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Abstract
Recent advancements in AI have made LLMs valu-
able tools for automating the interpretation of tex-
tual descriptions of business processes and for con-
verting formal process specifications into natural
language. However, there are no practical method-
ologies or systematic assessments to ensure these
automatic translations are faithful. This paper pro-
poses a novel approach, based on an auxiliary bidi-
rectional translation task, to assess LLMs perfor-
mance quantitatively; also, it empirically evaluates
the performance of state-of-the-art LLMs for bidi-
rectional translations between natural language and
declarative formal process specifications. The re-
sults reveal substantial variability in performance
among the LLMs, highlighting the importance of
LLM selection and confirming the need for a robust
method for assessing LLMs’ outputs.

1 Introduction
Ensuring the reliability and correctness of business processes
is critical, especially in domains like compliance manage-
ment, healthcare, and financial services, where compliance
to rules and regulations is essential [van der Aalst, 2022]. In
Declarative Process Mining [Di Ciccio and Montali, 2022],
formal specifications play a crucial role in verifying whether
process executions conform to certain behavioral constraints.
One widely used formalism for declarative process modeling
is the Declare specification language [van der Aalst et al.,
2009], whose semantics is based on Linear Temporal Logic
on Finite Traces (LTLf) [De Giacomo and Vardi, 2013]. De-
clare allows the definition of flexible, constraint-based rules
that describe the behavior of processes, such as response(a,b)
(i.e., b must eventually follow a) or not-coexistence(a,b) (i.e.,
a and b must never occur concurrently). Despite the ex-
pressive power of Declare writing specifications manually
is still a challenging, error-prone, and time-consuming task
that requires significant expertise in both process model-
ing and formal logic. In fact, translating natural language
(NL) descriptions of processes into formal Declare specifi-
cations is a challenge in process mining. For instance, con-
sider a process requirement stated in natural language: “Af-
ter an order is received, it must be processed immediately”.

While this is easily understood in natural language, convert-
ing it into a formal Declare specification such as chain-
response(OrderReceived, OrderProcessed) requires a deep
understanding of Declare’s syntax and semantics. This man-
ual translation process can be time-intensive and prone to er-
rors.

The reverse process – translating a formal Declare spec-
ification into natural language – is equally important for
validating and communicating process rules. For example,
a process modeler may generate a Declare rule such as
chain-precedence(Approval, Payment) to express that “Pay-
ment must be immediately preceded by Approval”. How-
ever, stakeholders or clients unfamiliar with the Declare for-
mal language might struggle to understand this specification.
Translating the formal rule back into natural language is es-
sential for ensuring that non-expert stakeholders can validate
whether the specification accurately reflects the intended pro-
cess behavior. In fact, while formal specifications like De-
clare are mathematically precise, they can be difficult to un-
derstand for non-experts and thus, converting Declare con-
straints into natural language bridges the communication gap
between verification engineers and non-expert stakeholders.

Recent advancements in Large Language Models (LLMs)
offer an opportunity to automate this translation tasks. LLMs,
trained on vast amounts of text, can assist in the translation
between natural language and Declare specifications. Re-
cent advancements in process mining have leveraged LLMs
with the aim of enhancing various aspects of business pro-
cess management [Berti, 2024; Berti et al., 2024; Berti et
al., 2023; Busch et al., 2023; Grohs et al., 2023; Jessen et
al., 2023; Kourani et al., 2024b]. These studies collectively
showcase the increasing interest toward the use of LLMs as a
tool for improving the accuracy, efficiency, and accessibility
of process mining and modeling. However, ensuring that the
translations obtained via LLMs are both accurate and consis-
tent with the original input remains a significant challenge.

Figure 1 illustrates the performance differences among var-
ious LLMs in translating between Declare models and nat-
ural language. Starting from a Declare model (center of
the figure), colored boxes represent the result of a two-step
translation process (from Declare to NL and back to De-
clare) performed by different LLMs using identical prompts.
The figure reveals high variability in how LLMs manage
this translations. High-performing models, such as GPT-4,
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Figure 1: An example of how different LLMs perform in the bidirectional translation between Declare models and natural language.

achieve precise and reliable translations in both directions. In
contrast, models like Gemma2 often prioritize simplicity, oc-
casionally at the expense of accuracy, while others, such as
Mistral-Nemo, introduce redundancies and inconsistencies in
their outputs.
Contributions. In this paper, we provide a framework for
the quantitative assessment of the ability of Large Language
Models to translate between natural language descriptions
and formal Declare specifications. We also evaluate the ac-
curacy and reliability of LLM-generated specifications using
purpose-built metrics that address both syntactic and seman-
tic correctness. The goal is to address the following research
questions: (i) How accurately can LLMs translate between
formal Declare specifications and natural language descrip-
tions? (ii) How do different LLMs compare in terms of per-
formance? (iii) What are the key challenges and limitations?
Organization. The rest of the paper is organized as follows.
Section 2 reviews related literature. Section 3 provides some
background. Section 4 introduces the framework, and Sec-
tion 5 reports the results of the experimental evaluation. Fi-
nally, Section 6 concludes the paper.

2 Related Work
The integration of Large Language Models (LLMs) in pro-
cess mining has gained attention, focusing on capabilities
like process discovery and conformance checking. Berti et
al. [Berti et al., 2023] highlight the need for benchmarks to
evaluate LLMs in process mining tasks. Other works, such
as [Berti et al., 2024], propose key LLM capabilities like
text-to-SQL conversion and evaluation strategies for ensur-
ing output accuracy. Tools like PM4Py.LLM [Berti, 2024]
and ProMoAI [Kourani et al., 2024a; Kourani et al., 2024b]
explore practical applications, leveraging LLMs to generate

and refine process models. Recent studies [Busch et al., 2023;
Jessen et al., 2023] focus on optimizing prompt engineering
for better LLM performance in process management. Fahland
et al. [Fahland et al., 2024] explored LLMs for explainable
AI in business processes through the SAX4BPM framework,
integrating process discovery, causal modeling, and XAI.
Bernardi et al. [Bernardi et al., 2024] introduced an LLM
framework using Retrieval-Augmented Generation (RAG) to
enhance process knowledge in public administration. LLMs
have also been applied to process discovery, for translating
textual descriptions into imperative and declarative models
[Fill et al., 2023; Fuggitti and Chakraborti, 2023; Grohs et al.,
2023], and for learning temporal formulas that separate posi-
tive and negative examples [Duranti et al., 2024] (also known
as passive learning [Bordais et al., 2025], where symbolic
techniques are more typical [Camacho and McIlraith, 2019;
Raha et al., 2022; Ielo et al., 2023]). Conversational mod-
eling has similarly used LLMs to iteratively refine process
models based on feedback [Klievtsova et al., 2023].

LLMs have also been used to generate Linear Temporal
Logic (LTL) formulas from natural language descriptions.
Tools like nl2spec [Cosler et al., 2023] and SYNTHTL [Hahn
and Trippel, 2024] use LLMs to convert natural language into
LTL, while benchmarks such as LTLBench [Tang and Belle,
2024] and TIMEBENCH [Chu et al., 2024] provide stan-
dardized tests for evaluating LLMs’ performance in handling
complex temporal logic tasks.

3 Preliminaries
3.1 The Declare Language
Process Mining [van der Aalst, 2022] lies at the intersection
of Process Science and Data Science, focusing on analyzing
and improving processes, which are sequences of activities
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Class Template name LTLp formula

Existence

existence(x) F (x); same as existence(1, x)
existence(n, x) F (x ∧ X (existence(n-1, x)))
absence(x) ¬existence(x); same as absence(1, x)
absence(n, x) ¬existence(n, x)
exactly(x) existence(x) ∧ absence(2, x)
exactly(n, x) existence(n, x) ∧ absence(n+1, x)

Choice choice(x, y) F (x) ∨ F (y)
exclusive-choice(x, y) choice(x, y) ∧ ¬(F (x) ∧ F (y))

Relation

responded-existence(x, y) F (x) → F (y)
coexistence(x, y) responded-existence(x, y) ∧ responded-existence(y, x)
response(x, y) G (x → F (y))
precedence(x, y) (¬y U x) ∨ G (¬y)
succession(x, y) response(x, y) ∧ precedence(x, y)
alternate-response(x, y) G (x → X (¬x U y))
alternate-precedence(x, y) precedence(x, y) ∧ G (y → Xw(precedence(x, y)))
alternate-succession(x, y) alternate-response(x, y) ∧ alternate-precedence(x, y)
chain-response(x, y) G (x → X (y))
chain-precedence(x, y) G (X (y) → x) ∧ ¬y
chain-succession(x, y) chain-response(x, y) ∧ chain-precedence(x, y)

Negation
neg-response(x, y) G (x → ¬X F (y))
neg-chain-response(x, y) G (x → ¬X (y))

Table 1: Declare templates organized in classes. x and y are placeholders for activities.

aimed at achieving specific goals. Process models can be cat-
egorized into two types: imperative models, which explic-
itly define all valid process executions, and declarative mod-
els, which specify desired properties through constraints that
valid process executions must satisfy, rather than prescribing
a step-by-step flow [Di Ciccio and Montali, 2022]. Declara-
tive modeling is flexible, as it allows any behavior that does
not violate the given set of constraints. The most widely used
declarative modeling language is Declare [van der Aalst et
al., 2009], a constraint-based language, whose constraints are
formalized as formulas using Linear Temporal Logic on Fi-
nite Traces (LTLf) [De Giacomo and Vardi, 2013], and ac-
tually, one of its variants called Linear Temporal Logic on
Process Traces (LTLp) [Fionda and Greco, 2018], providing
a robust framework for reasoning about temporal properties
of processes.

LTLp is a modal logic used to describe temporal relation-
ships between events over a finite, linearly ordered timeline.
Temporal operators of LTLp relate events that occur at dif-
ferent points in time. The logic is built on a set A of activ-
ities, which are treated as propositional variables, and uses
standard Boolean connectives and some temporal operators.
Formally, LTLp formulas φ are constructed according to the
following grammar:

φ ::= ⊤ | a | ¬φ | φ ∧ φ | X φ | φ U φ,

where a is any activity from the set A, and φ, φ1, and φ2 are
LTLp formulas. Common propositional logic operators (e.g.,
disjunction ∨, implication →, and co-implication ↔) are as-
sumed, along with several shorthand notations for temporal
operators: Eventually F φ ≡ ⊤ U φ, Always G φ ≡ ¬F ¬ϕ,
and Weak Next Xwφ ≡ ¬X ¬φ ≡ X φ ∨ ¬X ⊤.

A finite trace is a sequence π = π0 · · ·πn−1 of n state,
where each state πi ⊆ A and |πi| = 1 for i = 0, . . . , n −
1, and n ∈ N. The length of the trace, denoted |π|, is the
number of states in the sequence. Let φ be an LTLp formula,
π a finite trace, and 0 ≤ i < |π| an index. The satisfaction
relation, denoted by π, i |= φ, indicates that the formula φ is
satisfied at position i of the trace π and is defined recursively
as follows:

π, i |= ⊤ iff i < |π|
π, i |= a iff a ∈ πi;
π, i |= ¬φ′ iff π, i |= φ′ does not hold;
π, i |= (φ1 ∧ φ2) iff π, i |= φ1 and π, i |= φ2;
π, i |= X (φ′) iff i < |π| and π, i+ 1 |= φ′;
π, i |= (φ1 U φ2) iff ∃j with i ≤ j < |π| such

that π, j |= φ2 and ∀k with
i≤k<j it holds that π, k |= φ1.

Whenever π, 0 |=φ holds, we say that π satisfies φ (also
indicated by π|=φ).

The language underlying Declare provides a wide range
of commonly used template, as shown in Table 1. These tem-
plates are categorized into four main classes [Maggi et al.,
2011]: existence template that specify whether a given tar-
get activity must or must not be executed, potentially a certain
number of times; choice template, that model decisions about
the execution of activities, indicating that one or more activ-
ities must be chosen; relation template, that indicate that if
a source activity is executed, a corresponding target activity
must also be executed, possibly with additional conditions;
negation template, which ensure that if a source activity is
executed, the target activity must not be executed, potentially
with further restrictions. A Declare formula (over A) is a
conjunction of Declare constraints, that are Declare tem-
plate instantiated with some activities in A.

3.2 Large Language Models
Large Language Models (LLMs) represent a significant ad-
vancement in the field of artificial intelligence, particularly
in natural language processing. These models are pre-trained
on vast amounts of text data and fine-tuned to perform vari-
ous tasks, such as text generation, summarization, translation,
and question-answering. LLMs operate based on deep learn-
ing architectures, typically employing transformer models,
such as BERT [Devlin et al., 2019], GPT [Radford, 2018],
and their numerous variations. The transformer architec-
ture [Vaswani et al., 2017] has become the foundation for
modern LLMs due to its ability to handle long-range depen-
dencies. The central concept behind LLMs is their capac-
ity to learn language patterns and semantic meanings from
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Figure 2: Framework for evaluating LLM capabilities over Declare
specifications.

extensive datasets. This allows them to generalize well to
various NLP tasks without the need for task-specific training
from scratch. LLMs are trained using self-supervised learn-
ing, where the model predicts missing words or sequences
in a sentence. This pre-training process, followed by fine-
tuning on specific tasks, equips the model to handle a wide
range of linguistic challenges, including ambiguity, context-
switching, and even creativity in language generation.

4 Framework
The framework we propose is summarized in Figure 2. It con-
sists in a bidirectional translation between formal Declare
specifications and their corresponding natural language de-
scriptions using Large Language Models (LLMs). The pro-
cedure begins with an initial formal specification in Declare,
denoted as φ. First the LLM is asked to convert the formal
Declare specification φ into a natural language description.
A pre-defined prompt including some information regarding
Declare syntax and constraints semantics is used to guide
the LLM in translating the set of constraints into an under-
standable natural language representation. This natural lan-
guage description serves as a human-readable explanation of
the constraints encoded in φ. In the next step, the natural lan-
guage description produced by the LLM is used to ask to the
same LLM to translate it back into a Declare specification
(the result of this second translation is denoted as φ′). Using
another tailored prompt, the LLM attempts to regenerate a
formal specification that matches the original Declare spec-
ification φ. The final step of the framework involves evalu-
ating the accuracy of the bidirectional translation. The two
Declare specifications, φ (the original specification) and φ′

(the regenerated specification), are compared using the met-
rics described below.
Constraint-based Similarity. This metric compares the set
of constraints of the original and generated specifications. It
allows to determine how closely the structure and syntax of
the generated specification matches the original one. More
formally, it is defined as the Jaccard similarity between the
set of constraints in φ and the set of constraints in φ′:

Const-Sim(φ,φ′) =
|Cφ ∩ Cφ′ |
|Cφ ∪ Cφ′ |

where Cφ represents the set of constraints in the original
specification, Cφ′ represents the set of constraints in the gen-
erated specification, | · | denotes the cardinality (i.e., the num-
ber of elements in the set), Cφ ∩ Cφ′ represents the intersec-
tion of the two sets (common constraints), Cφ ∪ Cφ′ repre-
sents the union of the two sets (all distinct constraints from
both specifications). This measure provides a value between
0 and 1, where 1 indicates perfect similarity (i.e., all con-
straints are identical), and 0 indicates no similarity (i.e., no
common constraints).
Soundness, Completeness and Semantic Equivalence. To
verify that two Declare models, φ and φ′, describe the same
process behavior despite potential syntactic differences, we
assess their soundness (σ), completeness (γ), and semantic
equivalence (SemEq). This is achieved by translating both φ
and φ′ into equivalent LTLp formulas and evaluating whether
they impose the same constraints on process executions, that
is if φ → φ′ and φ′ → φ. Formally, these measures are
defined as follows:

σ(φ,φ′) =

{
1 ∀π ∈ A∗, π |= LTLp(φ) ⇐ π |= LTLp(φ

′)

0 otherwise

γ(φ,φ′) =

{
1 ∀π ∈ A∗, π |= LTLp(φ) ⇒ π |= LTLp(φ

′)

0 otherwise

SemEq(φ,φ′) = min(σ(φ,φ′), γ(φ,φ′))

Where: A∗ is the set of all possible finite traces over the
alphabet A of activities of the process under consideration, π
represents a specific finite trace (process execution), LTLp(φ)
and LTLp(φ

′) correspond to the LTLp representations of the
original φ and generated φ′ Declare specifications, π |= ϕ
denotes whether the formula ϕ is satisfied by the trace π under
LTLp semantics. The measures check that for every possible
trace π, the relationships between φ and φ′ accurately reflect
their intended equivalence under LTLp semantics: soundness
ensures that all behaviors allowed by φ′ are also allowed by
φ, completeness verifies that all behaviors allowed by φ are
also allowed by φ′, and semantic equivalence ensures that
φ and φ′ yield the same truth value (both satisfying or both
not satisfying) across all possible traces. When soundness
and completeness both hold, the specifications are deemed
semantically equivalent, indicating that they impose identical
constraints on process executions and fully capture the same
process behavior.
Trace-based Similarity. This metric compares how φ and φ′

behave across a set of generated process traces. By examin-
ing their responses to execution traces up to a given length k,
we quantify the behavioral similarity between the two speci-
fications. More formally it is defined as:

Trace-Sim(φ,φ′, k) =

1− 1

|Tk|
∑
π∈Tk

I (π |= LTLp(φ) ̸⇔ π |= LTLp(φ
′))

where Tk is the set of traces of length up to k, I(·) is the
indicator function, which returns 1 if the condition inside is
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true (i.e., the LTLp representations of φ and φ′ do not have
the same truth value on trace π), and 0 otherwise, |Tk| is the
number of traces in the set Tk. This metric provides a normal-
ized score between 0 and 1, where 1 means φ and φ′ behave
identically on all traces and 0 means φ and φ′ behave differ-
ently on all traces up to length k.

The proposed framework is agnostic to machine learning
models and allows for a comprehensive assessment of the
LLMs’ performance in translating between formal Declare
specifications and natural language. By evaluating both the
syntactic and semantic properties of the generated specifica-
tions, we can determine the effectiveness and reliability of the
LLMs in preserving the meaning of formal process models.

5 Experimental Evaluation
5.1 Experimental Setting

Dataset. The experimental evaluation is conducted on a syn-
thetic benchmark dataset. The dataset aims to test the trans-
lation capabilities of LLMs under controlled complexity. The
dataset consists of Declare specifications generated by vary-
ing two parameters: (i) the number n of Declare constraints,
and (ii) the number m of distinct activities. For each pair of
(n, m), we generated 15 satisfiable models (i.e., models ad-
mitting at least one satisfying execution trace) by randomly
picking n Declare constraints and instantiating them with
activities selected uniformly at random from the m available
ones. We considered the following combinations of n and
m: (5,3), (5,5), (5,8), (10,3), (10,5), (10,8), (15,5), (15,8),
(15,10), (20,5), (20,8), (20,10).
Prompts. To inform the LLM regarding the syntax and se-
mantics of Declare, we provide a fixed prompt to the LLM
with a detailed list of Declare constraints, their associated
semantics, and examples illustrating their application. This
prompt establishes the context for the LLM, defining its task
as that of translating between the formal Declare modelling
language and natural language. For instance, the translation
from Declare to natural language emphasizes precise, un-
ambiguous English descriptions of constraints, such as “Re-
sponse $0 $1” translating into “Every time $0 occurs, $1 must
occur as well in the future.” Similarly, translating from natu-
ral language to Declare involves the LLM interpreting struc-
tured sentences and outputting the corresponding formal con-
straints.
LLMs. We evaluate the performance of several state-of-the-
art LLMs for translating between natural language and De-
clare specifications: Gemma2, Gemma2-27B, LLaMA3.1-
8B, LLaMA3.1-70B, LLaMA3.2, LLaMA3.3, Mistral-
Nemo, Qwen2-72B, GPT4-Turbo and GPT4o. The tested
LLMs span a range of capabilities and architectures, offering
different strengths and trade-offs. Lightweight models like
Gemma2 prioritize speed and efficiency, making them suit-
able for simpler tasks, though they may struggle with com-
plex logical reasoning. Mid-tier models such as LLaMA3.1-
8B and Mistral-Nemo balance efficiency with enhanced con-
textual fluency, excelling in readability and interpretability,
though they may sacrifice precision in intricate tasks. On
the higher end, models like LLaMA3.3 and GPT4 have im-

proved logical reasoning capabilities and leverage large pa-
rameter counts that allow to handle nuanced and complex in-
puts, showcasing higher robustness. Each model has been
evaluated on the translation of Declare specifications into
natural language descriptions and the reverse translation of
natural language descriptions into Declare specifications.
Implementation details. The developed framework han-
dles the translation of Declare specifications into natural lan-
guage (and vice versa) using OpenAI APIs to interact with
the various LLMs1. For the computation of semantic met-
rics, it leverages a symbolic approach based on Answer Set
Programming (ASP [Brewka et al., 2011; Gelfond and Lif-
schitz, 1991]) and LTLf satisfiability solvers. Let φ be the
original Declare specification and φ′ the Declare specifica-
tion resulting from the bidirectional translation. The Sound-
ness and Completeness metrics are computed using the LTLf
solver aaltaf [Li et al., 2020], which checks the validity
of the LTLp formulas φ → φ′ and φ′ → φ. The results of
these checks are then combined to derive the Semantic Equiv-
alence metric. Trace-based Similarity is calculated using a
system for answer set model counting [Eiter et al., 2024], ap-
plied to an ASP encoding for bounded satisfiability [Fionda
et al., 2024] of LTLf specifications. Informally, this approach
counts the number of counterexamples (of bounded length) to
the LTLp formula φ ↔ φ′. Trace-based Similarity was com-
puted using counterexamples of length up to 10. All data,
prompts and code to reproduce the experiment is available in
supplementary material.

5.2 Results
In this section, we analyze the translation capabilities of the
considered LLMs via the specific metrics discussed in Sec-
tion 4 (i.e., Constraint-based Similarity, Soundness, Com-
pleteness, Semantic Equivalence, and Trace-based Similarity)
on the synthetic dataset discussed in the previous section.

Performance Overview
Figure 3 provides a comparison of LLM performance using
box plots for Constraint-based Similarity and Trace-based
Similarity. The median values and interquartile ranges in-
dicate significant differences across models, especially for
Constraint-based Similarity. GPT4o shows the highest me-
dian performance across all metrics, with narrow interquar-
tile ranges, indicating consistent accuracy. Among the top-
performing LLMs, LLaMA3.3 and GPT4-Turbo show higher
variability, suggesting its performance is less reliable for
complex configurations.

The bar chart reported in Figure 4 illustrates the proportion
of formulas for which the binary metrics –Semantic Equiv-
alence, Completeness, and Soundness– hold across the var-
ious large language models (LLMs) on all input specifica-
tions. The LLMs are reported on the x-axis, while the y-
axis shows the proportion of formulas (ranging from 0 to 1)
where the corresponding semantic metric evaluates to 1. The
chart reveals that models such as GPT-4-Turbo, GPT-4o and
LLaMA3.3 demonstrate consistently high proportions across

1All LLMs, except for the GPT-family, were run locally using
the ollama project.
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Figure 3: Performance of all LLMs across the two metrics: (a)
Constraint-based Similarity and (b) Trace-based Similarity.
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Figure 4: Semantic metrics evaluation across different LLMs.

all metrics, indicating robust performance in maintaining se-
mantic properties. In contrast, variability is observed in other
models; for instance, Qwen2-72B shows lower proportions
for Completeness but high proportion for Soundness. Over-
all, LLMs appear to be more adept at generating Soundness
translations than Complete ones, suggesting that the resulting
output specifications are frequently overconstrained.

Figure 5 shows the performance of the various LLMs
across different parameter configurations. The shaded re-
gions around the lines represent confidence intervals, reflect-
ing the variability among Declare models for the respec-

tive parameter settings. As it can be noted, as the number
of activities increases, there is a consistent downward trend
in both Constraint-based Similarity and Trace-based Simi-
larity. In particular, some models, such as Gemma2 and
LLaMA3.2, show higher variability as activities increase, in-
dicating higher sensitivity to larger alphabets. Conversely,
while an increase in constraints generally results in a decreas-
ing performance for Constraint-based Similarity, Trace-based
Similarity displays mixed trends, suggesting this metric is
more robust wrt the complexity of logical constraints. Models
like GPT4-Turbo, GPT4o and LLaMA3.3 shoe stronger per-
formance in Constraint-based Similarity, while GPT4-Turbo,
GPT4o and Gemma2-27B excel in Trace-based Similarity.
Since larger shaded regions around the lines indicate in-
consistent performance, we can notice that models such as
Mistral-Nemo and LLaMA3.2 show a more accentuate vari-
able behavior. In constrast, high-performing models, such
as GPT4-Turbo and GPT4o, exhibit consistent and robust
performance, as reflected by narrower confidence intervals
across all plots.

Model-Specific Strengths
Radar charts reported in Figure 6 compare the performance of
individual LLMs across all metrics. Each chart represents the
performance of an individual LLM, highlighting its strengths
and weaknesses. GPT4o shows strong and balanced perfor-
mance across most metrics, with near-complete coverage in
the radar chart, indicating robust capabilities according to
both semantic and syntactic metrics. In contrast, models like
LLAMA3.3 and GPT4-Turbo show moderate performance,
achieving reasonable scores on Constraint-based Similarity
and Trace-based Similarity while being weaker on Semantic
Equivalence, Completeness, and Soundness. Mistral-Nemo
and LLAMA3.2 exhibit weaker performance, with smaller
coverage in the radar chart. Models such as Gemma2-27b
and Qwen2-72b show mixed strengths, excelling in specific
metrics like Trace-based Similarity while underperforming in
other measures like Semantic Equivalence.

Many models struggle with Completeness and Soundness,
which assess the logical implications between the original
and generated formulas. These metrics are critical for ensur-
ing semantic correctness, and the smaller coverage on these
axes suggests that further improvement in logical reasoning
capabilities is necessary for most models. However, most
models perform well on Trace-based Similarity, suggesting
that while semantic issues persist, the majority of process be-
haviors are accurately captured.

5.3 Discussion
Models such as GPT4-Turbo, GPT4o, LLaMA3.3 and
LLaMA3.1-70B consistently show high performance, even
when faced with high-complexity scenarios characterized by
a large number of constraints and a smaller alphabet size.
This indicates their strong ability to handle intricate log-
ical relationships and maintain accurate translations under
challenging conditions. In contrast, lightweight models like
LLaMA3.2 and Mistral-Nemo, while offering efficiency in
terms of computational resources, exhibit notable trade-offs
in terms of accuracy and reliability.
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Figure 5: Line charts for the various metrics across all LLMs.
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Figure 6: Radar charts for the various LLM performance across all similarity measures.

A closer examination of GPT4o reveals its exceptional con-
sistency and robustness. The narrow interquartile range ob-
served in its performance metrics underscores its reliability,
as it provides consistent results across diverse configurations.
This reliability, combined with high accuracy, makes GPT4o
a standout choice for both simple and complex tasks.

6 Concluding remarks
This paper presented an in-depth evaluation of Large Lan-
guage Models (LLMs) for bidirectional translations between
natural language descriptions and formal Declare specifi-
cations. Our results demonstrate that while some models,
such as GPT4-Turbo and GPT4o, exhibit strong performance,
other models like Mistral-Nemo and LLaMA3.2 show limita-
tions, particularly in maintaining semantic equivalence and
logical correctness. The findings emphasize the importance
of model selection based on the task requirements. High-
performing models provide a reliable foundation for appli-

cations requiring accurate and consistent translations, while
lightweight models may be more suitable for simple pro-
cess models or limited computational resources. Nonetheless,
challenges persist when considering the soundness and com-
pleteness of LLM’s translations, where even top-performing
models struggle to maintain logical consistency between the
original and generated specifications. Future works could
focus on developing tailored fine-tuning strategies to ad-
dress these limitations. Additionally, incorporating user feed-
back could further improve the applicability and reliability of
LLMs in declarative process mining.
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