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Abstract
Highway traffic flow prediction under overload sce-
narios (HIPO) is a critical problem in intelligent
transportation systems, which aims to forecast fu-
ture traffic patterns on highway segments during
periods of exceptionally high demand. Despite its
importance, this problem has rarely been explored
in recent research due to the unique challenges
posed by irregular flow patterns, complex traffic
behaviors, and sparse contextual data. In this pa-
per, we propose a Heterogeneous Spatial-Temporal
graph network With Adaptive contrastiVE learn-
ing (HST-WAVE) to address the HIPO problem.
Specifically, we first construct a heterogeneous traf-
fic graph according to the physical highway struc-
ture. Then, we develop a multi-scale temporal
weaving Transformer and a coupled heterogeneous
graph attention network to capture the irregular
traffic flow patterns and complex transition behav-
iors. Furthermore, we introduce an adaptive tem-
poral enhancement contrastive learning strategy to
bridge the gap between divergent temporal pat-
terns and mitigate data sparsity. We conduct exten-
sive experiments on two real-world highway net-
work datasets (No. G56 and G60 in Hangzhou,
China), showing that our model can effectively han-
dle the HIPO problem and achieve state-of-the-
art performance. The source code is available at
https://github.com/luck-seu/HST-WAVE.

1 Introduction
Highway traffic overload is a condition where the volume of
vehicles on a highway exceeds its designed or operational ca-
pacity, leading to congestion, reduced speeds, and inefficien-
cies in traffic flow [Jin et al., 2023b; Cui et al., 2020]. Ac-
cording to TomTom’s 2024 statistics, the time spent by users
traveling through Indianapolis highway sections increased by
27% due to traffic overload [Martichoux, 2025]. Predicting
highway traffic flow under such situations can help allevi-
ate bottlenecks by enabling traffic diversion or recommend-

∗Corresponding author

G56 Hangzhou

Interweaving 
area

(c) Irregular traffic patterns

Local road

Highway road

hourshours

T
raffic flow

Sustained 
high volume

Normal 
Overload

(a) Highway structure (b) Traffic behaviors

Normal 
Overload

Sudden  
fluctuations

Figure 1: An example of a road patch in the G56 highway. In (a),
s∗ and p denote the highway and local segments, and s1 is an inter-
weaving area. In (b), the terms fwd and bwd represent the forward
and backward flows on the highway or local segments, while in and
out denote the entry and exit flows within the interweaving areas.
(c) shows the irregular traffic patterns under overload scenarios.

ing optimal entry and exit times, reducing negative impacts
on society and the economy.

Highway overload scenarios differ from normal scenar-
ios in both traffic dynamics and spatial interactions. We
illustrate these differences using a case study of Highway
G56 in Hangzhou, China, as depicted in Figure 1. In over-
load scenarios, the highway traffic flow consistently surpasses
the peak threshold observed under normal conditions (Fig-
ure 1(c)), often causing severe traffic congestion. Such high
traffic volume usually compels drivers to divert to parallel lo-
cal roads to bypass congestion (Figure 1(b)), leading to spa-
tial interactions between highways and local roads. However,
most existing methods [Jin et al., 2023a; Wu et al., 2019;
Han et al., 2024] primarily focus on normal scenarios and
overlook the distinct characteristics of overload scenarios.

We study the problem of HIghway traffic flow Prediction
under Overload scenarios, abbreviated as HIPO. This prob-
lem is more challenging than ordinary traffic prediction tasks,
which is reflected in the following crucial difficulties: 1) Ir-
regular traffic patterns. Traffic patterns during overload pe-
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riods exhibit significant changes compared to normal peri-
ods. As shown in Figure 1 (c), traffic volume often exceeds
highway capacity, causing prolonged congestion. Incidents
and interweaving behaviors add sudden fluctuations, further
destabilizing traffic flow. These unpredictable disruptions
break regular traffic patterns, making traditional methods de-
signed for consistent dynamics ineffective in capturing and
predicting irregular patterns in overload scenarios. 2) Com-
plex traffic behaviors. In Figure 1 (a) and (b), the traffic flow
on highway segment s0 can enter local segment p through the
interweaving area s1 when vehicles either reach their desti-
nations or seek to avoid congestion. Conversely, segment p
can also serve as the entry point for the highway, merging
into segment s2 through area s1. These complex traffic be-
haviors obviously affect highway segments’ flows. However,
previous data-driven prediction approaches assume that vehi-
cles remain solely on highway segments without accounting
for diversion to local roads. 3) Insufficient contextual data.
Highway overload scenarios, such as holidays, are concen-
trated in a few days, inherently leading to data sparsity. Other
approaches that leverage point-of-interests or similar urban
information for traffic prediction become ineffective on high-
way networks. The limited data is insufficient to support
training a model with strong generalization ability.

To overcome these challenges, we propose a Heteroge-
neous Spatial-Temporal graph network With Adaptive con-
trastiVE learning (HST-WAVE) to address the HIPO prob-
lem. Specifically, we first construct a heterogeneous traf-
fic graph (HTG) to depict various transfer interactions on
highway networks. We then develop a multi-scale weaving
Transformer network to adapt to irregular traffic patterns. A
coupled heterogeneous graph attention network performed on
HTG is delivered to learn the complex traffic behaviors. Both
types of networks learn alternately to form a heterogeneous
spatial-temporal module (HSTM) as the primary learner. To
further improve the model’s generality when facing irregu-
lar traffic patterns while alleviating the data sparsity, we de-
velop four temporal augmentation strategies (flip, mask, re-
place, and noise) in a mini-batch data to implement con-
trastive learning. Moreover, we incorporate an adaptive learn-
able temporal pattern with a fixed length, concatenated with
the original pattern, to retain common temporal knowledge
during training. Our contributions are:

• We investigate a significant yet often neglected problem:
highway traffic flow prediction under overload scenarios
(HIPO). This problem is notably different from exist-
ing traffic prediction tasks due to the unique challenges
caused by irregular flow patterns, complex traffic behav-
iors, and limited contextual data.

• We propose the HST-WAVE framework to address the
HIPO problem. Our approach introduces a multi-scale
temporal weaving module and a heterogeneous spatial
interaction module, which effectively captures irregular
temporal patterns and complex traffic behavior dynam-
ics. Additionally, we propose an adaptive temporal en-
hancement contrastive learning strategy to enhance the
model’s generalization capability and mitigate data spar-
sity in overloaded scenarios.

• Extensive experiments on two real-world highway
datasets demonstrate that our model achieves state-of-
the-art performance, confirming its effectiveness in ad-
dressing the HIPO problem.

2 Problem Formulation for HIPO
We study the HIPO problem on a highway road that runs par-
allel to a local road. Since the highway comprises two sep-
arate, non-interfering bidirectional lanes, this study focuses
solely on the single-directional highway with the highest traf-
fic flow for simplicity.
Highway Network. A highway network consists of a high-
way road S and a parallel local road P , denoted by V =
{S,P}. The highway road S = {s1, s2, ..., sn} is com-
posed of directed highway segments. The interweaving area
SP ⊂ S is a set of highway segments connecting the local
road P . The local road P = {p1, p2, ..., pm} is made up of
bidirectional local segments, where each segment pi ↔ pi+1.
Within the network, highway segments are sequentially con-
nected in one direction (si → si+1) while the interweaving
area s ∈ SP serves as an interaction point linked with the
corresponding local segment p ∈ P .
Overload Scenario. An overload scenario is a condition of
the highway network where the traffic demand significantly
exceeds the highway’s capacity. Overload scenarios typically
arise during holidays, road maintenance, or special events,
performing irregular temporal patterns and increased interac-
tions between SP and P .
Problem Formulation. Given a highway network {S,P},
we assign a traffic flow placeholder matrix into each type
road, i.e., X = {XS , XP}. We intercept a time interval
with T + H steps during overload periods. Then we record
the traffic flow in historical T -steps on all road segments
at time step t, i.e., XS

t−T :t = {xs1
t−T :t, x

s2
t−T :t, ..., x

sn
t−T :t},

XP
t−T :t = {xp1

t−T :t, x
p2

t−T :t, ..., x
pm

t−T :t}, and Xt−T :t =

{XS
t−T :t, X

P
t−T :t}. The HIPO problem is viewed as a time

series auto-regressive task, given the historically observed
traffic flow matrix Xt−T :t, we aim to predict the traffic flow
XS

t:t+H within future H steps on highway segment set S . The
HIPO problem can be formulated as:

XS
t:t+H = f(Xt−T :t,S,P), (1)

where f(·) is the traffic prediction function.

3 HST-WAVE Framework
This section presents the HST-WAVE framework for solv-
ing the HIPO problem, as shown in Figure 2. The frame-
work consists of two components: 1) Heterogeneous Spatial-
Temporal Module (HSTM) blocks integrating a Multi-Scale
Weaving Transformer (MSWT) and a Coupled Heteroge-
neous Graph Attention Network (CHGAN); 2) an Adaptive
Temporal Enhancement Contrastive Learning (ATECL) strat-
egy integrating temporal enhanced contrastive learning and
learnable temporal patterns.

3.1 Traffic Modeling with HSTM
Most current traffic flow prediction methods [Yu et al., 2018;
Kong et al., 2024; Zhou et al., 2024; Jin et al., 2023a] de-
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Mutual Attention

Attn Msg
MSWT CHGAN

HSTM blocks

Augmentation
          

1D Gated-Conv

Transformer Encoder
MsgAttn

Hop Decay Agg

Bias

… …

… … + ×

(1) HST-WAVE Framework (2) MSWT Module (3) CHGAN Module
Section 3.1 

Section 3.2

Figure 2: The overview of HST-WAVE’s architecture. (1) The main work process for HST-WAVE, the lower part is a temporal enhancement
contrastive learning module. (2) A multi-scale weaving Transformer comprises multi-scale 1D-gated CNNs, a Transformer encoder, and inter-
scale mutual attention. (3) A coupled heterogeneous graph attention network includes a bidirectional heterogeneous attention mechanism and
a hop decay aggregation.

pend on homogeneous graph modeling and simplistic tempo-
ral learning mechanisms, which are inadequate for highway
traffic modeling under overload conditions. To address this
limitation, we design a novel heterogeneous spatial-temporal
block, termed HSTM, to effectively learn irregular traffic pat-
terns and complex traffic behaviors.

The HSTM block is built upon a heterogeneous traffic
graph (HTG) that captures the diverse types of road seg-
ments and their transfer interactions, as illustrated in Fig-
ure 1 (b). In this representation, each road segment—whether
on a highway or a local road—is modeled as a node, while
the transfer interactions between segments are represented as
edges. An HTG is formally defined as G = {V, E , T ,R},
where V = {S,P} is the set of nodes, E is the set of
edges, T = {highway, local} is the set of node types, R =
{in, out, fwd, bwd} is the set of edge types, and N = |V| is
the number of nodes. We define τ(v) ∈ T and ϕ(e) ∈ R
as type mapping functions for nodes and edges, respectively,
where v ∈ V and e ∈ E . Specifically:

τ(v) =

{
highway, ∀v ∈ S,
local, ∀v ∈ P,

ϕ(e) =


fwd, e = (si, sj),

fwd or bwd, e = (pi, pj) or (pj , pi),

in or out, e = (pi, s
′
i) or (s

′
i, pi),

where s∗ ∈ S , s′∗ ∈ SP , and p∗ ∈ P are nodes in V . The
direction of an edge is specified by i < j.

Each node v ∈ V is associated with temporal features
hv ∈ RT×d, representing the traffic flow on the correspond-
ing highway or local road segment over the past T time
steps, where d is the dimension of the temporal feature, and
H ∈ RN×T×d denotes the temporal features of all nodes.
Given the traffic flow matrix Xt−T :T , we construct the ini-
tial feature H0 by incorporating the traffic flow value, time of
day, and day of the week for each time step.

We then input H0 into the HSTM blocks, which are formed
by alternately stacking MSWT and CHGAN:

Ĥl−1 = MSWT(Hl−1), Hl = CHGAN(Ĥl−1,G), (2)

where Hl ∈ RN×T×d is the output of all nodes, and l denotes
the number of layers. MSWT and CHGAN learn the complex
temporal and spatial dynamic features of highway traffic data.

Learning Irregular Traffic Patterns with MSWT
Traffic flow in overload scenarios exhibits sustained high vol-
umes and frequent fluctuations. Existing methods in temporal
learning typically rely on time-step-based models [Yu et al.,
2018; Jin et al., 2023a], which struggle to capture the depen-
dencies with mixed irregular temporal patterns. We propose
a multi-scale weaving Transformer (MSWT), incorporating
single- and multi-window weaving attention to handle such
irregular traffic patterns. MSWT module inputs Hl−1 that
contains all nodes’ temporal features and transforms hv

l−1 of
each node v into the output ĥv

l−1. We omit the subscripts v
and l − 1 for convenience.

We first improve the gated CNNs [Yu et al., 2018] by using
multiple temporal scales to decompose the irregular tempo-
ral patterns into multi-scale window pattern representations.
Given the temporal feature h for node v, we employ 1-D
CNNs with c scale kernels combined with the gated linear
unit (GLU) along the temporal dimension T . For the ker-
nel size wi, the window pattern is sliding on h with padding
wi − 1 zeros, denoted as Padwi

(h). The convolution kernel
Fwi

∈ Rwi×d×2d implements on it and following the GLU
operation:

hwi
= P ⊙ σ(Q), (3)

where P,Q ∈ RT×d are two parts with the d dimension in the
output, which are computed by P ||Q = Fwi ∗Padwi(h). The
function σ(Q) is a sigmoid gate determining the relevance of
input P from the current states for uncovering compositional
structure and dynamic variations in each window.

We then input the window pattern embedding hwi
∈ RT×d

of each granular into a base Transformer encoder to achieve
the interaction modeling between single-scale windows:

ĥwi
= TransformerEncoderwi

(hwi
). (4)

In the multi-scale window design, small-scale windows
capture fine-grained, localized traffic variations, while large-
scale windows focus on broader temporal trends and con-
text. Furthermore, we propose mutual attention pooling on
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the stacked output ĥw ∈ Rc·T×d of multiple scale window
Transformers to integrate local and global insights:

Wwindowi,j
=

ĥiĥj∑c·T
a=0 ĥiĥa

,

ĥ = WindowSum(Wwindowĥw),

(5)

where WindowSum(·) is a summation function that applies
on the window scale. The temporal outputs ĥ ∈ RT×d are
concatenated into the representation Ĥl−1 of all nodes (in
Equation 2). This attention allows the model to adaptively
prioritize relevant temporal scales based on inputs, ensuring
flexibility in handling mixed irregular temporal patterns.

Learning Complex Traffic Behaviors with CHGAN
The frequent transitions of traffic flow along highway seg-
ments, local segments, and interweaving areas under overload
scenarios result in complex traffic behaviors. We develop
a coupled heterogeneous graph attention network (HTG)
to model these interactions in a Transformer-based man-
ner [Mao et al., 2023]. CHGAN maps the MSWT’s output
ĥv
l−1 ∈ Ĥl−1 to the spatial output ĥ∗

l ∈ Hl on G, which is
formulated as a message passing mechanism liking general
GNNs, and the subscript l − 1 is omitted:

hN (v) =Aggu∈N (v)

(
Attn(u, v) ·Msg(u)

)
,

h∗ = Update(ĥv,hN (v)),
(6)

where Agg(·), Attn(·), Msg(·), and Update(·) are the ag-
gregation, attention, message, and update functions.

In CHGAN, the attention function Attn(·) generates the at-
tention scores between two nodes by considering node types
to learn important traffic behaviors across different segments.
Specifically, for a target node v ∈ V , we select its all k-hop
neighbors set N (v). We then define a group-specific Query
and Key projected function for each node type. The target
node v and source node u ∈ N (v) are mapped into Query
and Key vectors to calculate dot product as attention:

Qv = QLinearτ(v)(ĥ
v), Ku = KLinearτ(u)(ĥ

u),

α(ĥu, ĥv) =
QvK

T
u√

d
.

(7)

Furthermore, we add the relative edge type bias to adjust
the attention scores to enhance heterogeneous traffic interac-
tion modeling. We assign a one-hot vector hϕ(ei) ∈ R|R|

to each edge type, and the edge type feature is indexed by
a learnable edge type matrix HR ∈ R|R|×d, i.e., ĥϕ(ei) =
hϕ(ei)HR. For node pair (u, v), we compute the average of
edge type features along the path (e1, e2, ..., ek) from u to v,
and a linear projection is employed to generate bias item:

β(u,v) = Linearbias(
1

k

k∑
i=1

ĥϕ(ei)), (8)

the final attention score is calculated by:

Attn(u, v) = Softmax
(
α(ĥu, ĥv) + β(u,v)

)
. (9)

The message function Msg(·) extracts the source node’s
feature of target node v by a Value projection:

Msg(u) = VLinearτ(u)(ĥ
u). (10)

We eventually aggregate all source nodes’ messages into
the target node by Agg(·). Considering the neighbor proxim-
ity, traffic messages from source road segments at the high-
hop pass into the target road segment will consume more than
at the low-hop. Therefore, we design a simple decay function
without trainable parameters in the aggregation stage:

Agg(·) :=
∑

u∈N (v)

Attn(u, v) ·Msg(u) · e−λ(kd−1), (11)

where λ is the decay factor, and kd is the hop of a source node.
Let the first output of Agg(·) be denoted by fwd(hN (v))
which incorporates the traffic flow features from all other
nodes with different types and relations flowing to the target
node. We flip the edge direction in HTG and put it into the
above computation process to obtain the output bwd(hN (v)),
which empowers the model with the ability to perceive the
traffic flow features from all nodes reached by the target
node’s outgoing flow.

We use an activation linear projection combining the resid-
ual connection to update the target node’s information from
bidirectional sources:

h∗ = Linear
(
σ(fwd(hN (v))||bwd(hN (v))

)
+ ĥv, (12)

where h∗ ∈ RT×d is the output of Update(·) in target node
v, and we denote the spatial representation of all nodes as Hl

(in Equation 2). CHGAN improves the heterogeneous graph
Transformer [Mao et al., 2023] by introducing relative traffic
behavior type learning with a hop decay function and bidirec-
tional traffic flow-aware heterogeneous attention, effectively
capturing complex traffic behaviors.

3.2 Traffic Data Augmentation with ATECL
The rarity of overload events leads to insufficient contextual
data for training, requiring models to rely on normal traffic
data. However, the temporal patterns and behaviors observed
in normal traffic differ substantially from those during over-
load scenarios. Therefore, we devise an adaptive temporal
enhancement contrastive learning (ATECL) strategy based on
HSTM in this section, which enhances model generalization
by bridging the gap between divergent temporal patterns and
alleviates data sparsity by augmenting overload scenario data.

To enhance the generality of the model, we apply four aug-
mentation operations A = {Flip,Mask,Replace,Noise}
at the temporal level, where each operation serves to simu-
late different traffic conditions. Flip: we randomly flip T · γ
positions by max ± x (using + if x ≤ 0, and − otherwise)
to simulate temporal shifts in traffic patterns; Mask: we ran-
domly mask T · γ positions to 0 to force the model to learn
temporal contextual dependencies; Replace: we randomly re-
place T · γ positions to noise to simulate fluctuating traffic
conditions; Noise: we add the Gaussian noise to all positions
to mimic unpredictable changes in traffic behavior. Here, γ
represents the modification rate, x denotes a value at an ar-
bitrary position within a temporal pattern, and max indicates
the maximum flow.
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Given a batch of Nb samples, we sample two augmenta-
tion operations oi, oj ∈ A for each temporal pattern to ob-
tain Hoi

0 ,H
oj
0 and put them into the HSTM model to obtain

the 2Nb outputs. Following the general contrastive learning
task [Chen et al., 2020], we enhance the similarity between
positive pairs (Hi,Hj) from the same temporal pattern and
decrease the similarity between negative pairs (Hi,Hk) from
2Nb − 2 different temporal patterns:

LCL = −log
exp

(
sim(Hi,Hj)/η

)∑2Nb

k=1 Ik ̸=iexp
(
sim(Hi,Hk)/η

) , (13)

where I = {0, 1} is a binary function outputting 1 if k ̸= i
and η is a temperature parameter.

To further enhance the learning process and preserve com-
mon temporal knowledge across different augmentations, we
introduce an adaptive temporal pattern lv ∈ RN×T ′×d, which
is concatenated with the augmented sequence:

Hoi
0 = H0||lv, lv ∼ N (0, I), (14)

where the pattern is initialized to a normal distribution and
updated during model training, acting as a memory to retain
key temporal cues regardless of the specific augmentation ap-
plied. It helps the model avoid over-fitting to noise while
ensuring generalization to real-world overload scenarios.

3.3 Loss Function
We employ a full connection layer to map the output Hl into
a prediction traffic flow matrix X̂S

t:t+H , and the ground truth
matrix is XS

t:t+H . For the HIPO problem, we use the mean
absolute error as the training objective loss defined by:

LTR =
1

NT

N∑
i=1

T∑
j=1

|X̂S
t:t+H −XS

t:t+H |ij . (15)

The total training loss is calculated by the weighted sum of
regression loss and contrastive loss:

L = LTR + µLCL, (16)
where µ is a control factor.

4 Experiments
We conduct extensive experiments on two real-world datasets
to evaluate our HST-WAVE’s performance and answer the
following research questions: Q1) How much improvement
does the HST-WAVE achieve on the HIPO task compared to
methods designed for normal traffic flow prediction? Q2)
How much contribution does each component of the HST-
WAVE make to the accuracy of addressing the HIPO task?
Q3) How robust is the HST-WAVE on the segment with the
highest traffic load compared to existing methods? Q4) How
sensitive is the HST-WAVE to the different settings for hyper-
parameters?

Data Time range #Nodes #Normal/Overload

G56 06/10-10/03 2023 110 31,680/1,728
G60 06/01-10/03 2023 143 34,272/1,728

Table 1: Statistic details of G56 and G60. Their overload periods
are from September 28 to October 3.

4.1 Experiment Settings
Datasets. We collect the traffic flow datasets on two highway
networks during the normal and overload scenarios, including
highways No. G56 and G60 are located in Hangzhou, China,
and we consider the holiday periods to be overload scenar-
ios. The traffic flow is obtained by recording the vehicle track
points within the kilometer piles at a sampling frequency of 5
minutes, and the specific information is described in Table 1.

For both the G56 and G60 datasets, the time range for nor-
mal scenarios spans from June 10 (or June 1) to September
27, 2023, while the time range for overload scenarios is from
September 28 to October 3, 2023 (the Mid-Autumn Festi-
val and National Day in China). The highway network of
G56 consists of 110 segment nodes, including 100 highway
nodes (10 of which are interweaving area nodes) and 10 lo-
cal segment nodes, while G60 comprises 143 segment nodes,
including 130 highway nodes (13 of which are interweaving
area nodes) and 13 local segment nodes. We select all data
in the normal scenarios and two days of data in the overload
scenarios as the training set, and the rest of the dataset (four
days with 1152 time steps) in the overload scenarios as the
test set. The historical 60-minute data is used to predict the
traffic flow for the next 20, 40, and 60 minutes.
Metrics and Baselines. Following the previous works [Zhou
et al., 2024] in traffic flow prediction, Mean Absolute Er-
rors (MAE), Root Mean Squared Errors (RMSE), and Mean
Absolute Percentage Errors (MAPE) are adopted to mea-
sure the performance of methods. We select nine represen-
tative baselines for comparison with HST-WAVE: Historical
Average (HA) [Jiang et al., 2021], VAR [Lu et al., 2016],
DCRNN [Li et al., 2018], STGCN [Yu et al., 2018], Graph
Wavenet (GWNet) [Wu et al., 2019], Trafformer [Jin et al.,
2023a], PDFormer [Jiang et al., 2023], STPGNN [Kong et
al., 2024], and DCST [Zhou et al., 2024].
Model Settings. We implement our HST-WAVE by using Py-
Torch Lightning on the NVIDIA GeForce 3090 GPU with 24
GB memory. For the model’s hyper-parameters, the hidden
dimension d of HSTM is set to 64, the layers of MSWT and
CHGAN are set to 2, the head of attention is set to 4, the hop
decay factor λ is set to 0.5, the loss weight coefficient µ is set
to 0.2, and the size T ′ of lv is set to 12. We use the Adam
optimizer during the model training, the learning rate is set to
0.001, and the batch size is set to 64.

4.2 Comparison Results (RQ1)
Table 2 summarizes the experimental results of the HST-
WAVE and baseline models for 20-, 40-, and 60-minute-
ahead predictions on the G56 and G60 datasets. The re-
sults demonstrate that HST-WAVE consistently outperforms
all baseline methods across three evaluation metrics in the
HIPO task. Notably, at the 60-minute prediction horizon,
HST-WAVE achieves substantial improvements over the best-
performing existing methods, with MAE, RMSE, and MAPE
improving by 11.1%, 11.0%, and 13.2% on G56, and by
17.7%, 11.5%, and 12.7% on G60, respectively.

HA and VAR perform the worst since they fail to han-
dle complex spatial-temporal data. STPGNN and PDFormer
achieve the second-best performance among all baseline
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Data Methods 20 min 40 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

G56

HA (CIKM’21) 33.280 44.295 0.183 34.119 45.061 0.194 35.794 46.381 0.213
VAR (TIIS’18) 32.477 43.356 0.180 33.735 44.742 0.192 35.329 45.952 0.208

DCRNN (ICLR’18) 30.681 40.209 0.178 32.324 42.742 0.186 34.357 45.299 0.196
STGCN (IJCAI’18) 29.374 38.738 0.169 31.695 41.786 0.179 33.959 44.952 0.190
GWNet (IJCAI’19) 31.011 40.862 0.179 32.153 42.537 0.185 34.393 45.446 0.196

Trafformer (AAAI’23) 30.962 40.871 0.161 32.270 42.790 0.163 33.985 44.794 0.168
PDFormer (AAAI’23) 30.209 40.257 0.150 31.765 42.261 0.152 33.109 43.958 0.159
STPGNN (AAAI’24) 28.272 37.175 0.185 30.142 39.576 0.199 32.040 41.994 0.213

DCST (IJCAI’24) 29.962 38.197 0.150 31.702 40.100 0.155 33.225 42.238 0.162
HST-WAVE (ours) 26.249 35.913 0.127 26.756 36.582 0.130 28.475 37.378 0.138

G60

HA (CIKM’21) 25.053 35.283 0.201 26.398 36.426 0.218 28.644 38.296 0.228
VAR (TIIS’18) 24.957 34.806 0.199 26.040 36.194 0.208 27.271 37.868 0.213

DCRNN (ICLR’18) 21.144 28.391 0.188 22.069 30.726 0.206 24.153 30.795 0.208
STGCN (IJCAI’18) 20.174 27.884 0.181 21.257 29.294 0.194 23.287 30.062 0.205
GWNet (IJCAI’19) 20.021 27.956 0.183 21.616 29.147 0.194 23.872 30.785 0.206

Trafformer (AAAI’23) 20.818 28.081 0.178 21.964 29.028 0.181 23.179 30.233 0.184
PDFormer (AAAI’23) 20.094 27.414 0.166 21.287 28.504 0.167 22.689 29.283 0.179
STPGNN (AAAI’24) 18.842 24.206 0.199 20.403 27.388 0.204 21.764 28.449 0.223

DCST (IJCAI’24) 19.859 27.622 0.159 21.261 28.434 0.164 22.043 28.831 0.173
HST-WAVE (ours) 16.817 23.947 0.144 17.493 24.382 0.145 17.920 25.189 0.151

Table 2: Performance comparison evaluated by MAE, MAPE, RMSE (lower is better) on G56 and G60 datasets. The best and second-best
performances are highlighted in bold and underlined, respectively.

methods. STPGNN focuses on identifying key nodes in traf-
fic graphs, which helps capture partial interaction information
in interweaving areas. On the other hand, PDFormer lever-
ages the relationships between similar nodes and temporal
patterns, enabling it to adapt to varying traffic conditions.

HST-WAVE surpasses STPGNN and PDFormer due to its
tailored design for the HIPO task. The MSWT module em-
powers it to address irregular temporal dependencies across
diverse traffic conditions, while the CHGAN module equips
the model to effectively capture complex transition relation-
ships between road segments. Furthermore, the ATECL mod-
ule significantly enhances the model’s generalization ability
in challenging overload scenarios.

4.3 Effectiveness of Component (RQ2)
We conduct ablation studies to evaluate the effectiveness of
each component in HST-WAVE. The variants are as follows.
1) w/o HG: this variant replaces the CHGAN with the GCN.
2) w/o MS: this variant removes the multi-scale window con-
volutional operation. 3) w/o lv: this variant drops the adap-
tive temporal pattern. 4) w/o CL: this variant does not adopt
the ATECL strategy.

Figure 3 presents the comparison of the above variants,
which illustrate that: 1) w/o HG performs worse than HST-
WAVE, which reflects the necessity of the CHGAN module
in capturing the dynamic flow transitions among various type
segments. 2) The performance of w/o MS also decreases,
which confirms the effectiveness of the multi-scale window
modeling mechanism in learning complex traffic patterns. 3)
Removing the ATECL strategy (w/o CL) significantly de-
grades the model performance. This reason is that ATECL

contributes to adapting to the irregular temporal patterns and
data sparsity in overload scenarios. 4) w/o lv performs bet-
ter than w/o CL in G56, but the opposite is valid on the G60.
This suggests that lv in ATECL can mitigate the noise impact
by preserving key temporal pattern knowledge.

4.4 Performance on Interweaving Areas (RQ3)
We verify the performance of the HST-WAVE on interweav-
ing areas under overload scenarios, which are characterized
by high traffic flow and frequent traffic behaviors. The re-
sults are shown in Figure 4, and we observe the following
findings. HST-WAVE significantly outperforms PDFormer
and STPGNN across all metrics on both datasets while ex-
hibiting smaller error increments compared to the other meth-
ods. Although STPGNN achieves similar error increments to
HST-WAVE on G60 (Figure 4 (d), (e), (f)), its overall perfor-
mance remains substantially inferior to ours. Moreover, un-
like STPGNN, our method does not rely on explicitly iden-
tifying key nodes to achieve superior performance in inter-
weaving areas. This indicates that HST-WAVE attains high
generality by effectively learning the complex and heteroge-
neous interactions present in interweaving areas.

4.5 Hyper-parameter Sensitivity (RQ4)
We select three important hyper-parameters of the HST-
WAVE to analyze the effects on performances, including the
weight coefficient µ of contrastive learning loss, the hidden
dimension d of the model, and the length of the adaptive tem-
poral pattern lv. Figure 5 shows the trend of MAE under dif-
ferent hyper-parameter settings on both datasets and default
hyper-parameters in our experiments are marked by vertical
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Figure 3: Effectiveness of each component on G56 and G60 for 60-
minute-ahead prediction.

dashed lines. We have the following observations. 1) We can
obtain the optimal results when setting µ = 0.3, which strikes
an effective balance between the traffic flow prediction loss
and the enhancement contrastive loss. 2) The model’s perfor-
mance improves steadily as the d increases to 64, but larger
dimensions offer no additional benefits and may increase the
risk of over-fitting. 3) The optimal length for lv is set to 12,
which is sufficient to capture key temporal cues and guide
accurate predictions in overload scenarios.

5 Related Work
5.1 Traffic Prediction
Traffic prediction is a critical research area due to its signif-
icant role in traffic management and urban planning [Gomes
et al., 2023]. Early approaches relied on traditional sta-
tistical models like ARIMA [Min and Wynter, 2011] and
Bayesian models [Wang et al., 2014] but struggled with tack-
ling complex spatial-temporal dependencies. Deep learning
has exhibited superior potential in capturing these dependen-
cies. For spatial modeling, Convolutional Neural Networks
(CNNs) [Zhang et al., 2020] and Graph Neural Networks
(GNNs), including variations like Graph Convolutional Net-
works (GCNs) and Graph Attention Networks (GATs) [Wu et
al., 2020; Ye et al., 2021; Song et al., 2022; Ji et al., 2023;
Kong et al., 2024], are utilized to effectively represent road
network structures and interactions. For temporal depen-
dencies, CNNs and recurrent architectures like LSTM and
GRU [Ma et al., 2015] are used to extract sequential features.

Recent advances in traffic forecasting have been marked by
the advent of Transformer-based approaches [Liu et al., 2023;
Jin et al., 2023a; Jiang et al., 2023; Zhou et al., 2024],
such as Trafformer [Jin et al., 2023a], DCST [Zhou et al.,
2024], and PDFormer [Jiang et al., 2023]. These approaches
have notably enhanced prediction accuracy by simultane-
ously modeling spatial and temporal dependencies, setting a
new benchmark in the field. Other studies [Lu et al., 2018;
Wang et al., 2019b] focus on traffic prediction during holi-
days simply using parameter modeling of temporal patterns,
which has difficulty handling complex spatial-temporal cor-
relations, particularly traffic behaviors in interweaving areas.
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Figure 4: Performance on interweaving areas on the G56 and G60.
The bar chart (left axis) shows performance in interweaving areas,
and each point in the line chart (right axis) shows the error increment
(metric deterioration) in interweaving areas versus all nodes.
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Figure 5: Hyper-parameter analysis on metric MAE on the G56 and
G60 datasets for 60-minute-ahead prediction.

5.2 Heterogeneous Graph and Time Series
Augmentation

Heterogeneous graphs [Sun and Han, 2013] effectively model
and integrate diverse types of entities and relationships in
complex data, enabling more accurate representation learn-
ing. In recent years, attention mechanisms have been widely
applied in the research of heterogeneous graph neural net-
works, such as HAN [Wang et al., 2019a], HGT [Hu et al.,
2020], SlotGAT [Zhou et al., 2023].

Time series augmentation techniques [Wen et al., 2021;
Zanella et al., 2022; Sarkar et al., 2020; Cheung and Ye-
ung, 2021] aim to enhance model generalization on small or
imbalanced datasets. They are typically applied to domain-
specific temporal data or regular temporal patterns [Eldele et
al., 2021; Franceschi et al., 2019], resulting in suboptimal
performance when adapted to the HIPO problem.

6 Conclusion
In this paper, we investigated a novel problem: highway traf-
fic flow prediction under overload scenarios, which is more
challenging than ordinary traffic prediction tasks. We pro-
posed a heterogeneous spatial-temporal graph network with
adaptive contrastive learning, HST-WAVE, to address this is-
sue. The framework incorporated MSWT and CHGAN mod-
ules within HSTM blocks to capture irregular temporal pat-
terns and complex traffic behaviors, while the ATECL strat-
egy improved generalization and mitigated data sparsity. Ex-
tensive experimental results demonstrated the effectiveness of
our HST-WAVE on the HIPO problem.
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