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Abstract

Different from single-objective evolutionary algo-
rithms, where non-elitism is an established concept,
multi-objective evolutionary algorithms almost al-
ways select the next population in a greedy fash-
ion. In the only notable exception, a stochastic se-
lection mechanism was recently proposed for the
SMS-EMOA and was proven to speed up comput-
ing the Pareto front of the bi-objective jump bench-
mark with problem size n and gap parameter k
by a factor of max{1, 2k/4/n}. While this consti-
tutes the first proven speed-up from non-elitist se-
lection, suggesting a very interesting research di-
rection, it has to be noted that a true speed-up
only occurs for k ≥ 4 log2(n), where the run-
time is super-polynomial, and that the advantage
reduces for larger numbers of objectives as shown
in a later work. In this work, we propose a dif-
ferent non-elitist selection mechanism based on ag-
ing, which exempts individuals younger than a cer-
tain age from a possible removal. This remedies
the two shortcomings of stochastic selection: We
prove a speed-up by a factor of max{1,Θ(k)k−1},
regardless of the number of objectives. In particu-
lar, a positive speed-up can already be observed for
constant k, the only setting for which polynomial
runtimes can be witnessed. Overall, this result sup-
ports the use of non-elitist selection schemes, but
suggests that aging-based mechanisms can be con-
siderably more powerful than stochastic selection
mechanisms.

1 Introduction
In many real-world optimization problems, several objectives
have to be optimized simultaneously rather than in isolation,
since improving one performance metric often leads to the
degradation of another. For such multi-objective optimization
problems, multi-objective evolutionary algorithms (MOEAs)
have been employed with great success [Zhou et al., 2011].
For example, the famous NSGA-II algorithm [Deb et al.,

∗Corresponding author.

2002], the most widely used MOEA, has received more than
50,000 citations on Google scholar.

Interestingly, different from single-objective optimization,
these MOEAs almost always select the next population in
a greedy fashion. In the NSGA-II framework, for example,
the parent and offspring populations are divided into several
fronts by non-dominated sorting and then the first fronts are
selected into the next population. As tie-breaker for the crit-
ical front, the crowding distance is used, and again the indi-
viduals with largest crowding distance survive. Similarly, the
NSGA-III [Deb and Jain, 2014] and SMS-EMOA [Beume et
al., 2007] extend this same two-stage, greedy method. These
two algorithms greedily select according to non-dominated
sorting, using references points or the hypervolume contribu-
tion as the secondary (greedy) selection criteria.

This greedy behavior in multi-objective evolutionary com-
putation differs quite significantly from single-objective evo-
lutionary computation, where concepts such as selection pres-
sure are explicitly used to quantify the degree of greediness
of the selection. Furthermore, classic selection operators such
as tournament selection or roulette-wheel selection, are inten-
tionally designed to be somewhat less greedy than truncation
selection.

The first to substantially challenge the believe in greedy
selection in multi-objective evolutionary computation were
Bian et al. [2023]. In the recently very successful runtime
analysis methodology [Zheng et al., 2022; Bian and Qian,
2022; Doerr and Qu, 2023a; Doerr and Qu, 2023b; Doerr
and Qu, 2023c; Dang et al., 2023; Bian et al., 2023; Dinot
et al., 2023; Wietheger and Doerr, 2023; Zheng and Doerr,
2023a; Zheng and Doerr, 2024a; Zheng and Doerr, 2024b;
Zheng et al., 2024b; Opris et al., 2024; Ren et al., 2024;
Doerr et al., 2025; Alghouass et al., 2025; Doerr et al., 2025;
Deng et al., 2025; Opris, 2025a; Opris, 2025b], they designed
a stochastic population update for the SMS-EMOA. Instead
of performing a greedy selection over the whole combined
parent and offspring population, they let (roughly) a random
half of the individuals survive irrespective of their quality and
conduct the usual selection of the SMS-EMOA only in the
other half. With this non-greedy selection mechanism, they
obtained a proven speed-up by a factor of max{1, 2k/4/n}
for the bi-objective OJZJ benchmark with problem size n
and gap parameter k (this speed-up was later improved to
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max{1, 2k/n} in [Zheng and Doerr, 2024b]).1
Following the exciting results on the stochastic popula-

tion update of Bian et al. [2023], Zheng and Doerr [2024b]
(among other results) discussed how these results extend
to more than two objectives. For the m-objective mOJZJ
benchmark, they proved a speed-up factor of (roughly)
max{1, 2k/nm/2}. Hence the proven speed-up from the
stochastic population update vanishes for larger numbers of
objectives. Till now, it remains an open question whether a
non-elitist survival strategy can result in scalable speed-ups
for all number of objectives.

Our contributions: In this paper, we take such an at-
tempt and design a simple aging strategy for the population
update process of the SMS-EMOA. We initialize each in-
dividual with the age limit τ . Any newly generated indi-
vidual has an age of 0. Only individuals with an age of at
least τ will be subject to the original survival selection of the
SMS-EMOA. After the removal, all remaining individuals
will increase their ages by 1 and enter into the next genera-
tion. This simple aging strategy allows any newly generated
individual, irrespective of its quality, to survive for at least τ
iterations.

For the SMS-EMOA with this selection strategy, we prove
that the runtime for covering the full Pareto front of the bi-
objective OJZJ benchmark is O(nk+1/Θ(k)k−1), see The-
orem 5, comparing favorably with the best known guaran-
tee of O(nk+1) for the classic SMS-EMOA [Bian et al.,
2023]. For the m-objective version mOJZJ, we show a guar-
antee of O(Mkmnk/Θ(k)k), see Theorem 10, and note that
the best known upper bound for the classic SMS-EMOA is
O(Mmnk) by Wietheger and Doerr [2024], where M de-
notes the size of the largest set of pairwise non-dominating
solutions of the problem. Hence, a speed-up factor of
max{1,Θ(k)k−1} has been obtained for the m-objective
mOJZJ benchmark.

Our experimental results further support these theoretical
findings, demonstrating that even for small values of k in both
OJZJ and mOJZJ, the aging strategy significantly acceler-
ates the SMS-EMOA algorithm compared to both the original
version and the variant with the stochastic population update
strategy.

The rest of the paper is organized as follows. Section 2
introduces the basic concept in multi-objective optimization
and presents the SMS-EMOA algorithm, including its vari-
ant with the stochastic population update strategy. Section 3
introduces our simple aging strategy and gives the basic be-
havior of this variant when optimizing an m-objective opti-
mization problem. In Section 4 and Section 5, we conduct the
runtime analyses of the SMS-EMOA with the aging strategy
on OJZJ and mOJZJ. Section 6 presents the experiments,
and finally Section 7 concludes our paper.

1Another non-elitist attempt was studied by Zheng et al. [2024b].
Inspired by the theoretical advantage of the Metropolis algorithm for
the single-objective DLB benchmark [Wang et al., 2024], they dis-
cussed how to use the Metropolis algorithm for multiple objectives.
While that work could detect strengths and weaknesses of different
variants of the multi-objective Metropolis algorithm, compared to
other MOEAs none of these variants could achieve better theoretical
runtime guarantees for the bi-objective DLB benchmark.

2 Preliminaries
2.1 Multi-Objective Optimization
In multi-objective optimization, the goal is to find a set of
optimal trade-off solutions that effectively balance multiple
conflicting objectives, typically represented as a Pareto set.
As common in the theory community, this paper considers
the multi-objective pseudo-Boolean maximization problems,
that is, to maximize f(x) = (f1(x), f2(x), . . . , fm(x)) sub-
ject to x ∈ {0, 1}n where m ∈ N represents the num-
ber of objectives, and n ∈ N denotes the problem size. A
key concept in multi-objective optimization is Pareto dom-
inance as not all solutions are comparable. We say that a
solution x1 ∈ {0, 1}n weakly dominates another solution
x2 ∈ {0, 1}n (denoted as x1 ⪰ x2) if fi(x1) ≥ fi(x2) for all
i ∈ {1, . . . ,m}. In this case, x1 is at least as good as x2 in
all objectives. If, in addition, x1 is strictly better than x2 in
at least one objective (i.e., fi(x1) > fi(x2) for some i), then
we call x1 dominates x2 (denoted as x1 ≻ x2). A solution
x is called Pareto optimal if it is not dominated by any other
solutions in {0, 1}n. The set of all Pareto optimal solutions
is the Pareto set, and the corresponding function values form
the Pareto front.

In the theory of MOEAs, the runtime is typically defined
as the number of function evaluations required for the algo-
rithm’s population to fully cover the Pareto front [Auger and
Doerr, 2011; Zhou et al., 2019; Doerr and Neumann, 2020].
Additionally, in this paper, we will use |x|1 to denote the ex-
act number of ones in x, |x|0 to denote the exact number of
zeros in x, and [a..b] to represent the set {a, a + 1, ..., b} for
a ≤ b and a, b ∈ Z. We also use M to denote the maximum
size of a set of incomparable solutions for a given optimiza-
tion problem.

2.2 The SMS-EMOA and Stochastic Population
Update

The SMS-EMOA is a steady-state variant of the NSGA-II,
which replaces the crowding distance by the hypervolume
contribution as the secondary selection criterion. This al-
gorithm operates with a fixed population size µ. In each
iteration, a single offspring is generated and added to the
combined parent and offspring population Rt. To main-
tain the fixed population size, one individual from Rt will
be removed. It first uses the non-dominated sorting proce-
dure to partition Rt into several fronts F1, . . . , Fi∗ , where
Fi contains all non-dominated individuals in Rt \ ∪i−1

j=1Fj .
Within the critical front Fi∗ , the individual that contributes
the least to the hypervolume will be removed (broken tie
randomly). The hypervolume of a set S of individu-
als w.r.t. reference point r is calculated as HVr(S) =
L
(⋃

u∈S{h ∈ Rm | r ≤ h ≤ f(u)}
)

where L represents the
Lebesgue measure. The hypervolume contribution of an in-
dividual x ∈ Fi∗ is defined by ∆r(x, F

∗
i ) := HVr(F

∗
i ) −

HVr(F
∗
i \ {x}). See Algorithm 1 for the whole procedure of

the classic SMS-EMOA.
The stochastic population update of the SMS-EMOA, pro-

posed in [Bian et al., 2023], only has one change compared to
the classic SMS-EMOA. It uniformly at random selects half
of the combined population for the survival selection, and the
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Algorithm 1: SMS-EMOA
1 Generate P0 by selecting µ solutions uniformly and

randomly from {0, 1}n with replacement;
2 for t = 0, 1, 2, . . . , do
3 Select a solution x uniformly at random from Pt;
4 Generate x′ by flipping each bit of x

independently with probability 1/n;
5 Use fast-non-dominated-sort() [Deb et al., 2002]

to divide Rt = Pt ∪ {x′} into F1, . . . , Fi∗ ;
6 Calculate ∆r(z, Fi∗) for all z ∈ Fi∗ and find

D = argminz∈Fi∗ ∆r(z, Fi∗);
7 Uniformly at random pick z′ ∈ D and

Pt+1 = Rt \ {z′} ;

Algorithm 2: SMS-EMOA with the Stochastic Popu-
lation Update

1 Generate P0 by selecting µ solutions uniformly and
randomly from {0, 1}n with replacement;

2 for t = 0, 1, 2, . . . , do
3 Select a solution x uniformly at random from Pt;
4 Generate x′ by flipping each bit of x

independently with probability 1/n;
5 Rt = ⌊Pt ∪ {x′}/2⌋ solutions uniformly and

randomly selected from Pt ∪ {x′} without
replacement;

6 Use fast-non-dominated-sort() [Deb et al., 2002]
to divide Rt into F1, . . . , Fi∗ ;

7 Calculate ∆r(z, Fi∗) for all z ∈ Fi∗ and find
D = argminz∈Fi∗ ∆r(z, Fi∗);

8 Uniformly at random pick z′ ∈ D and
Pt+1 = Pt ∪ {x′} \ {z′};

other half directly enters into the next generation. With this
strategy, the inferior solutions have the chance (like not being
chosen to the survival selection) to the next generation. For a
clear comparison with our proposed strategy, we also state its
procedure in Algorithm 2.

As introduced before, we note here once again that a speed-
up by a factor of max{1, 2k/4/n} is proven in [Bian et al.,
2023] (which is subsequently proven to be max{1, 2k/n}
in [Zheng and Doerr, 2024b]) for the bi-objective OJZJ
benchmark. We also note here, as introduced before as well,
that a speed-up factor of only Θ(1) for large m (say m > k)
is proven for the m-objective mOJZJ benchmark [Zheng and
Doerr, 2024b].

3 The SMS-EMOA with the Aging Strategy

As mentioned before, the non-elitist stochastic population up-
date cannot scale well from two objectives to more objec-
tives. This section will introduce our non-elitist aging strat-
egy and employ it into the SMS-EMOA for the easy com-
parison against the stochastic population update [Bian et al.,
2023] in the later sections.

Algorithm 3: SMS-EMOA with the Aging Strategy
1 Initialize P0 with µ individuals chosen independently

and uniformly at random from {0, 1}n with
replacement and set their age to τ ;

2 for t = 0, 1, 2, . . . , do
3 Select x ∈ Pt uniformly at random;
4 Generate y from x via standard bit-wise mutation

and set its age y.age = 0;
5 Rt = {x | x ∈ Pt ∪ {y} and x. age ≥ τ};
6 Use fast-non-dominated-sort() to divide Rt into

F1, . . . , Fi∗ ;
7 Let D = argminz∈F∗

i
∆r(z, Fi∗);

8 Uniformly at random pick z′ ∈ D ;
9 Pt+1 = Pt ∪ {y} \ {z′};

10 Raise the ages of solutions in Pt+1 by 1;

3.1 Aging Strategy
Aging has been used in different kinds of randomized search
heuristics, such as in evolutionary algorithms and artificial
immune systems, e.g., [Horoba et al., 2009; Jansen and
Zarges, 2009; Jansen and Zarges, 2010a; Jansen and Zarges,
2010b; Jansen and Zarges, 2011b; Jansen and Zarges, 2011a;
Oliveto and Sudholt, 2014; Corus et al., 2019; Corus et al.,
2020]. Aging operators assign each solution in the population
an individual age, which increases by 1 with each generation.
Typically a maximum lifespan τ is defined, and any solution
exceeding this age is removed from the population [Zarges,
2020]. We resort to this strategy but with some modifica-
tions. Instead of the immediate removal, only individuals
with the age at least τ will join the survival selection and
have the chance to be removed. This is the key simple aging
strategy we use to let the inferior solutions have the chance
to enter into the next generations, making the algorithm not
shortsighted.

In this work, we choose the SMS-EMOA to equip with this
strategy, since the efficiency of the SMS-EMOA with the non-
elitist stochastic population update is proven for bi-objective
OJZJ [Bian et al., 2023]. In detail, we first initialize µ indi-
viduals randomly, and assign all individuals with the age limit
τ . In each generation, one offspring individual is generated
and assigned with the age of 0. Among the µ + 1 combined
parent and offspring individuals, the individuals with the age
at least τ will be chosen to form the multiset Rt, to which
the original survival selection will be applied. After the sur-
vival selection, the ages of all remaining individuals in the
population are incremented by 1. All other procedures in the
algorithm remain consistent with the original SMS-EMOA.
The details are shown in Algorithm 3. Obviously, this strat-
egy ensures that any newly generated individual, including
the inferiors, can survive for at least τ generations.

3.2 Basic Behavior
The following lemma gives the basic behavior of the
SMS-EMOA with the aging strategy. That is, if the size of the
population is at least the same as the size of largest set of in-
comparable solutions plus τ , that is, M +τ , then any individ-
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ual in the current population will have future individuals that
weakly dominate it. Due to the space limitation, all proofs
are omitted but will be available in an arXiv preprint [Li et
al., 2025].
Lemma 1. Consider any m-objective optimization problem.
Consider using the SMS-EMOA with the aging strategy and
with the size of the population µ ≥ M + τ to solve this
problem. If Pt contains a solution x, then at any later time
t′ > t, the population Pt′ will contain a solution y such that
y ⪰ x. In particular, any Pareto front point once reached will
be maintained in all future generations.

This important behavior of not being worse will be fre-
quently used for the runtime analysis for the Pareto front cov-
erage.

4 Runtime for Bi-Objective OJZJ
Recall that the stochastic population update shows a speed-
up by a factor of max{1, 2Θ(k)/n} for the SMS-EMOA
optimizing the bi-objective OJZJ benchmark [Bian et al.,
2023]. In this section, we will also show that our pro-
posed aging strategy can speed up the SMS-EMOA by a
factor of max{1,Θ(k)k−1}, which is also faster than the
one with the stochastic population update by a factor of
max{1,Θ(k)kn/k}.

4.1 OJZJ
JUMP functions [Droste et al., 2002] are the most exten-
sively studied multimodal benchmark in the theory of ran-
domized search heuristics, particularly in evolutionary al-
gorithms [Bambury et al., 2024]. They represent a class
of problems with a tunable gap parameter k, which re-
flects different depths from the local optima to the global
optimum. The OJZJ benchmark proposed by Doerr and
Zheng [2021] is a bi-objective counterpart of the JUMP func-
tions with problem size n and jump size k, which has been
widely used to understand the theoretical behavior of the
MOEAs for multimodal problems [Doerr and Qu, 2023a;
Doerr and Qu, 2023b; Doerr and Qu, 2023c; Bian et al., 2023;
Doerr et al., 2025]. The OJZJ benchmark involves two ob-
jectives, that is, one is the JUMP benchmark, and the other
is the JUMP function applied to x̄ = 1 − x. See the formal
definition in the following.
Definition 2 ([Doerr and Zheng, 2021]). Let n ∈ N and k =
[1..n]. The function OJZJn,k = (f1, f2) : {0, 1}n → R2 is
defined by

f1(x) =

{
k + |x|1, if |x|1 ≤ n− k or x = 1n,

n− |x|1, else;

f2(x) =

{
k + |x|0, if |x|0 ≤ n− k or x = 0n,

n− |x|0, else.

Figure 1 illustrates the characteristics of the OJZJ bench-
mark. As proven in [Doerr and Zheng, 2021], the Pareto set
is {x | |x|1 ∈ [k..n − k] ∪ {0, n}} and the Pareto front is
{(a, 2k + n − a) | a ∈ [2k..n] ∪ {k, n + k}}. If k ≤ n/2,
the size of the largest set of incomparable individuals, M ,
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Figure 1: OJZJ with {n, k} = {40, 10}.

is n − 2k + 3. Since the objective values of OJZJ are all
greater than 0, we set the reference point for the SMS-EMOA
to (−1,−1). As mentioned before, we will calculate the run-
time to cover the full Pareto front.

4.2 Runtime
The optimization process can be divided into two phases. The
first phase ends when all inner Pareto front points {(a, 2k +
n − a) | a ∈ [2k..n]} are covered. Then the second phase
starts, and ends when the full Pareto front is covered for
the first time. Lemma 3 considers the runtime of the first

phase, showing that after O(µn log n) + kτ

(
2e

1−exp(− τ
µ )

)k

iterations in expectation, the population will cover the inner
Pareto front. The proof idea is that once the population in-
cludes at least one solution in the inner Pareto optimal set
{x | |x|1 ∈ [k..n − k]}, then its Hamming neighbor belong-
ing to the inner Pareto optima can be generated by flipping
one of the 0-bits or one of the 1-bits. According to Lemma 1,
any element of Pareto front will be retained. By repeating
this process and selecting the appropriate individuals, the en-
tire inner Pareto front can be covered.

Lemma 3. Let k ≤ n/2. Consider using the SMS-EMOA
with the aging strategy and with the size of the popula-
tion µ ≥ M + τ to optimize the OJZJ problem, then
the expected number of iterations is at most O(µn log n) +

kτ

(
2e

1−exp(− τ
µ )

)k

to cover all inner Pareto front points.

The following lemma rigorously provides the runtime anal-
ysis of the algorithm for the critical second phase, which
starts with a population already covering the inner Pareto
front and ends when the full Pareto front is covered. In other
words, during this phase, we need to find the two extreme so-
lutions 1n and 0n. The proof uses a waiting time argument.
That is, we first calculate the probability p of generating the
desired extreme solution 1n (or symmetrically 0n) from the
current boundary of the inner Pareto front, within at most kτ
iterations. Subsequently we bound the expected waiting time
by kτ

p . More precisely, we divide kτ iterations into k steps
and within each step of at most τ generation, we calculate the
probability of making an improvement. Note that the aging
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strategy ensures that any newly generated solution survives
for at least τ generations. Then we easily obtain the over-
all probability p via multiplying the probabilities in all steps
for their independence, and thus the runtime argument is ob-
tained.
Lemma 4. Let k ≤ n/2. Consider using the SMS-EMOA
with the aging strategy and with the size of the population
µ ≥ M + τ to optimize OJZJ. Assume that the current
population covers all inner Pareto front points. Then the full

Pareto front will be covered in at most kτ
(

e2n

(1−exp(− τ
µ ))k

)k

iterations in expectation.
Combining Lemmas 3 and 4, we derive the runtime of the

SMS-EMOA with the aging strategy stated in the following
theorem.
Theorem 5. Let k ≤ n/2. Consider using the SMS-EMOA
with the aging strategy and with the size of the population
µ ≥ M + τ to optimize OJZJ, then the expected iterations to
cover the full Pareto front is at most

O(µn log n) +

kτ

(
(2e)

k
+
(

e2n
k

)k
)

(
1− exp

(
− τ

µ

))k

= O

kτ

 e2n(
1− exp

(
− τ

µ

))
k

k
.

Note that the expected runtime of the original SMS-EMOA
is O(nk+1) for µ = Θ(n) [Bian et al., 2023]. We set
τ = Θ(n) and µ = Θ(n − 2k + 4 + τ) to also ensure
µ = Θ(n). In this setting, from Theorem 5, we know that
the expected iterations for the SMS-EMOA with the aging
strategy to cover the full Pareto front is O(nk+1/(Θ(k))k−1).
Hence, we see a speed-up by a factor of max{1,Θ(k)k−1}.
Also noting O(nk+2/2Θ(k)) expected number of iterations
for the stochastic population update [Bian et al., 2023;
Zheng and Doerr, 2024b], we see our aging strategy surpasses
this by a factor of max{1,Θ(k)kn/k}.

5 Runtime for m-Objective mOJZJ
In the previous section, we demonstrated that the
SMS-EMOA with the aging strategy outperforms the
original SMS-EMOA and the one with the stochastic popu-
lation update strategy on the bi-objective OJZJ problem. As
pointed out before, Zheng and Doerr [2024b] proved that the
speed-up of the stochastic population update mechanism can-
not scale well from two objectives to more objectives. In this
section, we will show that our simple aging strategy performs
well for many objectives, and achieves the speed-up by a
factor of max{1,Θ(k)k−1} against the original SMS-EMOA
as well as the one with the stochastic population update
strategy.

5.1 mOJZJ
The mOJZJ benchmark proposed by [Zheng and Doerr,
2024b] is a m-objective counterpart of the bi-objective OJZJ

benchmark [Doerr and Zheng, 2021], and is the first mul-
timodal many-objective benchmark proposed for theoreti-
cal analysis. Zheng and Doerr [2024b] proved that the
SMS-EMOA can compute the full Pareto front of this bench-
mark in an expected number of O(µMnk) iterations, where
M denotes the size of the Pareto front. Later, Wietheger
and Doerr [2024] proved near-tight runtime guarantees for
the SEMO, GSEMO, SMS-EMOA and NSGA-III algorithms
on this multimodal benchmark class and other popular uni-
modal many-objective variants of ONEMINMAX, COCZ,
and LOTZ. Zheng, Gao and Doerr [2024a] conducted the
mathematical runtime analysis for the NSGA-II with their
newly proposed variant of the crowding distance, showing
that this algorithm can solve the mOJZJ benchmark effi-
ciently compared with the original NSGA-II. The mOJZJ
benchmark involves m objectives. The bit string of length
n is divided into m/2 blocks, each of length 2n/m. For each
block, a bi-objective OJZJ problem is defined. See the fol-
lowing definition.
Definition 6 ([Zheng and Doerr, 2024b]). Let m be the even
number of objectives. Let the problem size n be a multiple
of m/2. Let n′ = 2n

m ∈ N and k ∈ [1..n′]. Let Bi :=
[(i − 1)n′ + 1..in′] for i ∈ [1..m/2] denote the i-th block
of the n bit positions. Then for any x = (x1, . . . , xn), the
mOJZJk = (f1(x), . . . , fm(x)) : {0, 1}n → Rm is defined
by

(f2i, f2i−1(x)) = OJZJ(xBi
), i ∈ [1..m/2],

where the OJZJ function is defined in Definition 2.
The Pareto set of mOJZJ is {x ∈ {0, 1}n | ∀i ∈

[1..m/2], |xBi
|1 ∈ [k..n′ − k] ∪ {0, n′}} and the Pareto

front is {(a1, n′ + 2k − a1, . . . , am/2, n
′ + 2k − am/2) |

a1, . . . , am/2 ∈ [2k..n′] ∪ {k, n′ + k}}. Hence, the size of
the Pareto front is (n′ − 2k + 3)

m
2 . Different from OJZJ,

the size of the largest set of incomparable solutions is not
equal to the size of the Pareto front, and a trivial upper bound
of (n′ + 1)

m
2 is given in [Zheng and Doerr, 2023b] when

k ≤ n′/2, M ≤ (n′ + 1)
m
2 . Here we set the reference point

to (−1, . . . ,−1) with m dimensions.

5.2 Runtime
We now analyze the runtime of the SMS-EMOA with
the aging strategy optimizing mOJZJ. To facilitate the
proof, we resort to the technique used in [Wietheger and
Doerr, 2024] which uses a union bound to establish a
tail bound of the runtime. Before the analysis, we first
recall several definitions from [Wietheger and Doerr,
2024]. Let m′ = m/2. The set Km,k is the set of
function values of individuals in which each block has
either exactly k 0-bits or k 1-bits. Formally, Km,k ={
(a1, . . . , am′) | ai ∈

{
k, n

m′ − k
}

for all i ∈ [m′]
}
. Simi-

larly, the set Cm,k is the set of function values of individuals
in which each block consists either all bits being 1, all bits
being 0, exactly k 0-bits, or k 1-bits. Formally, Cm,k ={
(a1, . . . , am′) | ai ∈

{
0, k, n

m′ − k, n
m′

}
for all i ∈ [m′]

}
.

We divide the optimization process into three phases. The
first phase starts with the initialization of the algorithm and
concludes when all points in Km,k are covered. The sec-
ond phase begins thereafter and ends when all points in Cm,k
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are covered. The final phase ends when the remaining Pareto
front is covered.

For the first phase and the final phase, we apply Lemma A1
and Lemma A3 from [Wietheger and Doerr, 2024], which
provide the runtime analyses of the GSEMO on mOJZJ.
These results can be adapted to the SMS-EMOA with the ag-
ing strategy when the size of the population µ ≥ M + τ . The
reason is that Section 5 of [Wietheger and Doerr, 2024] out-
lines three sufficient properties to prove such upper bounds.
The survival guarantee provided by Lemma 1 satisfies the first
one for not losing already made progress. As for the remain-
ing two properties, the probability of selecting an individual
from the population for mutation is 1/µ and standard bit-wise
mutation is employed. Therefore, we obtain the following
lemmas for the runtime of the first and final phases.

Lemma 7. Let k ≤ n′/2. Consider the SMS-EMOA with the
aging strategy and with the size of the population µ ≥ M + τ
to optimize mOJZJ. Let T denote the number of iterations
until the population covers Km,k and let

t =

(
ln(2)

m′

ln(n)
+ 2

)
eµ(n− k) ln(n− k).

Then T ≤ t with probability at least 1− 1
n .

Lemma 8. Let k ≤ n′/2. Consider the SMS-EMOA with the
aging strategy and with population size µ ≥ M+τ optimizing
mOJZJ starting with a population that covers Cm,k. Let T
denote the number of iterations until the population covers
the entire Pareto front and let

t = 2em′µ ·max
{
2
( n

2m′ − k
)
,

8 ln(m′) + 8m′ ln
( n

m′ − 2k + 3
)
+ 8 ln(n)

}
.

Then T ≤ ⌈t⌉ with probability at least 1− 1
n .

Now we consider the second phase that begins when all
points in Km,k are covered and ends when all points in Cm,k

are covered. From the analysis of Lemma 4, we know that
the aging strategy helps to remain the inferior individuals,
thereby increasing the probability of generating individuals
with all 1-bits or all 0-bits. The following lemma shows that
it continues to provide advantages in traversing fitness val-
leys for many-objective optimization. We first use the same
approach to Lemma 4, calculating the probability of chang-
ing a block with n′ − k 1-bits (or 0-bits) to the extreme block
1n

′
(or 0n

′
) within at most kτ iterations. Then based on this,

we calculate the tail bound for the time required to find the
extreme solution 1n which has m′ extreme blocks. A union
bound is further used over the tail bounds to bound the time
required to cover Cm,k.

Lemma 9. Let k ≤ n′/2. Consider the SMS-EMOA with the
aging strategy and with population size µ ≥ M+τ optimizing
mOJZJ starting with a population that covers Km,k. Let T
denote the number of iterations until the population covers

Cm,k and let

t =

(
1 +

ln(4)m′ + ln(n)

ln(m′)

)
ln(m′)kτ

2

·

 e2n

k
(
1− exp

(
− τ

µ

))
k

.

Then T ≤ t with probability at least 1− 1
n . Further,

E[T ] ≤
(
1− 1

m′

)−1(
2 +

ln(4)m′

ln(m′)

)
ln(m′)kτ

2

·

 e2n

k
(
1− exp

(
− τ

µ

))
k

.

Combining Lemmas 7 to 9, similarly using a simple restart
argument to obtain the expected value for the first and final
phase, we can easily derive the runtime of the SMS-EMOA
with the aging strategy in the following theorem.

Theorem 10. Let k ≤ n′/2. Consider the SMS-EMOA with
the aging strategy that µ ≥ M + τ to optimize mOJZJ. Let
T denote the number of iterations until the population covers
the Pareto front and let

t =

(
1 +

ln(4)m′ + ln(n)

ln(m′)

)
3 ln(m′)kτ

2

·

 e2n

k
(
1− exp

(
− τ

µ

))
k

.

Then T ≤ t with high probability. Further,

E[T ] ≤
(
1− 1

m′

)−1(
2 +

ln(4)m′

ln(m′)

)
3 ln(m′)kτ

2

·

 e2n

k
(
1− exp

(
− τ

µ

))
k

.

With τ = Θ(M) and population size µ = Θ(M +
τ), the SMS-EMOA with the aging strategy requires
O(Mkm(n/Θ(k))k) iterations in expectation to cover the
full Pareto front of mOJZJ. Compared to the runtime guaran-
tee O(Mmnk) proved in [Wietheger and Doerr, 2024] for the
original SMS-EMOA, the aging strategy achieves a speed-
up by a factor of max{1,Θ(k)k−1}. Together with The-
orem 5 for bi-objective OJZJ, we see that our aging strat-
egy achieves a scalable speed-up factor of max{1,Θ(k)k−1}
for all number of objectives. It is a nice property that the
stochastic population update strategy doesn’t have (Note the
speed-up reduces significantly for increasing the number of
objectives, as mentioned before). Besides, a speed-up factor
of max{1,Θ(k)k−1} for our aging strategy is also obtained
compared to the stochastic population update.
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6 Experiments
This section conducts experiments to intuitively see the ef-
ficiency of the aging strategy for two and more objectives.
For comparison, we also include experiments for the origi-
nal SMS-EMOA and the one with the stochastic population
update.

For the bi-objective problem, we chose OJZJ as charac-
terized in Theorem 5. We set the size of the problem n ∈
{10, 15, 20, 25, 30} and fix the gap parameter at k = 4 in or-
der to see whether the proven asymptotic runtime advantages
hold for small and medium problem sizes. We set the age
limit τ = µ/2 and the size of the population to 2(n−2k+4),
which yields the optimal asymptotic bounds established in
Theorem 5.

Each algorithm was tested with 50 independent runs, and
terminated when the full Pareto front was covered for the
first time. Figure 2 illustrates the mean (with standard devia-
tions) number of iterations for each algorithm to cover the full
Pareto front for the first time. From Figure 2, we can easily
see a notable speed-up of about 7 of the aging strategy com-
pared to the original SMS-EMOA, as well as a speed-up of
around 5 compared to the stochastic population update strat-
egy. These results clearly indicate that the superiority of the
aging strategy already appears for small problem sizes and
small gap size .
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Runtime for solving OJZJ with k = 4
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Figure 2: The mean (with standard deviations) number of fitness
evaluations of the SMS-EMOA with different mechanisms for solv-
ing OJZJ with k = 4 and n ∈ {10, 15, 20, 25, 30} in 50 indepen-
dent runs.

For many-objective optimization, we chose mOJZJ as in
Theorem 10, and we fixed the number of objectives to m = 4.
We do not set larger numbers of objectives, since (i) experi-
ments with m = 4 finished in a reasonable time and (ii) with
m = 4 we intend to see whether our aging strategy can re-
sult in a good speed-up even for small number of objectives.
We set the problem size n ∈ {12, 16, 20, 24, 28} and gap size
k = 3 to see whether the asymptotic results hold for small
and medium problem sizes. The age limit τ was still set to
µ/2 and the population size was set to 2

(
(n′ + 1)

m/2
+ 1

)
for the best asymptotic runtime in Theorem 10. Due to the
large number of fitness evaluations, each algorithm was tested

with 20 independent runs, which we consider also sufficient
for a reliable performance comparison, and terminated when
the full Pareto front was covered for the first time. From Fig-
ure 3, we easily see the clear superiority of the SMS-EMOA
with the aging strategy against the original one and the one
with the stochastic population update. Note that the theoret-
ical speed-up factor against the other two is Θ(k)k−1 from
Theorem 10. For this setting, kk−1 = 32 = 9. From the plot,
we know such speed-up factor is around 3 compared to the
original SMS-EMOA and is around 2 compared to the one
with the stochastic population update strategy, which means
that the theoretical speed-up is already witnessed for small
problem sizes, small gap size, and small number of objec-
tives.
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Figure 3: The mean (with standard deviations) number of fitness
evaluations of the SMS-EMOA with different mechanisms for solv-
ing mOJZJ with m = 4, k = 3 and n ∈ {12, 16, 20, 24, 28} in 20
independent runs.

7 Conclusion
In this paper, to tackle the quest for a scalably efficient non-
elitist selection strategy for MOEAs, we proposed a simple
aging strategy, essentially giving each new individual τ itera-
tions to develop before being prone to removal, and added it
to the SMS-EMOA. A speed-up of max{1,Θ(k)k−1} com-
pared to the original SMS-EMOA (and also the one with the
stochastic population update) is proven for the m-objective
JUMP benchmark for all even m. This is the first non-elitist
strategy for which a speed-up not vanishing for larger num-
bers of objectives is proven.

Also for the bi-objective JUMP benchmark, our speed-up
of max{1,Θ(k)k−1} compares favorably with the previously
shown speed-up of max{1, 2k/n} by the stochastic popula-
tion update strategy, and in particular means that a positive
speed-up is seen for small values of k, which are most rele-
vant (only constant k give a polynomial runtime). Our exper-
iments support the above findings.

From our understanding of the mathematical proofs, we
conjecture that our simple non-elitist aging strategy can be
effective in other MOEAs as well, and list this as our most
interesting future work.
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