò, 2023]
identify non-local neighbours via learnable node orderings.
(5) Spectral Approaches: These methods employ various
spectral techniques: GPR-GNN [Chien et al., 2021] uses
adaptive PageRank weights, BernNet [He et al., 2021] , Ja-
cobiConv [Wang and Zhang, 2022], and ChebNetII [He et
al., 2022] leverage different types of polynomial filtering.
Adaptive Approaches: These methods dynamically adjust to
graph properties. Restruct-GCN [Li et al., 2023] learns topol-
ogy restructuring, ACM-GCN [Luan et al., 2022] adapts fre-
quency bands, ASCG [Chanpuriya and Musco, 2022] uses
heterophily-aware coefficients, CDE [Zhao et al., 2023] em-
ploys cross-feature diffusion, ACMP [Wang et al., 2023]
uses interactive particle systems, and HeterGCL [Wang et al.,
2024] applies graph contrastive learning.

Limitations of Existing Approaches. Despite considerable
progress, each category of heterophilous graph methods faces
specific challenges. Multi-hop view approaches often struggle
with computational complexity as the hop count increases.
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Global Homophily methods can overlook local structural pat-
terns while introducing significant memory overhead. Dis-
criminative Message Passing techniques require careful fea-
ture engineering and often lack theoretical guarantees. New
Neighbours strategies introduce computational cost in neigh-
bor discovery and rely heavily on domain-specific heuristics.
Spectral methods demand non-trivial parameter tuning for fil-
ter orders and can miss localized graph properties. Adaptive
approaches typically require complex architectures.
Our Proposal. We introduce HAPPY (Heterophily-Aware
Personalized PageRank), which builds upon a key insight:
in heterophilous graphs, influential nodes might not be im-
mediate neighbors, but rather nodes that share similar pat-
terns across multiple hops. This observation makes Personal-
ized PageRank (PPR) [Haveliwala, 2002] an attractive foun-
dation, as it naturally measures node importance through ran-
dom walks while allowing for personalization based on node-
specific characteristics. However, traditional PPR falls short
in heterophilous settings due to its inherent homophily as-
sumption in the random walk process. Our approach makes
three key contributions to address these challenges:
(1) Heterophily-Aware Random Walks: We modify PPR’s
random walk process to integrate feature diversity directly,
enabling the discovery of relevant nodes even when they dif-
fer from their neighbors. This adaptation balances structural
connectivity with feature diversity.
(2) Context-Sensitive Subgraphs: Using our enhanced PPR
scores, we develop efficient node-centric subgraph extraction
methods that preserve both feature dissimilarity and structural
patterns, creating robust local neighborhoods that capture het-
erophilous relationships.
(3) Theoretical Guarantees: We provide a theoretical anal-
ysis of how HAPPY preserves both homophilous and het-
erophilous relationships, making it particularly suitable for
graphs with varying structural patterns.
(4) Effective and Scalable: By combining our subgraph rea-
soning with simple feature transformation approaches like
SGC [Wu et al., 2019], HAPPY achieves state-of-the-art per-
formance while maintaining high scalability.
Outline. We start with some background (§2). Then, we
present H-PPR (§3), the subgraph extraction strategies (§4),
the classification pipeline (§5), and the theoretical analysis
(§6). We evaluate HAPPY (§7) and then conclude (§8).

2 Background and Problem Formulation
Let G = (V, E) denote a graph with node features X ∈
RN×NF . We denote by N (u) the neighbors of a node u.
For nodes u and v, their feature dissimilarity is: h(u, v) =
1− sim(xu,xv), where sim(·, ·) is a bounded similarity func-
tion in [0, 1]. The edge homophily ratio and its adjusted ver-
sion [Platonov et al., 2023a] are defined as:

Hedge =
|{(u, v) : (u, v) ∈ E ∧ yu = yv}|

|E|
(1)

Hadjusted =
Hedge −

∑C
k=1 D

2
k/(2|E|)2

1−
∑C

k=1 D
2
k/(2|E|)2

(2)

where Dk :=
∑

i:yi=k d(i) for class label k.

Problem: Given G = (V, E) with labeled nodes YL, we
aim to learn fp(G,YL)→ ŶU , where ŶU are the pre-
dicted labels for unlabeled nodes.

HAPPY is motivated by recent advances in graph learning
that emphasize the importance of effectively combining struc-
tural and feature information while adapting to graph prop-
erties [Zhu et al., 2020; Bo et al., 2021; Yang et al., 2021;
Li et al., 2022]. This insight stems from a key observa-
tion: real-world graphs exhibit varying levels of heterophily,
where connected nodes may have either different or simi-
lar features. To address this challenge, HAPPY employs a
decoupled architecture that leverages both similarity-driven
and dissimilarity-driven context. The approach operates in
three steps: first computing Heterophily-Aware Personalized
PageRank (H-PPR) scores (§ 3), then extracting node-specific
contextual subgraphs (§ 4), and finally learning, transforming
and feeding node representations to a classifier (§ 5). Through
this node-centric approach, HAPPY tailors both structural
and feature information to each node’s local neighborhood,
enabling better pattern identification by combining structural
connectivity with relevant feature patterns.

3 Heterophily-Aware Personalized PageRank
H-PPR extends PPR [Haveliwala, 2002] by enabling effec-
tive navigation of graphs where connected nodes can be either
similar or dissimilar thus proving more robust node classifi-
cation across diverse graph structures.
Definition 3.1 (H-PPR). We define a transition probability
matrix P that adapts to each node’s local heterophily level.
Specifically, for nodes u ∈ V and neighbors v ∈ N (u), let

hadaptive(u, v) = λu·dissim(u, v) +
(
1−λu

)
·sim(u, v) (3)

where λu ∈ [0, 1] is the local heterophily coefficient of node
u (§3.1). Then each entry Puv of P is:

Puv =


hadaptive(u, v)∑

w∈N(u) hadaptive(u,w)
if v ∈ N(u),

0 otherwise.
(4)

The H-PPR score vector πt satisfies:

πt = αPπt + (1− α)
[
β et + (1− β) radaptive

]
(5)

where α ∈ (0, 1) is a damping factor, β ∈ [0, 1] a local–
global restart parameter, et a vector that is one-hot at target
node t, and radaptive an adaptive restart distribution (§3.2).

3.1 Local Heterophily and Adaptive Transition
HAPPY aims at leveraging both graph structure and fea-
tures while effectively handling both homophilous and het-
erophilous relationships. However, with only limited labeled
nodes available in real-world graphs, we face two challenges:
(1) estimating local heterophily patterns to guide random
walks, and (2) measuring neighborhood diversity to enable
adaptive transitions. To address these challenges, we lever-
age pseudo-labels that propagate train labels across the net-
work through both structural connections and feature simi-
larities. We derive pseudo-labels Y via label propagation:
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Y(k+1) = D−1ASY(k) where D is the degree matrix, A is
the adjacency matrix, and S is a diagonal feature similarity
matrix with Sij = sim(Xi, Xj) (e.g., based on cosine) for
neighboring nodes. Pseudo-labels enable us to compute es-
sential metrics like local heterophily coefficients and label di-
versity, which are crucial for guiding adaptive transitions and
balancing exploration between diverse and similar regions.
Local Heterophily Computation: for each node v ∈ V , we
define λv to capture whether its neighbors are more similar
or more dissimilar. We combine two heterophily indicators:

λv = γ · hlabel(v) +
(
1− γ

)
· hfeat(v) (6)

where γ ∈ [0, 1] is a balance parameter. The label-based term
hlabel(v) is the fraction of neighbors whose pseudo-label in Y
differs from v’s own label:

hlabel(v) =


|{u∈N (v) : yu ̸= yv}|

|N (v)|
if N (v) ̸= ∅

0.5 otherwise

While the feature-based term hfeat(v) is the average dissimi-
larity w.r.t. features X:

hfeat(v) =


1

|N (v)|
∑

u∈N (v)

[
1− cos(xv,xu)

]
if N (v) ̸= ∅

0.5 otherwise

Hence, λv approaches 1 if v’s neighborhood is highly het-
erophilous (different labels or features), and it approaches 0
if neighbors are mostly similar.

Heterophily-Aware Transitions: using each node’s local het-
erophily λu in (3), we define the base transition probability:

P (u → v) ∝ λu dissim(u, v) + (1− λu) sim(u, v) (7)

If u has λu ≈ 1, it prefers neighbors more dissimilar in fea-
tures/labels; if λu≈0, it prefers those more similar.

3.2 Adaptive Restart Distribution
In addition to local node-level coefficients, we also estimate a
global heterophily level λglobal (e.g., the average of all {λv}).
This value governs how the random walk restarts from diverse
vs. homogeneous nodes. For each node v we define:

1. Local Diversity: we measure label diversity rdiv(v) in v’s
neighborhood computing pseudo-label entropy as:

rdiv(v) =
Entropy

(
Y[N (v)]

)
+ ϵ∑

u∈V
[
Entropy

(
Y[N (u)]

)
+ ϵ

] (8)

where ϵ is a small constant (e.g. 10−10) to avoid zero
denominators. A higher rdiv(v) indicates that v’s neigh-
borhood has a broader distribution of pseudo-labels.

2. Local Similarity: it measures feature homogeneity
rsim(v) in v’s neighborhood via average similarity:

rsim(v) =
Homogeneity(N (v)) + ϵ∑

u∈V
[
Homogeneity(N (u)) + ϵ

] (9)

where Homogeneity(N (v)) can be computed, for in-
stance, as 1

|N (v)|
∑

u∈N (v) cos(xv,xu).

We then form the final adaptive restart distribution:

radaptive(v) = λglobal rdiv(v) +
(
1− λglobal

)
rsim(v) (10)

Hence, when λglobal is high (i.e., the graph is largely diverse),
the walk restarts more frequently in neighborhoods with high
label entropy, and vice versa when λglobal is low. This ensures
that the random walk globally balances exploring dissimilar
regions against reinforcing neighborhoods of similarity.

Balanced Feedback to Avoid Local Traps
Despite the above mechanisms, a random walk may still con-
verge too quickly into exclusively similar or dissimilar clus-
ters. To mitigate such “traps,” we introduce a balanced feed-
back adjustment to the transition probabilities:

P ′(u → v) = P (u → v) ×
[
1 − β bal

(
v,Vv, λu

)]
(11)

where Vv is the set of nodes visited so far, β ∈ [0, 1] is a feed-
back strength, and bal(v,Vv, λu) is a function that evaluates
whether v has been over- or under-explored under a similar
local heterophily context λu. For example, if v has been vis-
ited frequently when λu is high, we reduce P ′(u → v) to
encourage more exploration of homophilous regions and vice
versa. This can be implemented by tracking the visit counts
during the walk and then adjusting P (·) at each iteration.

3.3 Algorithm and Implementation Details
Algorithm 1 illustrates a reference implementation of H-PPR,
unifying local and global adaptations, as well as optional bal-
anced feedback if desired.

Algorithm 1 Heterophily-Aware Personalized PageRank
Input:

1: Graph G = (V, E) with node features X and pseudo-labels Y
2: Parameters: damping α ∈ (0, 1), local–global restart β ∈ [0, 1], balance γ ∈

[0, 1]
3: max iter, convergence tolerance ϵ

Output:
4: H-PPR score dictionary {πu : u ∈ V}
5: function H-PPR(G,X,Y, α, β, γ,max iter, ϵ)
6: λglobal ← ESTIMATEGLOBALHETEROPHILY(G,Y)

7: λ← COMPUTELOCALHETEROPHILY(G,X,Y, γ)
8: radaptive ← COMPUTEADAPTIVERESTART(G,X,Y, λglobal)

9: S← cosine similarity(X)
10: D← 1− S
11: scores← {}
12: for each source node u ∈ V do
13: // Build transition matrix P
14: P← 0|V|×|V|

15: for each node v ∈ V do
16: Nv ← neighbors(v)
17: ifNv ̸= ∅ then
18: wv ← λv D[v,Nv ] + (1− λv)S[v,Nv ]
19: P[v,Nv ]← wv /

∑
(wv)

20: // Power iteration for node u
21: p← eu // One-hot vector
22: for iter = 1 to max iter do
23: pnew ← αP⊤p + (1− α)

[
β eu + (1− β) radaptive

]
24: if ∥pnew − p∥1 < ϵ then
25: break
26: p← pnew

27: scores[u]← p

28: return scores

Interpretation. By incorporating both feature-based and
label-based information, H-PPR can rank nodes that are sim-
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ilar in one modality but complementary in another. The adap-
tive restart further ensures that the random walk explores di-
verse neighborhoods if the overall graph is heterophilous, or
focuses on more homogeneous regions if the graph is highly
homophilous. Finally, balanced feedback (§3.2) ensures that
the walk does not get “stuck” in only one type of region.
Hence, H-PPR provides a robust and flexible ranking mech-
anism that adapts to graphs spanning the entire homophily–
heterophily spectrum.
Complexity Analysis. Algorithm 1 primarily spends its time
in three stages for each source node u ∈ V : (1) Feature
Similarity and Transition Matrix Construction (e.g., line 9
and 13–19). Computing cosine similarities of dimension d
and then forming neighbor-based weights is O

(
|Nu| d

)
for

node u; (2) Power Iteration (e.g., lines 21–26). Each up-
date of the score vector p takes O(|E|) when the transition
matrix is stored in a sparse format. If k is the number of
iterations until convergence, this part costs O(k |E|); (3) Lo-
cal/Global Heterophily Computations. Estimating local het-
erophily λv and the global level λglobal each require summing
over a node’s neighborhood, i.e. O(|Nu|) per node. Summed
over all nodes, this is O

(∑
v∈V |Nv|

)
= O(|E|) in an undi-

rected graph. Hence, for a single source node, the total cost is
O
(∑

u∈V
(
|Nu| (d + 1)

)
+ k |E|

)
. Because

∑
u∈V |Nu| =

2|E|, this simplifies to O
(
|E| (d + 1)

)
+ O

(
k |E|

)
=

O
(
k |E| + d |E|

)
. If every node serves as a source, we mul-

tiply by |V|, unless certain computations (e.g., similarity) are
reused across different source nodes. In practice, many of
these steps (e.g., S and λv) need to be computed only once,
amortizing the cost over multiple runs.
Parallelization. Since each node’s H-PPR can be computed
independently, we can partition the node set V across p pro-
cessors: V=

⋃p
i=1 Vi, achieving up to 1

p speedup (neglecting
communication overhead Ccomm). Both neighbor-weight con-
struction and power iteration steps can be parallelized with
sparse matrix operations.

4 Heterophily-Aware Subgraph Extraction
We present four approaches for extracting node-centric sub-
graphs reflecting meaningful relationships specific to a target
node. Balancing structural similarity and diversity based on
local heterophily, these strategies produce representations of
both homophilous and heterophilous interactions:
1. Adaptive Top-k H-PPR. Given the H-PPR scores {πv[u]}
for a node v, we extract nodes with significant scores:

N (v) = topkv

(
{u ∈ V : u ̸= v}, πv[u]

)
(12)

where kv adapts to each node’s influence pattern:

kv = ⌈p · |{u : πv[u] > ϵ}|⌉ (13)

Here, ϵ is a significance threshold (10−4) filtering negligible
relationships, and p (typically 0.4-0.6) controls the propor-
tion of influential nodes to include. This adaptive approach
ensures the subgraph size naturally scales with each node’s
effective influence range.
2. Adaptive Diversity-Aware. This strategy iteratively
builds a diverse subgraph by selecting nodes that balance

both structural importance and feature diversity. Starting
from a seed node v, each new node u∗ is chosen to maximize
the sum of its PPR score and its minimum feature distance
d(u,w) from currently selected nodes, weighted by the local
heterophily coefficient λv:

u∗ = arg max
u∈V \S

(
πv[u] + λv ·min

w∈S
d(u,w)

)
(14)

where S is the set of selected nodes (initialized with v),
d(u,w) measures feature distance between nodes, and λv

controls the diversity-similarity trade-off.
3. Adaptive Threshold. Here, the subgraph size depends on
the H-PPR score distribution and local properties:

Nadaptive(v) =
{
u : πv[u] > µv + αv σv

}
, (15)

where µv and σv are the mean and standard deviation of
{πv[u]}, and αv = δ(1 − λv) + λv with δ > 1 being
a hyper-parameter controlling the amplification of the ho-
mophilous component. When λv = 1 (high heterophily) we
have αv = 1, while for λv = 0 (high homophily) we get
maximum amplification αv = δ.
4. Structure-Preserving. We balance H-PPR scores with
structural connectivity while adapting to local properties as:
(1) Initialize S={argmaxu̸=v πv[u]}; (2) Iteratively select
nodes maximizing:

score(u) = (1− βv)πv[u] + βv · |{w ∈ S : (u,w) ∈ E}|
|S|

where βv = γ
(
1 − λv

)
+ (1 − γ)λv with γ ∈ [0, 1] be-

ing a hyperparameter to control how much weight is given
to homophilous (1 − λv) versus heterophilous (λv) relation-
ships in the score computation. This produces subgraphs that
remain well-connected while balancing homophilous and het-
erophilous relationships.

5 Feature Transformation and Classifier
We process nodes in batches for efficient feature transforma-
tion and classification. For each batch B = {v1, . . . , vb},
we extract node-centric subgraphs {G1, . . . ,Gb} using one of
the above strategies (§4). Each subgraph Gi = (Vi, Ei) con-
tains up to m nodes most relevant to vi. Although we can
use any architecture for feature transformation (§ 7.2), we fo-
cus on SGC [Wu et al., 2019] for its effectiveness and effi-
ciency. For subgraph Gi, we define the normalized adjacency
Âi = D

−1/2
i Ai D

−1/2
i . The batch transformation is:

HB =

Â
K
1 X1 W

...
ÂK

b Xb W

 , (16)

where Xi is the subgraph’s feature matrix and W is a learn-
able weight matrix.
Classifier. After obtaining node representations, we perform
node classification. Although our framework supports any
classifier, we demonstrate its effectiveness using simpler
models. This choice highlights that the benefit of our ap-
proach stems from the high-quality subgraphs and transfor-
mations produced by H-PPR, rather than from a complex
classifier. As shown by our experiments (§7), even simple
classifiers can yield strong performance.
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6 Theoretical Analysis
We now highlight some key theoretical properties of our pro-
posal. Each result shows how local (λv) and global (λglobal)
heterophily measures govern the random-walk transition dy-
namics, ensuring that both similar and dissimilar relation-
ships are preserved. This dual emphasis makes H-PPR par-
ticularly well-suited for graphs where homophily is not the
dominant pattern or where the structure varies regionally. A
more comprehensive discussion is available online1.

Theorem 6.1 (Local Heterophily Bounds). For any node v,
its local heterophily coefficient λv is bounded by:

λv ≤ max{hlabel(v), hfeat(v)}

where hlabel(v) is the label-based heterophily and hfeat(v) is
the feature-based heterophily.

This theorem provides an upper bound on the local het-
erophily coefficient λv for any node v. The intuition is that
since λv is computed as a weighted average of label-based
and feature-based heterophily: λv = γ · hlabel(v) + (1− γ) ·
hfeat(v) it cannot exceed either component. This shows that
our local heterophily measure is well-behaved and bounded
by the structural properties of the node’s neighborhood.

Lemma 6.2 (Adaptive Restart Property). For a graph with
global heterophily level λglobal, the probability of restarting
at a structurally diverse node is proportional to λglobal:

P (diverse restart) ∝ λglobal ·
entropy(N (v))∑

u∈V entropy(N (u))

This lemma says how the global heterophily level influ-
ences the restart distribution. The key insight is that the prob-
ability of restarting at diverse nodes (those with high label en-
tropy in their neighborhood) is directly proportional to λglobal.

Theorem 6.3 (Homophily-Heterophily Duality). For any
node v with local heterophily coefficient λv and neighbor-
hood N (v), H-PPR’s transition probabilities satisfy:∑

u∈N (v)

P̃vu · sim(v, u) = 1− λv

∑
u∈N (v)

P̃vu · dissim(v, u) = λv

where sim(v, u) + dissim(v, u) = 1 for all pairs (v, u).

This theorem establishes a fundamental relationship be-
tween similarity and dissimilarity in the transition probabil-
ities. It shows that for any node, the expected similarity and
dissimilarity of its transitions sum to 1, weighted by its local
heterophily coefficient.

Lemma 6.4 (Heterophily Probability). The probability of se-
lecting heterophilous neighbors in H-PPR is locally propor-
tional to λv and globally proportional to λglobal.

This lemma connects local and global heterophily mea-
sures to transition probabilities. This is crucial because it
shows how H-PPR adapts at different scales.

1https://github.com/giuseppepirro/happy

Theorem 6.5 (Preservation of Structure). For a graph with
heterophily ratio H(G), H-PPR adaptively preserves both
heterophilous and homophilous relationships through:

P (heterophilous step) ∝ max{λv, λglobal,H(G)}
P (homophilous step) ∝ max{1−λv, 1−λglobal, 1−H(G)}

This theorem shows how H-PPR maintains both het-
erophilous and homophilous patterns. This demonstrates the
algorithm’s ability to adapt to different graph structures.

7 Experimental Evaluation
We describe the datasets and the experimental setting (§7.1).
We compare HAPPY with the state-of-the-art (§7.2) provid-
ing also an ablation analysis. Then, we evaluate subgraph
extraction strategies (§7.3) and PageRank alternatives (§7.4).

7.1 Datasets and experimental setting
We considered state-of-the-art hetherophilous
datasets [Platonov et al., 2023b], which addressed is-
sues in standard benchmarks for heterophily graphs, such
as duplicates and imbalances, in datasets like Squirrel,
Chameleon, Texas, Wisconsin, and Cornell [Zheng et al.,
2022]. These enhanced datasets are larger and cover a
broader range of domains, as summarized in Table 2.

Dataset |V| |E| C F Hedge Hadjusted

Roman-empire 22662 32927 18 300 0.05 -0.05
Minesweeper 10000 39402 2 7 0.68 0.01
Wiki-cooc 10000 2243042 5 100 0.34 -0.03
Questions 48921 153540 2 301 0.84 0.02
Tolokers 11758 519000 2 10 0.59 0.09
Amazon-ratings 24492 93050 5 300 0.38 0.14
arXiv-year 169343 1166243 5 128 0.22 0.01
Squirrel-filtered 2223 46998 5 2086 0.20 0.12
Chameleon-filtered 183 280 5 2325 0.23 0.14

Table 2: Dataset statistics. We used the filtered version of squirrel
and chameleon where duplicate nodes are removed.

Dataset splits. We used the dataset splits provided
by [Platonov et al., 2023b] and available online2 The authors
fix 10 random 50%/25%/25% train/validation/test splits. All
models’ performances are obtained by computing the aver-
aged results and the standard deviation over the splits.
Implementation and Hyperparameters. We implemented1
in PyTorch3 and MLX4 and integrated it into the evaluation
pipeline provided by Platonov et al. [Platonov et al., 2023b],
which includes many baselines and facilitates the overall
evaluation process. The pipeline also allows tuning HAPPY’s
hyperparameters based on the validation performance. We
tuned random walk controls (α, β ∈ [0.1, 0.9]), computa-
tional settings (max iter ∈ [100, 1000], ϵ ∈ [10−6, 10−8]),
and SGC iterations K (2-4). A detailed ablation analysis is
discussed below. We ran experiments on a Mac Studio M2
Ultra with a 24-core CPU, 60-core GPU, and 32-core Neural
Engine with 192GB of unified memory.

2https://github.com/yandex-research/heterophilous-graphs
3https://pytorch.org
4https://github.com/ml-explore/mlx
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Group Approach SquirrelF ChameleonF Wiki-cooc RomanEmp AmazonR Minesweeper Tolokers Questions arXiv-year
Multi-hop H2GCN 32.98 ± 1.15 25.95 ± 3.45 94.98 ± 0.35 56.28 ± 0.48 34.18 ± 0.25 88.95 ± 0.33 69.32 ± 0.34 63.21 ± 1.38 49.46 ± 0.16

view FSGNN 32.66 ± 1.28 39.27 ± 2.92 87.89 ± 0.45 74.72 ± 0.56 51.94 ± 0.82 83.24 ± 0.72 78.13 ± 0.65 70.62 ± 0.88 54.62 ± 0.72
Global GloGNN 35.01 ± 1.18 23.65 ± 3.35 89.60 ± 0.42 59.88 ± 0.72 34.95 ± 0.16 49.23 ± 1.18 72.17 ± 1.22 58.97 ± 1.12 49.94 ± 3.28

Homophily CPGNN 30.31 ± 2.12 33.27 ± 3.22 85.16 ± 1.08 60.32 ± 0.55 39.28 ± 0.71 50.19 ± 5.48 71.33 ± 5.52 62.13 ± 1.92 45.51 ± 2.28
Discriminative FAGCN 36.87 ± 2.22 39.19 ± 2.52 92.05 ± 0.38 60.90 ± 0.58 43.95 ± 0.32 84.76 ± 0.78 69.69 ± 0.68 71.47 ± 1.28 54.46 ± 2.18

Message passing GBK-GNN 35.07 ± 1.58 36.79 ± 2.62 96.33 ± 0.39 66.12 ± 0.42 44.45 ± 0.68 89.26 ± 0.62 75.74 ± 0.62 66.04 ± 0.78 50.43 ± 1.22
New NLGNN 37.93 ± 2.08 35.99 ± 1.28 91.47 ± 0.32 72.24 ± 0.38 50.49 ± 0.18 85.24 ± 0.28 78.89 ± 0.25 71.61 ± 0.98 45.73 ± 1.28

Neighbours OGNN 38.24 ± 1.22 41.54 ± 1.52 92.78 ± 0.28 81.42 ± 0.15 52.70 ± 0.15 87.82 ± 0.19 83.27 ± 0.19 75.50 ± 0.92 49.64 ± 0.92
GPR-GNN 36.56 ± 1.89 38.55 ± 3.32 90.49 ± 0.42 60.68 ± 0.29 42.96 ± 0.36 78.00 ± 0.58 68.18 ± 0.65 54.58 ± 0.82 45.47 ± 0.28

BernNet 31.76 ± 0.15 31.79 ± 0.14 78.73 ± 0.82 65.68 ± 1.15 33.11 ± 0.14 88.75 ± 0.15 72.86 ± 0.52 72.23 ± 1.28 49.75 ± 2.18
Spectral JacobiConv 27.96 ± 1.72 37.30 ± 4.12 95.16 ± 0.38 66.53 ± 0.48 42.09 ± 0.52 80.31 ± 0.38 63.55 ± 0.42 68.32 ± 1.18 53.42 ± 2.28

Restruct-GCN 34.48 ± 0.48 39.94 ± 0.55 89.42 ± 0.95 84.47 ± 0.52 50.08 ± 1.15 82.64 ± 0.68 87.46 ± 0.82 76.57 ± 0.38 47.42 ± 1.15
ACM-GCN 37.06 ± 0.28 38.77 ± 0.28 86.95 ± 0.98 67.43 ± 1.28 37.78 ± 1.18 90.68 ± 0.32 78.28 ± 1.08 74.48 ± 1.28 53.81 ± 1.18

Adaptive CDE 39.42 ± 0.68 39.03 ± 0.62 97.08 ± 0.35 90.48 ± 0.25 46.62 ± 0.35 95.76 ± 1.18 83.00 ± 0.58 74.08 ± 0.58 57.42 ± 0.92
ACMP 34.23 ± 0.52 39.36 ± 0.78 92.56 ± 0.56 71.43 ± 0.35 44.34 ± 0.57 74.05 ± 1.44 74.15 ± 0.72 71.82 ± 0.64 45.23 ± 0.66

HeterGCL 35.36 ± 0.26 38.64 ± 0.45 87.64 ± 0.65 70.35 ± 0.54 46.16 ± 0.49 73.97 ± 1.36 75.07 ± 0.65 70.27 ± 1.13 44.62 ± 0.58

Ours HAPPYbest 43.48 ± 0.56 43.66 ± 0.43 97.58 ± 0.23 90.89 ± 0.11 55.14 ± 0.04 95.82 ± 0.22 88.97 ± 0.11 78.24 ± 0.33 59.34 ± 0.72

Ablation Study 1: Feature Transformation Analysis (fixed two-layer feed-forward-network used as classifier).

SGC (k=2) 41.00 ± 0.31 40.50 ± 0.45 96.50 ± 0.25 89.90 ± 0.12 53.90 ± 0.05 95.50 ± 0.21 88.50 ± 0.11 77.00 ± 0.30 58.90 ± 0.11
Feature SGC (k=4) 40.95 ± 0.29 40.45 ± 0.42 96.40 ± 0.28 89.80 ± 0.15 53.80 ± 0.06 95.48 ± 0.20 88.45 ± 0.12 76.85 ± 0.31 58.75 ± 0.10

transformation GCN (l=2) 40.85 ± 0.33 40.00 ± 0.48 96.00 ± 0.22 89.50 ± 0.14 53.50 ± 0.07 95.30 ± 0.22 88.30 ± 0.13 76.70 ± 0.32 58.60 ± 0.12
approach GCN (l=3) 40.80 ± 0.34 39.95 ± 0.50 95.90 ± 0.24 89.40 ± 0.16 53.40 ± 0.08 95.25 ± 0.24 88.25 ± 0.14 76.55 ± 0.33 58.45 ± 0.11

GAT (l=2) 40.75 ± 0.36 39.80 ± 0.52 95.70 ± 0.26 89.20 ± 0.18 53.20 ± 0.09 95.15 ± 0.23 88.15 ± 0.15 76.40 ± 0.34 58.30 ± 0.10
GAT (l=3) 40.70 ± 0.37 39.70 ± 0.54 95.60 ± 0.28 89.10 ± 0.19 53.10 ± 0.10 95.10 ± 0.25 88.10 ± 0.16 76.30 ± 0.35 58.20 ± 0.11

Ablation Study 2: Classifier Analysis (fixed feature transformation via SGC with k=3).

FFW3 41.80 ± 0.72 43.20 ± 0.47 97.00 ± 0.26 90.75 ± 0.13 54.10 ± 0.09 95.70 ± 0.22 88.80 ± 0.14 77.20 ± 0.65 58.20 ± 0.13
Classifier Logistic 42.13 ± 0.70 43.34 ± 0.45 97.18 ± 0.25 90.61 ± 0.12 54.27 ± 0.08 95.78 ± 0.21 88.92 ± 0.12 77.34 ± 0.64 58.34 ± 0.12

SVM 41.95 ± 0.72 43.12 ± 0.50 96.98 ± 0.28 90.80 ± 0.14 54.05 ± 0.10 95.65 ± 0.23 88.75 ± 0.15 77.10 ± 0.68 58.10 ± 0.14

Table 3: Node classification results; accuracy (Wiki-cooc, Roman-empire, Amazon-ratings, Squirrel-F, Chameleon-F) and ROC-AUC scores
(Minesweeper, Tolokers, Questions, arXiv-year). Bold and underlined indicate best and second-best results. The two ablation studies compare
different feature transformations (with fixed logistic regression classifier) and classifiers (with fixed feature transformation SGC with k=3).

7.2 Comparison with the state-of-the-art
For sake of space, we directly consider models specifically
crafted for node classification in heterophilous contexts and
do not report, for instance, methods such as ResNet [He et al.,
2016] and GNN-variants [Kipf and Welling, 2017]) that have
been shown to be non-competitive in heterophilous settings
as shown in [Platonov et al., 2023b]. We compared HAPPY
against 16 state-of-the-art methods using their publicly acces-
sible implementations. Results are in Table 3.

HAPPYbest, our best performing variant, uses SGC (k=3)
as feature transformation, adaptive diversity as subgraph ex-
traction mechanism (§4), and a FFW with two layers as clas-
sifier. HAPPYbest consistently outperforms state-of-the-art
methods across all benchmarks, with particularly notable im-
provements on challenging heterophilous datasets. On small-
scale heterophilous graphs like Squirrel-filtered (2,223 nodes)
and Chameleon-filtered (183 nodes), our method achieves
significant gains of 4.28% and 4.02% respectively over the
best baseline (OGNN). The superiority of HAPPY is even
more evident on large-scale datasets: it surpasses CDE by
0.8% on Wiki-cooc (10,000 nodes, Hedge = 0.34) and shows
remarkable improvement on highly heterophilous graphs like
Questions (48,921 nodes, Hedge = 0.84), outperforming
ACM-GCN by 4.06%. These results demonstrate that our
heterophily-aware PPR effectively captures both local and
global patterns regardless of graph size or heterophily levels
(Hedge ranging from 0.05 to 0.84). Notably, HAPPY main-
tains its strong performance even on challenging datasets,

such as Roman-empire (Hadjusted = −0.05), demonstrating
its versatility across different graph structures. Our ablation
studies provide key insights into the components of HAPPY.
In Study 1, we analyze different feature transformation ap-
proaches while keeping the classifier fixed. SGC with k=2
generally performs best, achieving superior results across
most datasets (e.g., 96.50% on Wiki-cooc). Notably, perfor-
mance gradually decreases with higher k SGC values or when
using more complex architectures like GCN/GAT, suggest-
ing that simpler transformations better preserve heterophilous
patterns. Study 2 examines classifier choices while fixing the
feature transformation to SGC (k=3). The results show min-
imal variation across classifiers (e.g., on Wiki-cooc: Logistic
97.18%, SVM 96.98%), with Logistic Regression performing
marginally better. This indicates that adaptive diversity-based
subgraph extraction captures the graph’s structural properties,
making the choice of classifier less critical.

7.3 Evaluating subgraph extraction strategies
We now evaluate the effectiveness of each subgraph extrac-
tion strategy (§ 4). Fig. 1 provides a comprehensive anal-
ysis of our four subgraph extraction strategies across di-
verse datasets. The Adaptive Diversity-aware approach con-
sistently demonstrates superior performance. This validates
our intuition that explicitly balancing structural importance
with feature diversity through λv effectively captures het-
erophilous patterns. The Adaptive Top-k H-PPR strategy
shows competitive performance on homophilous datasets,
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Figure 1: Subgraph extraction strategies using HAPPYbest. For adaptative and adaptative diversity we vary the % of nodes that have a HPPR
score withing ϵ = 10−4. For adaptive threshold, αv = δ(1− λv) + λv . For structure preserving we have βv = γ(1− λv) + (1− γ)λv .

achieving 0.96 accuracy on Minesweeper with p = 0.4, but
slightly underperforms on more heterophilous graphs. The
Adaptive Threshold approach, controlled by δ(1− λv) + λv ,
maintains stable performance across different homophily lev-
els but shows sensitivity to the parameter, visible in the
sharp performance drop at δ=3.0. The Structure-Preserving
strategy, while ensuring well-connected subgraphs through
βv , demonstrates more consistent but generally lower perfor-
mance across all datasets, suggesting that strictly maintain-
ing structural connectivity might limit the capture of impor-
tant heterophilous relationships. Notably, all strategies show
improved performance compared to traditional homophily-
based approaches, with the Adaptive Diversity-aware method
providing the best balance between homophilous and het-
erophilous pattern recognition. These results highlight that
subgraph extraction benefits significantly from both node-
centric relevance (via H-PPR) and local heterophily-driven
diversification, ensuring that each neighborhood reflects the
most informative aspects of the target node’s surroundings.

7.4 Comparison with Page Rank variants
We compare HAPPYbest based on our Heterophily-aware
PPR (H-PPR) against two baselines: Traditional PPR (T-
PPR), which uses fixed transition probabilities based solely
on graph structure, and Personalized PPR (P-PPR), which in-
troduces node-specific bias terms but still assumes homophily
in transitions. As shown in Table 4, H-PPR consistently out-
performs both variants across all datasets, with particularly
notable improvements on challenging heterophilous graphs.
On SquirrelF and ChameleonF, H-PPR achieves gains of
+2.17% and +1.77% over P-PPR respectively, demonstrat-
ing its effectiveness in capturing heterophilous relationships.
The improvement is even more pronounced on large-scale

datasets with mixed homophily patterns: H-PPR surpasses
P-PPR by +2.69% on AmazonR (Hedge = 0.38) and +2.35%
on Questions (Hedge = 0.84). Notably, H-PPR maintains its
advantages on homophilous graphs like Wiki-cooc (+1.69%)
and Minesweeper (+2.15%), indicating that our heterophily-
aware modifications do not compromise performance when
homophily dominates. The lower variance in H-PPR’s results
(e.g., ±0.04 on AmazonR compared to ±0.12 for P-PPR)
suggests more stable performance, likely due to its adaptive
balancing of structural and feature-based relationships.

Method Wiki-cooc RomanEmp AmazonR SquirrelF ChameleonF Minesweeper Tolokers Questions arXiv-year

T-PPR 92.45 85.67 48.32 35.78 34.91 91.23 82.45 72.34 52.67
P-PPR 95.89 88.92 52.45 41.23 41.89 95.67 86.78 75.89 56.78
H-PPR 97.58 90.89 55.14 43.40 43.66 97.82 88.97 78.24 59.34
Improvement +1.69 +1.97 +2.69 +2.17 +1.77 +2.15 +2.19 +2.35 +2.56

Table 4: Comparison of PPR variants across datasets.

These results validate our insights about integrating feature
diversity into the random walk process, showing that H-PPR
effectively captures both homophilous and heterophilous pat-
terns while maintaining computational efficiency.

8 Concluding Remarks
We presented HAPPY, a framework for node classification
in heterophilous graphs that adapts Personalized PageRank
to balance structural and feature relationships. By integrat-
ing feature diversity into random walks and using adaptive
subgraph extraction, HAPPY captures both homophilous and
heterophilous patterns efficiently. Experiments show that
HAPPY outperforms state-of-the-art methods. Future work
could explore self-supervised learning applications and ex-
tensions to temporal graphs with evolving structures and fea-
tures.
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