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Abstract

In an approval-based committee election, the goal
is to select a committee consisting of k out of m
candidates, based on n voters who each approve an
arbitrary number of the candidates. The core of such
an election consists of all committees that satisfy a
certain stability property which implies proportional
representation. In particular, committees in the core
cannot be “objected to” by a coalition of voters who
is underrepresented. The notion of the core was
proposed in 2016, but it has remained an open prob-
lem whether it is always non-empty. We prove that
core committees always exist when k < 8, for any
number of candidates m and any number of voters
n, by showing that the Proportional Approval Vot-
ing (PAV) rule, proposed by Thiele in 1895, always
satisfies the core when k < 7 and always selects at
least one committee in the core when k = 8. We
also develop an artificial rule based on recursive ap-
plication of PAV, and use it to show that the core is
non-empty whenever there are m < 15 candidates,
for any committee size k < m and any number of
voters n. These results are obtained with the help of
computer search using linear programs.

1 Introduction

The seminal work of Aziz et al. [2016; 2017] introduced a
rigorous way of reasoning about voter representation in multi-
winner elections. Their model considers approval-based com-
mittee elections, where the task is to identify a committee
W C C of k out of m candidates, based on the preferences of
a set of voters N, with each i € N indicating a subset A; C C
of candidates that i approves. Aziz et al. [2017] formulated
a compelling axiom called Extended Justified Representation
(EJR) which gives representation guarantees to every group
of voters who approve sufficiently many candidates in com-
mon. Researchers discovered that voting rules developed 130
years ago by Thiele [1895] and Phragmén [1894] satisfy this
or related axioms [Brill et al., 2023; Aziz et al., 2017; Jan-
son, 2016]. Interesting new rules satisfying EJR have recently
been developed [Aziz et al., 2018; Peters and Skowron, 2020;
Brill and Peters, 2023], with one of them (the “Method of

Equal Shares”) now in active use for the participatory budgets
in several cities in Poland, Switzerland, and the Netherlands.

Aziz et al. [2016; 2017, Section 5.2] also defined another
representation axiom that is significantly stronger than EJR,
called core stability in analogy to a similar concept from coop-
erative game theory. A committee W is core stable if for every
set T C C, there are not too many voters who prefer the set T
to W, namely we have

|{ieN:|AiﬁT|>|A,~ﬂWl}|<|T|'%-

If this inequality were violated for some 7', then the set of
voters on the left-hand side could form a blocking coalition
of a size that is large enough for the coalition to “deserve” to
decide to include T in the committee.

The EJR property is weaker than core stability (as under
EJR voters are only allowed to join the blocking coalition if
they approve all the candidates in 7, i.e., |A; N T| = |T]), but
in exchange there are several attractive voting rules satisfying
EJR. On the other hand, Aziz et al. [2016; 2017] noted that
“the core stability condition appears to be too demanding, as
none of the voting rules considered in our work is guaranteed
to produce a core stable outcome”. No such voting rules
have been discovered since. They conclude: “It remains an
open question whether the core [is always] non-empty.” This
question remains open more than 8 years later.

Some amount of progress has been made, and in particu-
lar it is known that there always exist committees satisfying
approximate variants of the core [Peters and Skowron, 2020;
Jiang et al., 2020; Munagala et al., 2022b], and the core exists
on single-peaked approval profiles [Pierczynski and Skowron,
2022] and on profiles where each candidate has at least k
copies [Brill et al., 2022].

To the best of my knowledge, the only known existence
result that holds in general is that the core is non-empty for
k = 3, which Cheng et al. [2020, Section 3.1] showed by case
analysis. Cheng er al. [2020] conclude that a “major open
question is the existence of deterministic stable committees in
the Approval Set setting, generalizing our positive result for
k = 3 to general k. We conjecture that such a stable committee
always exists. Via computer-assisted search, we have shown
that this conjecture holds for small numbers of voters and
candidates (m +n < 14)”

It might seem surprising that the state of the art has not
improved beyond these very small parameter values. In par-
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ticular, there is a natural way of using mixed integer linear
programming (ILPs) to search for counterexamples to core
existence: fix m and k, and introduce a fractional variable
for each possible ballot, indicating what fraction of the voters
submit this ballot. Then, for every committee, enforce using
binary variables that there is at least one successful core devi-
ation. If an ILP solver determines that the resulting program
is infeasible, this implies the non-emptiness of the core for m
and k, for any number n of voters. Unfortunately, the size of
this program grows rapidly, and they are not easy to solve even
for very small sizes (Gurobi solves m = 7, k = 5, in 450s, but
did not solve m = 7, k = 4 after 134 000s (37h) on 8 cores).!

In this paper, by deriving a new way of using solvers, we
show that the core always exists for committee sizes up to
k = 8, for any number of candidates (improving upon the
previous result for £ = 3). We also show that the core always
exists when the number m of candidates is at most 15, for any
k < m. Both results hold for any number n of voters.

These results are obtained by analyzing variants of Pro-
portional Approval Voting (PAV), the voting rule proposed
by Thiele [1895]. This voting rule works by maximizing a
carefully chosen objective function over the set of all commit-
tees of size k. We show via linear programs that PAV always
selects a core-stable committee when k < 7, and that it always
selects at least one core-stable committee when k = 8, per-
haps tied with other committees that fail core-stability. This
performance of the PAV rule is remarkable, and contrasts with
other rules such as the Phragmén rule and the Method of Equal
Shares which fail the core for k = 6 and k = 7, respectively
(see Footnote 3). In many applications, the number of seats to
fill will be 8 or fewer, and thus our result suggests that PAV is
a good rule for such contexts.’

For the results about limited numbers of candidates, we con-
sider a recursive version of PAV where, if the PAV committee
fails the core because some set 7 has too much support, we
then re-compute PAV subject to the constraint that 7 € W and
without taking into account the voters who were part of the
blocking coalition. If the result still fails core-stability, we add
additional constraints. We show that if m < 15, this process al-
ways terminates with a core-stable committee. However, there
are examples where the rule is not in the core for m = 16.

As mentioned, these results were obtained with the help
of linear programming. This becomes feasible even for
these quite large sizes because we can fix one committee,
and add constraints that this committee is the one selected
by the voting rule under consideration. This is much sim-
pler than a program that needs constraints for all possi-
ble committees. Linear programming has been used be-
fore to analyze sequential versions of PAV [Skowron, 2021;
Sénchez-Ferndndez et al., 2017]. The infeasibility of the rele-

IThe same problem can also be encoded as an SMT problem on
linear arithmetic. This can sometimes lead to faster solve times, but
it is also only feasible for very small sizes.

2Note, however, that even for k = 6, PAV may select committees
that fail laminar proportionality [Peters and Skowron, 2020] and
are intuitively unfair. A three-voter example for k = 6 is A} =
{c1,¢2,¢3}, Ay = {c1,¢2,c4}, and A3 = {cs,c6,c7} where W =
{c1,c2,¢3,¢5,c6,c7} is a global PAV committee (tied with others)
while laminar proportionality demands that {c1, ¢3,¢3,c4} C W.

vant programs can be compactly certified via Farkas’ lemma,
allowing efficient verification of our results without having
to trust a solver. Code for these tasks is available at https:
//github.com/DominikPeters/core-few-candidates/. Some de-
tails and proofs have been omitted in this conference version
due to space constraints; these can be found in the full version
at arXiv:2501.18304 [Peters, 2025].

2 Related Work

Barriers to core existence. Proving that the core is non-
empty is difficult because several natural strategies are known
not to work. Importantly, all known voting rules that satisfy
weakenings of the core such as EJR fail the core, includ-
ing the PAV rule [Aziz et al. 2017, Example 6; Peters and
Skowron 2020, Section 1]. Peters and Skowron [2020, The-
orem 10] show that every welfarist rule (one that depends
only on voter utilities) must fail the core. They also show that
every voting rule satisfying the Pigou—Dalton principle (which
says that outcomes that induce a more equitable social welfare
distribution should be preferred; this is satisfied by PAV) can-
not satisfy the core, and indeed cannot provide better than a
2-approximation to it Peters and Skowron [2020, Theorem 5].

Computational complexity. It is NP-hard to compute the
PAV rule [Aziz et al., 2015, Corollary 1], but it is fixed-
parameter tractable for a variety of parameters [Yang and
Wang, 2023]. A local search variant of PAV retains its propor-
tionality properties and can be computed in polynomial time
[Aziz et al., 2018] for an appropriately chosen tolerance pa-
rameter [Kraiczy and Elkind, 2024]. The problem of checking
whether a given committee is in the core is coNP-complete
[Brill et al., 2022, Theorem 5.3] and remains hard even when
every voter approves at most 6 candidates, and each candidate
is approved by at most 2 voters [Munagala et al., 2022a, Theo-
rem 1]. The verification problem is also hard to approximate
to within a factor better than 1 + 1/¢ [Munagala ef al., 2022a,
Theorem 2], though a logarithmic approximation algorithm
exists [Munagala et al., 2022a, Theorem 3].

More general settings. We work in the model of approval-
based committee elections. If non-approval preferences are
allowed (such as cardinal additive valuations), the core may
be empty [Fain et al. 2018, Appendix C; Peters et al. 2021,
Example 2]. For participatory budgeting applications, one
can replace the cardinality constraint in the definition of a
committee by a knapsack constraint. For this non-unit cost
setting, approval votes have several interpretations [Rey and
Maly, 2023, Section 3.4.2]. One option is cost utilities, which
measures a voter’s utility by the total cost of approved winning
projects. For this utility model, the core may be empty [Maly,
2023]. For cardinality utilities, where the voter’s utility is the
number of approved winning projects, the non-emptiness of
the core is an open question.

Approximate core. Core stability can be relaxed through
multiplicative approximations, in two main ways. Say that
a committee W is in the (a, 8)-core, o, > 1, if we have
H{i e N:|ANT| > a-|A;n W[} < B-|T|- ¢ for every
potential deviation T. For @« = 8 = 1, this is the core; for
a > 1, every member of the blocking coalition must increase
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their utility by a factor of «; for 8 > 1, we require that blocking
coalitions must be larger than usual by a factor of S.

Peters and Skowron [2020] show that PAV is in the (2, 1)-
core, and that the Method of Equal Shares is in the (log k, 1)-
core (or a mild relaxation of that concept). Munagala et
al. [2022b] show that the (9.27, 1)-core is non-empty even
for general additive valuations. Fain et al. [2018, Appendix C]
show that the (1 + &, 1)-core is non-empty if it is additionally
additively relaxed. Jiang et al. [2020] show that the (1, 16)-
core is non-empty, via rounding a stable lottery [Cheng et al.,
2020]; they conjecture that at least the (1, 2)-core is always
non-empty. A similar rounding technique has been used to
analyze Condorcet winning sets [Charikar ez al., 2024].

Fractional models. Analogs of core-stability have also been
defined in fractional models. For example, Aziz ef al. [2020]
consider “fair mixing” in an approval-based model, where
the output is a probability distribution over candidates (which
can be interpreted as a division of a budget). They show that
the rule maximizing Nash welfare (which is related to the
PAV rule) satisfies core-stability. Fain et al. [2016] obtain
the same result in a more general model with additive linear
utilities. They also show that a core-stable outcome exists for
fractional committees (which can be viewed as a probability
distribution where each candidate receives mass at most 1/k)
via Lindahl equilibrium which is known to exist from fixed-
point theorems [Foley, 1970; Munagala et al., 2022b] and
via convex programming [Kroer and Peters, 2025]. Various
weakenings of the core have also been studied in approval-
based fair mixing and related models [see, e.g., Brandl et
al. 2021; Suzuki and Vollen 2024; Bei et al. 2025].

3 Preliminaries

Let C = {cy,...,cm} be a set of m candidates. Let k €
{1,...,m} be the committee size. A committee is a subset
W C C of winning candidates with |W| = k.

Let A denote the set of non-empty subsets of C, which we
will refer to as approval sets or ballots. A profile is a map
P: A — Qs with ) 4 # P(A) = 1, where P(A) indicates
the fraction of the voters that approve exactly the candidates
in A. Given an approval set A € A and a committee W,
the utility of the committee for A is the number of approved
committee members: us (W) = |[A N W|.

A nonempty set T C C with |T| < k is called a potential
deviation. Given a profile P, a committee W is core stable if
for every potential deviation 7, we have

P(A) < m
A Aiup (T)>us (W) k

Otherwise, T is called a deviation (or a successful deviation)

from W. The core is the set of committees that are core stable.

The nth harmonic number is H(n) = 1 + % + % oo+ L

The PAV score assigned to a committee W by ballot A € A is
PAV-score (W) = H(ua(W)).
Given a profile P, the PAV score of W under profile P is

PAV-scorep (W) = Z P(A) - PAV-score4 (W).
AeA

A committee is a global PAV committee if it has the highest
PAV score. The PAV rule selects all global PAV committees.
We will also be interested in local maxima of the PAV
objective, i.e., committees that have a weakly higher PAV
score than any committee obtained by performing a single
swap. For a committee W, x € Wand y € C \ W, we write
Wiy = W\ {x} U {y} for the committee obtained by replacing
x with y. Given a profile P and a fixed committee W, we write

Ap x,y = PAV-scorep(Wy,) — PAV-scorep (W)

for the increase in PAV score resulting from this swap. For a
ballot A, we define Ay« y analogously. Then we say that W is
a local PAV committee if Ap  ,, < O for all x and y. Note that
every global PAV committee is also a local PAV committee.
The following lemma shows that a local PAV committee
never admits deviations of certain kinds: disjoint deviations
and deviations that contain only a single unelected candidate.

Lemma 3.1. Let W be a local PAV committee, and let T be a
potential deviation. Suppose we have

()TAW=0, or (ii)|T\W|<Il.

Then T is not a deviation from W.

Proof. (i) is proved by Brill et al. [2022, Theorem 3.2 and
Remark 3.4] using a swapping argument.

() ET\W =0, thenT C W, and there are no approval
ballots that strictly prefer T to W. If T\ W = {c}, then for
every A € A withua(T) > us(W), we have ¢ € A. Writing
¢ = |T|, if T were a deviation, we would thus have a set S of
ballots forming €/ k of the profile, who all approve ¢ ¢ W, and
who all have utility us(W) < us(T) < €. Thus, we have a
violation of the EJR+ axiom of Brill and Peters [2023] which
local PAV committees are known to satisfy. O

Note that Theorem 3.1(ii) implies that PAV satisfies the core
when k =m —1ork =m.

We recall the following well-known result about systems of
linear inequalities, providing a certificate of infeasibility.

Lemma 3.2 (Farkas’ Lemma). Let A € Q™ be an m X n
matrix, and let b € Q™. Then the following are equivalent.
(i) There does not exist x € Q" with Ax < b.
(ii) There exists an integer vector y € ZJ, such that yI'b <0
and ATy > 0.

Thus, by exhibiting the integer vector y, one can prove the
infeasibility of the system Ax < b.

4 Small Committee Size

In this section, we discuss core-stable committees when the
committee size k is small. We give existence results when
k < 8, separately handling the cases k < 7 and k = 8.

4.1 Committee Size k < 7

For committee sizes up to 7, core-stable committees always
exist because every local PAV committee is in the core. This
establishes existence of core-stable committees, but also indi-
cates that PAV rule is a very good rule for smaller committee
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sizes.® Like other proofs that PAV is proportional, our proof
reasons about the change in PAV score caused by certain swaps.
In particular, it shows that if W is a committee with |W| < 7
such that T is a successful deviation, then on average, replac-
ing an element of W \ T by an element of 7 \ W will increase
the PAV score of W. Hence there exists at least one such swap
that increases the PAV score of W, and hence it cannot be
a local PAV committee. The proof is omitted due to space
constraints, but can be found in the full version [Peters, 2025].
To establish a key inequality, the proof refers to the result of a
computer enumeration of all possible ballot types, which can
be reproduced using code available on GitHub.

Theorem 4.1. When k < 7, every local PAV committee is in
the core.

The result of Theorem 4.1 can also be obtained by linear
programming. Suppose that the result is false, so that there
exists a profile P and a local PAV committee W such that
some T is a successful deviation. Without loss of generality,
there exists such an example with W = {cy,...,cx}. Note
that P then forms a solution to the following system of linear
inequalities, where we may assume that C = W U T:*

ZP(A):I

AeA
Apxy <0 forallx e Wandy e C\ W
T (1)
pay> 1
A Aiup (T)>us (W)
P(A)>0 forall A e A

Thus, Theorem 4.1 is proven if the system (1) does not have
a feasible solution, for all potential deviations 7. This can be
certified using Farkas’ lemma, and the proof of Theorem 4.1
implicitly constructs such a certificate solution for every 7.
Due to the following remark, it is possible to compute a
core-stable outcome in O (m”n) time whenever k < 7.

Remark 4.2. Let k < 7 and & = 0.1/k>. By solving linear
programs [code on GitHub], one can check that every commit-
tee that is e-local-swap-stable (i.e., Ap x y < € forallx and y)
is in the core. An g-local-swap-stable and thus a core-stable
committee can be found by performing O(k*Ink) = O(1)
many g-improving swaps [see Aziz et al. 2018, Proposition 1],
each of which takes O (m*n) time to find. It turns out that for
& = 1/k?, g-local-swap-stable committees need not be in the

3There are examples where the sequential Phragmén rule fails
core (and even EJR) for k = 6, and where MES fails core for
k = 7. These counterexamples work even for the party-approval
setting [Brill er al., 2022], where each candidate can be placed
in the committee several times. For Phragmén, take the 3-voter
profile (ab, bc, ac), where Phragmén can elect ababab, with T =
{c, ¢, c,c} forming a deviation. For MES, take the 7-voter profile
(ab,ac,ad,bed, bed, bed, bed), where bbbbbaa is an outcome of
MES, with T = {c, ¢, ¢, d, d, d} forming a deviation. (In these exam-
ples, there are other tied outcomes in the core, and I don’t know if
unique examples exist.)

“We may make this assumption because a counterexample on a
larger C remains a counterexample when restricted to WU T, because
a local PAV committee remains a local PAV committee after deleting
candidates outside the committee.

core, even though this value of € is enough to ensure that the
committee satisfies EJR [Aziz et al., 2018, Theorem 1]. For
example, in the profile with P({a,b}) = P({a,c}) = 0.25
and P({d,e, f,g,h}) = 0.5, for k = 6, the committee
{a,d,e, f, g, h} fails the core due to T = {a,b,c}, but it
is 1/40-local-swap-stable, and 1/40 < 1/36 = 1/k>.

4.2 Committee Size k = 8

Theorem 4.1 does not hold for £ = 8: There are profiles where
some local (and even global) PAV committee is not in the core.

Example 4.3 (PAV may fail core for k = 8). Consider
an instance with 4 voters, v approving {cy,ca,c3}, and
vy approving {ci, ca, c4}, and the other 2 voters approving
{cs, cq, 7,8, 9, c10}. This profile is depicted below, where
each voter approves the candidates above the voter’s label.

10
€9
cg

€3 | ¢4 7

2 C6
1 cs

Vi %) V3 Va

On this profile, W = {c1, ¢2, ¢s, Cg, C7,C8, C9, C10 } s a global
PAV committee (indicated in blue in the picture). However,
W is not in the core: consider T = {c1, 2, c3,C4}, which has
support from % of the voters, and |T|/k = % O

Note, however, that in Theorem 4.3, there is more
than one global PAV committee. In particular, W’ =
{c1,¢2,¢3,¢5,¢6, 7,8, Co} (obtained by removing ¢y and
adding c3) is also a global PAV committee and it is in the core.

It turns out that Theorem 4.3 is essentially the only example
where a PAV committee fails to be core-stable for k = 8§, as
all such examples share the same structure.

Lemma 4.4. Let P be a profile and suppose that W with
|W| = 8 is a local PAV committee that is not in the core due
to objection T. Then there exist distinct a,b € W and distinct
x,y € C\ W suchthat T = {a,b,x,y}. In addition,

(i) one quarter of the voters submit ballots A such that A N
(WUT) = {a, b, x} and another quarter submit ballots
with AN (WUT) = {a,b,y},

(ii) the remaining half of the voters submit ballots that are
disjoint from T, and

(iii) the PAV score of W is reduced by exactly 1/12 if any one
member of W \ {a, b} is removed.

Proof. We first check that if W is not in the core, then any
core objection must use a 7 with || =4 and [WNT| = 2.
This can be deduced using the linear programming approach
behind Theorem 4.1; by iterating through all possible 7', we
find that the system (1) has a solution only for T satisfying the
condition in the theorem statement.

Now fix such a7 = {a, b, x, y}. Assume that there exists a
profile P where W is a local PAV committee with successful
deviation T but that violates any of the conditions (i)—(iii).
Then if we delete all candidates outside W UT from the profile,
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it would still fail (i)—(iii). Thus, for purposes of making the
following linear programs finite, we may assume that C =
WUT (so |C| = 10).

To prove (i), we solve the following four linear programs:

maximize P({a, b,x}) subject to P satisfying (1)
minimize P({a, b,x}) subject to P satisfying (1)
maximize P({a, b, y}) subject to P satisfying (1)
minimize P({a, b,y}) subject to P satisfying (1)
The optimal solutions to all these programs is i.
To prove (ii), iterate through all ballots A € A with ANT #
0, except for {a, b, x} and {a, b, y}. For each of these ballots,
solve the following linear program:

maximize P(A) subject to P satisfying (1)

For each such A, the optimal solution of the program is 0. To
prove (iii), iterate through all ¢ € W \ {a, b} and solve the
following programs, both again subject to P satisfying (1):

maximize PAV-scorep (W \ {c}) — PAV-scorep (W)
minimize PAV-scorep (W \ {c}) — PAV-scorep (W)

The optimal solutions to these two programs are —1/12. O

The claims made in this proof about the optimal values
of the various linear programs can be certified by exhibiting
solutions to the dual programs. These certificates (using exact
fractions, not floating point numbers) are available on GitHub,
together with a script checking their validity without a solver.

As we discussed, Theorem 4.3 shows an example of a global
PAV committee that is not core-stable, but there are other
global PAV committees for the same profile that are core-
stable. Thanks to Theorem 4.4, we deduce that the same holds
for all counterexamples. Hence, for every instance, at least
one global PAV committee is in the core, and thus the core is
always non-empty for k = 8.

Theorem 4.5. When k = 8, some global PAV committee is in
the core.

Proof. Let k = 8 and let P be a profile. If on P, all global
PAV committees are in the core, we are done. So suppose that
W is a global PAV committee that is not core stable due to
objection 7. From Theorem 4.4, there exist distincta, b € W
and distinct x, y € C \ W such that T = {a, b, x, y}. Take any
¢ € W\ {a, b}. Then the committee W = W \ {c} U {x} has
the same PAV score as W, because the removal of ¢ causes a
decrease in PAV score of 1/12 and the addition of x causes an
increase of at least }1 . % = 1/12 due to the quarter of voters
from (i) with ballots A such that AN (WU T) = {a,b,x}.
Thus, W’ is also a global PAV committee. We now show that
W’ is in the core.

If not, we can apply Theorem 4.4 to W’ which gives us
an objection 7" = {a’, b’,x’,y’} to W’. Clearly, voters with
ballots such that AN (WUT) = {a, b,x} are not part of a
blocking coalition because {a, b,x} € W’. Thus, we deduce
that a,b ¢ T from (ii). Thus, the voters with ballots such
that AN (WUT) = {a, b, y} are also not supporters of 7”.
Then from part (i) we deduce that the only members of W that

are approved by any voters in P are a, b, a’, and b’. Thus,
there exists a member of W \ {a, b} who is not approved by
any voter, so the removal of that member does not lead to a
reduction in PAV score, contradicting (iii). O

4.3 Committee Size k > 9

The PAV-based technique that worked for up to k = 8 does not
continue to work for k = 9, since there are examples where
there is a unique global PAV committee which fails to be in the
core. The following example has this property, and is minimal
with respect to the number of voters (n = 27).

C11
€10
9
4
c3 C4 7

2 €6

€1 ¢s

V] e Vg V7 ... V12 V13 Vo7

Aziz et al. [2017, Ex. 6] gave an example where PAV uniquely
selects a non-core-stable committee for k = 10 and n = 20.

5 Few Candidates

The goal of this section is to show that there always exists a
core-stable committee on instances with m < 15 candidates.
From the results in Section 4, this is clearly true when k < 8.
By Theorem 3.1(ii), this is also true when k = m — 1 or k = m.
But it is not clear when k € {9,...,m — 2}.

Inspecting the examples in Section 4 where PAV fails
the core, we see that they are well-structured. Indeed,
they are even laminar instances in the sense of Peters and
Skowron [2020, Definition 2], and it is easy to see that on
these profiles, a core-stable committee does exist. Thus, there
is some hope to prove existence of core-stable committees by
“patching” the PAV committee when it fails to be in the core.

We will define an artificial rule, based on PAV, and we will
show that it satisfies core stability for up to m = 15 candidates.
We call it the recursive PAV rule. On a high level, the rule
first computes a local PAV committee, and checks if it satisfies
the core. If so, it returns it. If not, and 7 is a deviation from
W, it then deletes all voters who prefer 7' to W, and computes
a local PAV committee with respect to the remaining voters,
but subject to the constraint that 7 € W. It then checks if
the result is in the core; if not, it adds additional constraints
until it reaches a core-stable committee. This rule is formally
described using pseudocode in Algorithm 1.

For example, in the profile of Theorem 4.3, PAV selects the
committee W indicated there in blue (among other tied com-
mittees). This committee is blocked by T = {c1, ¢2, ¢3, c4}.
Thus, the recursive PAV rule would now fix all members
of T as winners, and maximize the PAV-score with re-
spect to voters v3 and vg4, obtaining the committee W* =
{c1,¢2,¢3,¢4,C5,c6,C7,cg} (among other tied committees).
This committee is in the core, so the rule terminates. Note that
W* is not itself selected by PAV.


https://github.com/DominikPeters/core-few-candidates/tree/master/B_committee_size_8
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Algorithm 1 Recursive PAV rule

Algorithm 2 Finding all histories

Input: A profile P and a committee size k

Output: A committee W

A’ — A, set of active ballots

F « 0, set of fixed candidates

while true do

If |F| > k, the algorithm fails

W <« any committee locally maximizing the PAV score

w.r.t. the ballots in (A" and subjectto F € W

if there exists a successful deviation 7 from W then
F «FUT
A — A’ \ {A eEA: MA(T) > MA(W)}

else

L return W

This method is reminiscent of the Greedy Cohesive Rule
[Peters et al., 2021], which similarly repeatedly patches a
committee until it satisfies the representation axiom FJR.

5.1 Analysis of the Method

Fix a number of candidates m and a committee size k.

Alist (W, Ty), (Wa, Ta), ..., (W,,T,) is called a potential
history if for each t € [r], we have that W, is a committee, T}
is a potential deviation, and 7y U --- U T,_; € W;.

Definition 5.1. A potential history (W, Ty),...,(W,,T,) is
a history if there exists a profile P such that for each t € [r]
we have that Ty is a successful deviation from W;, and that for
allx e W\ (TyU---UT;_1)andy € C\ W, we have

Z P(A)-PAV-score (W,) > Z P(A)-PAV-score s (Wyy)
AeA; AcA,;

where Ay = {A € A 1 up(Ts) < upa(Wy) fors e {1,...,t -
1}} is the set of “active” ballots. That is, W; locally maximizes
the PAV score among all committees that include all prior
deviations, taking only those voters into account that did not
participate in prior deviations.

Thus, a history provides a trace of the execution of Algo-
rithm 1 for some profile. The following result states that it is
enough to analyze the set of histories to determine if Algo-
rithm 1 always terminates with a core-stable committee.

Proposition 5.2. Suppose that for every history
W, T),...,(W,,T,), we have |Ti| + --- + |T,| < k.
Then a core-stable committee always exists for m and k.

Proof. Let P be a profile, and run Algorithm 1 on it. By the
assumption, in each iteration, |F| < |T1| + - -+ + |T;| < k, so
the algorithm does not fail. By the if-clause, if the algorithm
terminates, it returns a committee that is core-stable. Thus, it
suffices to show that the algorithm terminates.

Note that after each iteration of the algorithm, it either
terminates or it has found a successful deviation. Suppose
iteration r has ended without the algorithm terminating. The
sequence of committees and deviations (Wy,Ty), ..., (W,,T,)
identified by the algorithm up to iteration r forms a history.
Since |T;| > 1 for all ¢, it follows from |T}|+- - - +]|T, | < k that
r < k. So it must terminate after at most k + 1 iterations. 0O

Input: Number m of candidates and a committee size k
Output: A collection of all histories and Farkas certificates
Hy «— {0}, the empty history
fort=1,2,... do
for all H € H,_; do
for all potential continuations (W;,T;) do
if (W;, T;) is not canonical w.r.t. H then
L continue
Set H «— H + (W;,Ty)
Solve LP to check if H’ is a history
If yes, add H’' to H,
B If no, generate a Farkas certificate
if H; = 0 then
.| break

Thus, to prove the existence of core-stable committees, it
suffices to enumerate all histories and check that they fulfil the
condition of Theorem 5.2. Given a potential history, one can
check using an LP solver whether it is a history by checking
whether the system of linear inequalities in Theorem 5.1 has a
solution. This way, we can compute the set of histories using a
standard breadth-first search, as shown in Algorithm 2. A key
insight to speed up the search is that we may break symmetries
and only consider “canonical” histories in our enumeration.
For example, we may assume without loss of generality that
W1, the first committee of the history, is {c1, ..., cx}. Simi-
larly, we do not need to consider all potential deviations 77:
given our choice of Wy, the candidates in W are indistinguish-
able to each other, as are the candidates in C \ W;. Thus,
it suffices to take one deviation for each possible combina-
tion of the sizes of |T; N Wy| and of [T} N (C \ Wy)|. Similar
symmetry-breaking conditions apply for later steps.

For example, for m = 15 and k = 13, Algorithm 2 produces
the following set of (canonical) histories, where we write
W, = {C], e ,C13} and W, = {C], e ,011,614,015}.

0, the empty history

(W1, {c1,¢2,¢3,¢4, C5,C6, €7, C8, C14, C15})

(Wi, {c1,c1a.c15})

(Wi, {c1,c2,c3,c14,C15})

(Wi, {c1,c2,c14,C15})

(Wi, {c1,c2,¢3,c4,¢5,C14,C15})

(W1, {c1,c2,¢3,ca,C14,C15})

(W1, {c1,c2.¢3,c4,5,C6,€7,C14, C15})

(W1, {c1,c2,¢3,¢4,¢5,C6, C14, C15})

(W1, {c1,c1a, c15}), (W2, {c2, c12,c13})

(W1, {c1,c1a, c15}), (W2, {c2,¢3.c12, C13})
(W1, {c1,c2,¢3,c14, C15}), (W2, {c4, cs5.c12,C13})
(W1, {c1, 2, 14, C15}), (W2, {c3,c12,c13})

(W1, {c1,c2, c14, c15}), (Wa, {c3,c4, c12,c13})
(W1, {c1,c2, c14, c15}), (Wa, {c3,c4,¢5,c12,c13})
By running Algorithm 2 form = 15and k =9, ..., 13, we

obtain the following result. (Note that existence for m = 15
implies existence for all m < 15.)

Theorem 5.3. If m < 15, a core-stable committee exists.
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k= 9 10 11 12 13
# of canonical histories 7 11 15 20 15
# of Farkas witnesses 20476 25313 18567 43140 6877
time (s) to check Farkas 2648 3301 2087 5857 725

Table 1: Statistics about the histories for m = 15.

The computations establishing Theorem 5.3 can be verified
based on Farkas certificates: the code repository includes, for
each history and each possible extension of the history that
induces an infeasible system of linear inequalities, a Farkas
witness. Each witness is a list of about ¢ - k - (m — k) integers,
where ¢ is the length of the history, corresponding to the con-
straints in Theorem 5.1, and verifying the correctness of the
witness requires checking about 2™ inequalities. In total, there
are 114 373 witnesses (taking 125 MB). Verifying their valid-
ity using a simple script [available on GitHub] that performs
exact fractional computations (without calling a solver) takes
about 4 hours on 8 cores (see Table 1).

The recursive PAV rule fails for m = 16, k € {10, 11}. For
m = 16, k = 10, the smallest failure example I have found has
40448 550 voters, though the ILP for minimizing this number
did not converge within a reasonable amount of time. The
example is available online.’> The recursive PAV rule does
work for m = 16, k € {9,12,13, 14}, and it is plausible that
it can be fixed ad hoc for k € {10, 11}, so it is likely that the
core continues to exist for m = 16.

6 Droop Quota

Our definition of core stability is based on the intuition that
a 1/k fraction of the voters is “entitled” to decide on one of
the committee members, and that an £/k fraction is entitled to
decide on ¢ committee members. The quantity 1/k is known
as the Hare quota. But one can also define core stability based
on the Droop quota, according to which each group of voters
that makes up a strictly larger fraction than 1/(k+1) is entitled
to decide on one committee member. Thus, a committee W is
Droop core stable if for every potential deviation 7, we have
P(A) < 7] g
AeAup(T)>us (W) k+1

This is a stricter condition than the normal core, so if W is
Droop core stable then it is also core stable.

For most proportionality notions considered in the literature
on approval-based committee elections, passing to the more
demanding Droop quota does not cause many issues. For
example, PAV still satisfies EJR when defined with the Droop
quota, and analogous statements are true for many pairs of
voting rules and representation axioms [Janson, 2018].6

SThe example witnessing this failure induces the history
({co, 1, 2, €3, ¢4, €5, €6, €7, €8, €9}, {0, €10, €11})s
({co, 1, €2, €3, ¢4, €5, 6, 10, €115 C12}5 {€135 €145 €15 ),
({co, €1, €2, €3, C10, €11, €12, €13, €145 €15}, { €4, €5, C6, €7, C8 ).
SHowever, regarding strategic aspects, impossibility theorems
become somewhat more expansive when passing to the Droop quota
[Peters, 2018, Section 5.3].

Unfortunately, our positive results do not extend to the
Droop core. While PAV satisfies the core for up to k = 8
(Section 4), it violates the Droop core already for k = 6.

Example 6.1 (PAV may fail the Droop core for k = 6). Con-
sider the instance depicted below:

cs
c3 | c4 c7
I c6
ci cs

Vi cee V7oV Vig Vis V24

On this profile, W = {cy, ¢3, cs, Cg, C7, Cg } is the unique global
(and unique local) PAV committee for k = 6. However W is
not in the Droop core: consider T = {c1,c2, 3,4}, which
has support from % ~ 0.583 of the voters, while |T|/(k+1) =

3 ~0.571 is strictly smaller. |

This example is minimal, so the Droop core is non-empty
when k < 5. Running the recursive PAV rule (Algorithm 1)
with the Droop quota stops working even for m = 10, k = 6.

7 Conclusions

Based on the computations of this paper, we know that the
core is non-empty for all small instances. This should prob-
ably strengthen our belief that the core is always non-empty.
However, the recursive PAV method we defined to establish
the result stops working for 16 or more candidates, so it seems
doubtful that analyzing this method would allow proving a
general existence result. Conversely, finding a counterexample
to core existence will also be challenging since it will need
to be large. For the Droop quota, however, it even remains
unknown whether core always exists for k = 6 and m = 10.
Our approach was based on linear programming and al-
lowed us to reason independently of the number of voters.
The PAV rule and its variants are well-suited for these LP
formulations. Finding core counterexamples for many other
rules is not possible using similar linear programs. For exam-
ple, the Method of Equal Shares (MES) [Peters and Skowron,
2020] or the sequential Phragmén method [Phragmén, 1894,
Janson, 2016] do not admit the same kind of linear formula-
tions (one would need to multiply variables corresponding to
ballot frequencies with variables corresponding to p-values
or to loads). The lack of such a linear formulation can be for-
mally established using the techniques of Xia [2025]. In part
because computer search is difficult for these rules, to the best
of my knowledge, there is no known profile where both PAV
and MES fail core-stability simultaneously, or a profile where
the rule that maximizes the PAV score among all priceable
committees [Peters and Skowron, 2020] fails core-stability.
Maly [2023] presents an example in the participatory bud-
geting setting with cost utilities where the core is empty. That
example uses only 3 voters. It would be interesting to see if
computer-aided methods could establish that for committee
elections, the core is always non-empty for n = 3 voters. Note
that in this case, candidates can be specified via the set of
voters that approve the candidate, so there are only 23 different
types of candidates, and thus a profile can be specified via
variables that indicate how many candidates of each type exist.


https://github.com/DominikPeters/core-few-candidates/tree/master/C_recursive_PAV_rule
https://github.com/DominikPeters/core-few-candidates/tree/master/C_recursive_PAV_rule
https://github.com/DominikPeters/core-few-candidates/blob/master/C_recursive_PAV_rule/counterexample-m16-k10.json
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