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Abstract

Answer Set Programming (ASP) is a popular non-
monotonic formalism used for common-sense rea-
soning and problem-solving based on stable model
semantics. Equilibrium logic is a generalisation of
ASP for arbitrary propositional theories and thus
provides a logical characterisation of the nonmono-
tonic stable model semantics. In difference to clas-
sical logic, which can be defined via proof or model
theory, nonmonotonic reasoning formalisms are de-
fined via their models exclusively. Equilibrium logic
is no exception here, as it has no proper proof-
theoretic axiomatisation. Besides this being a theo-
retical imbalance, it also has consequences regard-
ing notions of justification and explainability. In this
work, we fill this gap by providing a sequent calcu-
lus for answer set entailment. Our calculus builds
upon ideas from existing calculi for other nonmono-
tonic formalisms and utilises calculi for the logic of
here and there, which is the underlying base logic
of equilibrium logic. We show that the calculus is
sound and complete and discuss pitfalls as well as
alternative axiomatisations. Finally, we address how
our approach can be of use for explainability in ASP.

1 Introduction

Answer Set Programming (ASP) is a symbolic rule-based
reasoning formalism that has been used for various Al
applications in numerous domains [Erdem et al., 2016;
Falkner et al., 2018], among them scheduling [Ali et al., 2023;
Abels et al., 2019; Yli-Jyri et al., 2023], product configura-
tion [Comploi-Taupe et al., 2022], life sciences [Erdem and
Oztok, 2015], health insurance [Beierle et al., 20051, or psy-
chology [Inclezan, 2015], to mention a few. ASP allows for
a declarative encoding of problems in a succinct manner. So-
lutions for them are obtained from answer sets, which result
from the evaluation of the encoding using an ASP solver. In
this work, we study answer set entailment, which intuitively
formalises which sentences hold in every answer set of a pro-
gram. This concept itself is already of practical interest, and
has been applied for diagnosis [Eiter ef al., 1999] and plan-
ning [Eiter et al., 1997]. Notably, answer set entailment is at
the core of abductive explanations [Eiter ef al., 1997].

Given the practical usage of ASP, questions of explainabil-
ity have been raised. Those questions or problems generally
concern themselves with either answering why certain literals
hold in a particular answer set or why there is no answer set at
all, cf. Fandinno and Schulz [2019] for a survey. Both these
questions can be formulated through answer set entailment.
However, simply stating a valid entailment is in general not an
explanation on its own and needs to be justified. Such justifica-
tions can be obtained via a formal proof system, incorporating
the logical base of ASP in its inference rules.

For such a system of inference rules, i.e., proof system, to be
meaningful for explainability, we argue that it should adhere
to the following informal requirements: (R1) the rules and ax-
ioms of the proof system should be, like classical proof calculi,
local and encode simple semantic concepts, (R2) the proof
system should support commonly used language features of
ASP, and (R3) the proofs should be concise and interpretable.
Of course, those requirements are open to interpretation, but
they are nonetheless useful desiderata for our purposes.

Although ASP has some efficient solvers available [Leone
et al., 2006; Gebser et al., 2019; Alviano et al., 2013] and its
model-theoretic properties have been studied extensively, the
same cannot be said for proof-theoretic investigations.

Given the nonmonotonic nature of ASP, obtaining a proof
calculus which fulfils all those criteria is non-trivial, but re-
quirements (R1-R3) are important if one really wants to charac-
terise the semantics in a way that can serve the explainability of
the formalism. The few proof systems that do exist for answer
set entailment [Gebser and Schaub, 2013; Bonatti et al., 2008;
Pearce et al., 2000] are arguably weak on at least one of the
requirements each.

In this work, we introduce a sound and complete sequent
proof calculus for entailment in equilibrium logic (EL). The
latter generalises ASP to arbitrary propositional theories and
serves as a theoretical foundation of stable model semantics.
Our calculus is very close to the original sequent calculus
for classical logic invented by Gentzen [1935] and also takes
inspiration from sequent calculi that were defined so related,
but distinct, nonmonotonic formalisms [Olivetti, 1992; Bonatti
and Olivetti, 1997a; Bonatti and Olivetti, 1997b]. In particular,
we similarly use an anti-sequent calculus, which is a calculus
that axiomatises non-entailment. As we will argue, without
this component, even simple entailments may not be provable
and that by adding a single non-entailment rule, which encodes
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the nonmonotonic stability condition inherent in ASP, we
achieve a complete characterisation of answer set entailment.

Arguably, our approach is to be more aligned with the re-
quirements (R1-R3) from above as previous calculi. The gen-
erated sequent proofs are, given some knowledge of proof
theory, easy to parse and do not require multiple stages, auxil-
iary concepts, or complicated side conditions.

Briefly summarised, our main contributions are as follows:

e We provide an axiomatisation of answer set entailment in
the form of a sequent calculus.

e We discuss an alternative characterisation that does not use
the anti-sequent calculus, but requires rules which can only be
applied in certain language fragments.

e We investigate how the calculus behaves when restricted to
ASP programs and show which rules remain necessary.

e We show that answer set entailment is a useful framework
for explainability and our calculus strengthens this by provid-
ing a formal way to justify entailment.

Our work enriches the rather sparse set of proof systems for
ASP and equilibrium logic. Furthermore, the provided proofs
are interpretable and can be translated into natural language
as a basis for human-understandable explanations.

Missing proofs of the results are included in an extended
version.

2 Background

Propositional equilibrium logic (EL) [Pearce, 1996; Pearce,
2006] generalises ground ASP semantics to arbitrary proposi-
tional formulas i.e. no restriction to rules.

We assume a denumerable set of propositional variables
At. Formulas of EL are then defined in the usual manner over
logical connectives A, V, D, — and logical constant L.

The semantics of EL is based on the logic of here and
there (also called HT logic), which is defined over the same
language. An interpretation in HT logic is a pair (H,T') where
H C T C At. Whether an HT interpretation (H,T) is a
model of a formula ¢ (denoted by (H, T = () is inductively
defined as follows: (H,T) = L, (H,T) E piffp € H;
(H,T) ¢ Aiff (H,T) F pand (H,T) = s (H,T)
e Viff (H,T) | por (HT) F; (HT) | ¢ D iff
T = o>, and (H, T) i g or (H,T) = v (H, T) =
iff TV~ pand (H,T) [~ .

Note that whenever H = T, (H,T) = ¢ corresponds to
the satisfaction relation of classical propositional logic. By
slight abuse of notation, we use T |= ¢ to refer to (T, T) = ¢
and call such models classical or total.

From the above semantics, two useful observations follow.
The first is that (H,T') = ¢ implies (T, T) |= . This prop-
erty is also called persistence. The other important property is
that (H,T) = —¢ iff T | —¢, i.e., negation is only evaluated
over 7.

An HT model (H,T) of a formula ¢ is an equilibrium
model iff H = T and for any other HT interpretation (H', T
such that H' C H, (H',T) ~ ¢. The latter conditions is
also referred to as stability. We denote an equilibrium model
(T, T) by T whenever convenient and we use a single set I to
refer to classical interpretations. As usual, a set of formulas is

called a theory, and we say that an interpretation is a model of
a theory if it satisfies all contained formulas.

ASP programs are generally sets of rules of the form H +
B, where H and B are sets of literals. In EL, such a rule is
encoded as an implication A B D \/ H and a program is then
a theory consisting such an implication for each rule. As has
been shown by Pearce [1996], the equilibrium models of such
an encoded program amount to its answer sets.

From now on, whenever we talk about a program, we refer
to a theory which encodes an ASP program as described above.

We use I' = ¢ to denote that a theory classically entails ¢
and I' =g ¢ for entailment in HT.

Furthermore, by Var(T') we denote the set of atoms appear-
ing in I" and given a set S of atoms, we define =S = {-p |
p € S} and =S = {—=—p | p € S}. Whenever I' is clear
from context, S = Var(T') \ S denotes the complement of S.

Sequent calculus was invented by Gentzen [1935] for intu-
itionistic as well as classical propositional and predicate logic.
It performs syntactic operations on pairs of sequences of rules
creating proof trees. We will make use of a so called anti-
sequent calculus for HT. This calculus, introduced by Oetsch
and Tompits [2011] is a refutation calculus and thus axioma-
tises non-entailment. An anti-sequent I' 457 A consists of
sets of formulas I" and A. Figure 1 shows the rules of the anti-
sequent calculus for HT; they are slightly reformulated but
equivalent to the original calculus. An anti-sequent I' g7 A
is an initial sequent if I and A are disjoint sets of literals and
I' is consistent, i.e., does not contain both an atom and its
negation. I' 4z A can be derived with the above rules and
axioms iff ' f& g A holds.

3 Equilibrium Entailment
The inference relation we seek to axiomatise is the following.

Definition 1 (Equilibrium Entailment). Given theories I" and
A, we say that T equilibrium entails A, written T R A, if for
every equilibrium model I of T, I |= ¢ for some ¢ € A.

This notion is slightly different from the equilibrium entail-
ment defined by Pearce [2006] but more aligned with answer
set entailment. In the definition of Pearce, equilibrium en-
tailment falls back to classical entailment whenever I has no
stable models, which is not suitable for our intentions as we
would like I' B | whenever I" has no equilibrium models.

We argue that equilibrium entailment is a useful concept
w.r.t. justification and explainability. We have already mention
the special case when I' R | indicates that I is infeasible. By
providing a proof of said inference, one effectively justifies
that I" and, given that the rules of the proof system are simple
and interpretable, provides a baseline as to how an explanation
should proceed. This of course also holds in the general case
when one wants to know why a particular literal or sentence
holds in every equilibrium model. Furthermore, equilibrium
entailment is also applicable when one already has a particular
equilibrium model I and seeks to explain why certain atoms
are, respectively, are not, in the model.

To apply entailment here, one needs to handle the nonde-
terminism inherent in stable model semantics. This motivates
the next definition, which is inspired by a similar concept
used for ASP justification graphs [Pontelli et al., 2009] and
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Figure 1: Rules of the HT anti-sequent calculus

also Pearce’s fix-point characterisation of equilibrium mod-
els [Pearce, 2006].

Definition 2 (Assumption Set). Given an interpretation I, a
set of literals A is an assumption set w.r.t [ if I = \ —A.

An assumption set is minimal whenever it is a C-minimal
assumption set w.r.t I.

The intuition behind assumption sets will be more obvious
after the following proposition.

Proposition 1. Given a theory T with equilibrium model T
and some p € Var(T), then there is a minimal assumption set
A such that (i) T, —A R pifp € I, and (ii) T', A = —p if
p &L

The basic idea is that the assumption set fixes the truth
values of a necessary but minimal set of atoms to the truth
value they have in the given model. Positive assumptions have
to be added using double negation due to nonmonotonicity.

Example 1. Consider the theory consisting of the single for-
mula a V' b. This theory has two equilibrium models {a} and
{b}. For consider the former and suppose we want to answer
why a is in the model. The minimal assumption sets for {a}
are {—a} and {b} and clearly T',—=—a R a and T, b R a
both hold. Intuitively, the assumption ——a expresses that a is
assumed to be true, whereas —b assumes that b is false.

Note that in the above example, simply assuming the truth
of the atom we sought to justify was valid. It could be ar-
gued that for a proper explanation, only the latter, assuming b
false, is preferable. However, we will leave such explanatory
preferences for a different work.

We note the following observation, which is in the folklore
and can be easily shown.

Proposition 2. T' ~ —p if p & Var(T).

4 Sequent Calculus

We now introduce our notion of sequent, which will be the
main building block for our proof system.

Definition 3. An equilibrium sequent is of the form I' r~ A,
where I" and A are both sets of formulas.
An equilibrium sequent I’ ~~ A is satisfied, if [' = A.

Our calculus has two axioms which will also be the allowed
initial sequents in our derivations.

Definition 4. An initial sequent is either
(i) T'~ A, —pifT is a set of atoms and p € T, or
(ii) T, o b A, .
Those initial sequents hold for any I" and ¢ which follows

from the Proposition 2 and from the fact that every equilibrium
model is a classical model.

Proposition 3. The initial sequents given in Definition 4 are
sound.

Now, as usual, a sequent proof is defined as follows.

Definition 5. A derivation of a sequent I' ~~ A is a tree that
is rooted in the sequent, the leaves are initial sequents and
parent nodes are generated by the application of some rule.

The initial sequents, as well as the basic rules, are all sound.

Proposition 4. The basic rules given in Figure 2 are all sound,
i.e., if the sequents in the premise are satisfied, then so is the
sequent in the conclusion.

The proof proceeds by showing the statement for each rule.

Figure 2 shows the basic rules of our sequent calculus,
which concern handling the logical connectives and weakening
on the right. Note that most rules resemble their classical
counterparts, except for (V;) and (D;). The former allows us
to directly exclude disjuncts which would not be part of an
equilibrium model as the following example shows.
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Figure 2: Basic rules of the sequent calculus

Example 2. Consider the theory (a V b) A (b D a) which
has one equilibrium model {a}. Hence, it holds that —b is
equilibrium entailed.

a b —b

a bk —=b,b b,a r =b,a bhr —b,b

(D1) (D)
b,b Dabr—b,a
(Vi)
aVbbDal b
(aVb)A(bDa)h b

The reason why the implication rule is different from the
classical one is that by putting —¢ on the right-hand side of
the left premise, we can show that uneven negative cycles lead
to instability.
Example 3. We will show that —p O p R L, i.e., has no
equilibrium models.

a,bDal b

(A1)

phrLp
T
b, P (“r)
phrL,-p
-pDODph L
The following restricted version of the classical cut rule
stems from an axiomatisation of propositional circumscrip-
tion [Olivetti, 1992].
'~A e T X
' ALY
As it turns out, (RCut) is also admissible in our case.

Proposition 5. The (RCut)-rule is sound for equilibrium
entailment, i.e., if T R A, pand T, p R 3, thenT R A Y.

~,

2 5y

(RCut)

Proof. Towards a contradiction, suppose I' & A Y, then
there is some equilibrium model I of T such that I = A and
I B~ X. The former and I' R A, ¢ imply that I = ¢. Since
T',o R X and I £ X, there has to be some J C I such that
(J,I) = T' U {p}. However, the latter implies (J,I) =T
contradicting I being an equilibrium model of I". O

The rules mentioned so far are not enough to achieve a com-
plete axiomatisation of equilibrium entailment, for example,
we cannot show that a D b,b D a = —a holds. Intuitively, the
issue here is that a is not in any equilibrium model, because
it only has cyclic support, but our rules cannot capture this
notion. The rule given in Figure 3 fills this gap and makes use
of an anti-sequent calculus, cf., Section 2 for details.

Proposition 6. Given a theory I, S C Var(T') and S =
Var(T)\ S. If (a) T R A SU=S and (b) T, ——S,~S FEnr
NpespV —p, then I' K A for every A.

Proof. Towards a contradiction, suppose there is some equi-
librium model I of I". Now, from (a) it follows that I = S
and from (b) we obtain that there is some (J', I’) =T where
I'=S=Tand (J',I') }£ pV —p for some p € S. The latter
implies p ¢ J' and thus J’ C S which in turn implies that [
cannot be an equilibrium model of I'. O

The intuition is that the left premises ensures that whenever
I" has an equilibrium model that model is S. The refutation
in the right-premise gives us that S is a classical model but
unstable and I" has thus no equilibrium models.

Proposition 6 is also closely related to the concept of safe

beliefs [Osorio et al., 2005], which coincide with equilibrium
models and are defined in a similar fashion.
Example 4. Consider the theory Ty = {a D b,b D a}
which has the empty set as its sole equilibrium model. Clearly,
I’y R —a holds and Figure 4 shows the corresponding proof.
Definition 6. The sequent calculus ELK is defined by the ini-
tial sequents given in Definition 4, the basic rules in Figure 2,
the (RCut)-rule, and the (H)-rule.

The introduced rules constitute our sequent calculus ELK.

Theorem 1. The sequent calculus ELK is sound, i.e., if I v A
is derivable in ELK, then T &= A holds.

Having established soundness, it remains to show that the
calculus is complete. First, introduce the notion of consistency
as well as some properties of the calculus.

Definition 7. T is equilibrium inconsistent whenever I' i~ L
can be derived, in ELK and equilibrium consistent otherwise.

We drop “equilibrium” here whenever clear from context.
Proposition 7. T' r~ ¢ can be derived iff T' U {—p} is incon-
sistent.

Proof. Suppose I' ~ ¢ can be derived, by application of the
rule (—;) we can derive I', = r and thus I', = ~ L using
(wy.). With T, ~¢ ~ L we can derive I" b ¢ as follows:

ke
', =
'

I'—phr L
() 2= ()

T, —p ~
P (RCut)
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Figure 3: Refutation-based rule in the sequent calculus

a>DbbDa,~a,~—bhraAb

aDb,bDa,~a,—b-gr (aV —a) A (bV —b) “

aDbbDak —a,~—aN-—b

a>DbbDa,~a,—~—bhr —a

aD>bbDahk —a

(RCut)

Figure 4: Partial derivation of a D b,b D a ¥ —a

O

Proposition 8. [fI" ~ ¢ can be derived and —p € T, then T’
is inconsistent.

Proof. Suppose I' ~~ ¢ can be derived and —¢ € T, then by
application of the rules (—;) and (w,.) we can derive T, ~¢p
L and since by definition the sides of equilibrium sequents are
sets, we obtain I ~ L. O

Proposition 9. If ¢ € I" and —p € T, then I is inconsistent.

Proof. If ¢ € T', then I" i~ ¢ is an initial sequent and I" is thus
inconsistent by Proposition 8. O

Proposition 10. IfT' U {¢} and T' U {—p} are inconsistent,
then T is inconsistent as well.

Proof. f T, o v L and I', ~¢ k L can be derived, we can
derive I" r L as follows:

Tk L =)
I'vl,—p  T,mph L

'~ 1

Our completeness proof will follow the well-known Linden-
baum approach also used in classical logic. Hence, we must
define what we understand by a complete theory.

Definition 8. A theory I is complete iff for every formula o,
either -—p € I' or —p € T.

Different from classical logic, we do not require that each
formula occurs either positively or negatively and rather that
the negation or the double negation is contained. This is
due to the fact that equilibrium logic is not cumulative, i.e.,
adding positive formulas can induce new equilibrium models.
However, as the next results show, this is not the case for
negated or double negated formulas.

Lemma 1. [f I is an equilibrium model of T and I |= o, then
1 is an equilibrium model of T' U {¢}.

Proof. Suppose I is not an equilibrium model of T" U {¢}.
It is is clearly a classical model, as I |= I follows from it
being an equilibrium model of I" and I = ¢. Hence, there is
some J C I such that (J,I) = T'U {¢}. The latter implies
(J,I) =T, so I is not an equilibrium model of T'. O

Lemma 2. If I = —, then I is an equilibrium model of T iff
it is an equilibrium model of T'U {—p}.

Proof. The left-to-right direction, follows from Lemma 1 and
I = —p. Remains to show the other direction. Towards a
contradiction, suppose [ is not an equilibrium model of I'.
Since it is a classical model, there has to be some J C I such
that (J,I) |= T'. However, I = —¢ implies (J,I) | —¢.
Hence, (J,I) = T' U {—¢} holds contradicting that I is an
equilibrium model of I U {—¢}. O

Lemma 3. [f I = ¢, then I is an equilibrium model of T iff it
is an equilibrium model of T U {——p}.

Proof. Follows from Lemma 2. O

Establishing that every complete theory has some classical
model works similarly to the classical case and leads to the
following lemma.

Lemma 4. Given a complete theory T, if I is consistent, then
there is some interpretation I such that I =T.

Furthermore, the classical model is unique.

Lemma 5. Given a complete theory I'. Whenever (J, I) =T
and (J',I'Y =T, then I = I'.

Proof. Suppose (J,I) = T and (J',I') = I'. We show
I C I'. Let p be an arbitrary element of I. Since I is complete,
either ~—p € T or —p € T'. Now, if =p € T, then (J, I) = —p
holds, which implies I = —p and thus p & I. So, suppose
——p € I' and thus (J', I’) = ~—p which implies I’ = ——p.
Hence, p € I’. The statement I’ C I can be shown mutatis
mutandis and thus [ = I’. O

Of course, having a classical model is not enough in our
case. We also need the following lemma, which shows that
our calculus enforces stability.

Lemma 6. Given a complete theory T. If (J,I) = T where
J C I, then T is inconsistent.
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Proof. Let S =T and S = Var(T) \ S. Since I' is complete,
—p € T for every p € S and we can thus derive I' ~ —p as
it is an initial sequent. Similarly, =—p € I for every p € S
and we can derive I" ~ p by applications of the (—;) and (—,)
rules. Hence, I' ~ A S U —S can be derived through (A,.).
Furthermore, S = I, (J,I) =T',p € I\ Jand p € S imply
[, ==8,-5 ¥ur Nyesp V —p. Hence, T' ~ L follows
from the ()-rule and the completeness of the HT anti-sequent
calculus. [

Finally, we can state the following which follows immedi-
ately from the lemmas above.

Corollary 1. Given a complete theory T, if ' is consistent,
then it has an equilibrium model.

Now, having the tools in place, we come to the actual
Lindenbaum-like construction. First, another helpful lemma.

Lemma 7. Given a consistent theory T, if I' b ¢ can be
derived, then T'U {©} is consistent.

Proof. Suppose I' i~ ¢ can be derived, then by Proposition 7,
I'U{—} is inconsistent. Towards a contradiction, assume I'U
{©} is inconsistent. Then by Proposition 10, I is inconsistent.

O

Proposition 11. Given a consistent theory I there exists I'* O
T which is consistent and complete.

Proof. Let g, ..., e, be an enumeration of all formulas in
the language. We define I'y = I" and

Ly = {Fi U{=pi}
! LiU{=pi}

T’y is consistent by assumption. Suppose I'; 11 = T';U{——¢; },
then I';y; is consistent by construction. Now, if I';1; =
T'; U {—;} then I'; U {—=—;} is inconsistent and therefore,
by Proposition 7, I' b = can be derived. By Lemma 7, the
latter and T'; being consistent imply T'; U {—p;} = T4 is
consistent. Hence, I'* = ( J, ., ,, I'; is consistent.

By construction, I'* is complete as every formula ¢; appears
in the enumeration and either =—¢; of —p; gets added. [

if I'; U {=—¢; } is consistent, and
otherwise.

The completeness of the calculus now follows easily.

Theorem 2. IfT" R ¢, then I' r~ ¢ is derivable in ELK.

Proof. We proceed by contraposition. Suppose I" ~~ ¢ cannot
be derived. By Proposition 7 it holds that I" U {—} is con-
sistent. Hence, it has some complete extension which has an
equilibrium model I such that I = —¢. By Lemmas 2 and
3, I is also an equilibrium model of T" and I = —¢ clearly
implies I [~ ¢. Hence, I' # ¢ holds by definition. O

The sequent calculus ELK thus satisfies the following.

Corollary 2 (Main Result). The sequent calculus ELK is
sound and complete.

5 Discussion

Alternative Characterisation. Naturally, one might wonder
whether there is a way to replace the (-)-rule and ideally with
a rule that does not rely on a separate refutation calculus.

The entailment in Example 4 is shown in the MLK sequent
calculus for circumscription [Olivetti, 1992] using the weak
monotonicity rule; the encoded property of inference is also
known as cautious monotonicity (CM). It is well-known that
answer set entailment does not satisfy it in general, but in a
restricted syntactic fragment.

In the following, we call a theory nested if it contains nested
implication, i.e., an implication ¢ D 1 where either ¢ or ¥
contains an implication as a subformula, and negation —y is
interpreted as xy D L and thus counts as an implication as
well.

With this in place, we can introduce the following rule.

'~ A | )
Dipr~A
This rule is sound for equilibrium entailment.

Proposition 12. Given a theory I that is not nested, if I' R A
and T’ R o hold, then so does T, o R A.

The proof follows from the fact that for non-nested theories,
minimal models and equilibrium models coincide.

Furthermore, consider the following rule, where Fpgr
denotes an HT sequent calculus, e.g. the one given by
Mints [2010], and let <+ denote biimplication.

(RCM) if I and ¢ are not nested

F» 1/} ~ A FH T @ < 1/}

ek A
Intuitively, the rule states that HT-equivalent subformulas are
interchangeable, which is a well-known property of equilib-

rium logic [Lifschitz et al., 2001].
Using the two rules, we obtain the following result.

(LLE)

Theorem 3. Let ELK’ denote the calculus of initial sequents
from Definition 4, the rules in Figure 2, (RCut), (RCM), and
(LLE). Then, T & @ iff T bt @ is derivable in ELK’.

The basic idea is that for each complete theory, there is an
HT-equivalent theory which consists of a non-nested part and
negated or double-negated atoms.

Hence, (RCM) and (LLE) replace the (-)-rule, but has
rather drastic syntactic side conditions and we have to utilize
an HT sequent calculus.

ASP Fragment. Given that part of our motivation for this
work is to provide a proof system for ASP, it is natural to ask
how our calculus behaves on this fragment of EL. Recall that
programs are theories where every formula is an implication
LA Nl Dlpyg1 V--- VI, and all [; are literals.

We have already seen in Example 4 that even for programs,
the (-) rule may be needed to derive certain consequences.
However, as we show there is an important class of programs
for which this is not the case. In fact, not even the (RCut)
rule is needed for it. The class in question is the one of
tight programs which are defined as follows. A program is
tight [Erdem and Lifschitz, 2003] if there is no loop in its
dependency graph, which is constructed over all atoms by
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adding an edge from p to ¢ for each positive literals p and ¢ in
the antecedent and the consequent of a rule, respectively.’

The intuition is that for tight programs, the (D;)-rule be-
comes invertible, as the next result shows, which is not the
case in general.

Proposition 13. IfT', ¢ D ¢ R A is satisfied, where T is a
tight program, then T,y R A - and T R A .

Using this proposition, the following can be shown.

Theorem 4. Given tight ASP program I and A in negation
normal form, then I' & A holds iff T ~ A can be derived
using the basic rules in Figure 2, and initial sequents from
Definition 4.

Proof (Sketch). Tt can be seen that for programs only the (A;),
(V1), (—y) and (D;) rules are ever required for the left-hand
side of the sequent. Furthermore, for tight programs, the (D;)
rule is invertible by Proposition 13. The rules (A;) and (—;)
are in invertible in general already. On the left-hand sides we
now only have sets of clauses and the selection of the branches
for the (V) rule is guided by which literal satisfies the most
clauses. Furthermore, by deriving the rules only after their
bodies have been added to the left, also the sometimes required
(—)-rule becomes invertible.

We thus always have leaves IV ~ A’ where I” is a set of
atoms and A’ is a set of literals and if I' k= A holds then the
sequents in the leaves have to be axioms due to invertibility.

O

Given that for tight programs, answer sets and so-called
supported models coincide [Erdem and Lifschitz, 20031, The-
orem 4 implies that the rules given in Figure 2 axiomatise
the inference over such models. This further suggests that in
the full calculus, the () rule is required to exclude supported
models which include unfounded sets [Leone et al., 19971, i.e.,
atoms which are deemed true but only have cyclic support.

The observation above also gives rise to a general proof
strategy when dealing with programs. First, one should ap-
ply the (D;)-rule on parts of the program which are locally
tight, i.e., the dependency graph of that program module is
non-cyclic, leaving the (-)-rule to potentially handle remain-
ing loops. Due to space restrictions we cannot go into more
details, but proof strategies also arise by utilisation of splitting
sets [Lifschitz and Turner, 1994].

Explanations. We argued in Section 3 that equilibrium en-
tailment provides a useful framework for explanations in equi-
librium logic and thus ASP, and our calculus gives insight into
why such an entailment is valid. We do not claim that proofs
in the sequent calculus are already accessible explanations,
but as we will discuss, they serve as an overarching theoretical
framework from which explanations can be derived. To that
end we can also introduce derived rules, which may be less
general but help shorten proofs. For example, we use the fol-
lowing rule, which essentially encodes modus ponens and we
will see later that this rule is very useful when one considers
ASP programs.

ITight programs are usually considered to have no negative literals
in rule heads. However, relevant concepts, like supporting rules, carry
over to the more general case.

Lo A
Lo, oDy A

In Example 3, we have already seen how the calculus shows
why a theory is inconsistent. In that proof, we see that since
—p holds by default and p entails p, -p D p cannot have any
equilibrium models.

Let us consider some more examples with theories that
essentially represent ASP programs.

Example 5. Consider I'y = {—¢ D (a VvV b),—~(a A d),—b,d}.
The atom d can be seen as the input data and the remaining
Sformulas encode a choice between a and b given —~c and some
constraints. It holds that Iy R 1, i.e., has no equilibrium
models which we can prove as shown in Figure 5.

Let us verbalise the steps of the proof bottom up. First,
we select —¢ D (a V b) and detach the implication with the
(D1)-rule. In the right branch, we now need to show that —c
follows. After two applications of (—;) we only have atoms on
the left and have an axiom. On the left branch, we have added
a V b on the left and proceed by case distinction through the
(Vy)-rule.

In the branch where a is now on the left, we also have d.
We can apply (—;) to =(a A d) and get a \ d on the right. The
latter can be split with the (\,)-rule and since both a and d
were already on the left, we have two axioms. Otherwise, if b
holds, then this clashes with —b which is shown the same as
for the other branch.

(MP)

As we have seen in the example, a proof in the sequent
calculus which is summarised and, put into natural language,
can serve as an explanation.

Let us now turn to an example where we have a theory and
one of its equilibrium models.

Example 6. LetT's = {—a D b,—b D a,a D ¢} and consider
its equilibrium model I = {a, c}. Suppose we seek to explain
why c is in the model. A minimal assumption set w.r.t. I, cf.
Section 3, is {b} and we give the following sequent proof:

—a D b,—b,a,chrc
—a DbaDdc,babtc
—aDb,~bDa,adec,bhc

The proof can be summarised as follows. We look at the
implication =b D a. Since —b is in the theory, we can apply
the modus ponens rule (MP) from above. With a in the theory,
we can again use (MP) on a O c. Given that c is now on the
left and right, we have an axiom.

(MP)
(MP)

So far we have only used the rules from ELK and (MP).
However, one might introduce further derived rules and use
them in explanations. A rule akin to Proposition 2 comes to
mind. Furthermore, in a potential explanation system, lemmas
might be reused using the (RCut)-rule, shortening the proofs.

6 Related Work

To the best of our knowledge, no sequent calculus for equilib-
rium logic has been given in the literature. Pearce er al. [2000]
introduced a tableau system for equilibrium logic. Their ap-
proach works in several stages. In the first stage, a dedicated
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a,~b,dhr L, ——c,a a,—b,d b L ——c,d
a,b,dhr L, ——c,aNd

(Ar)

(=)

b,~(and),dr L,=—c,a,b

dr L,—c,aNdb

a,~(and),-b,dr L, ——c

b, ﬁ(a N d),ﬁb,d 1, —ea

b bodr L e O
- 9 7“67 a
V) (=)

aVb,—(aNnd),-bdr L, ——c

=(aNd),=b,dr L, —c
o

—cD (aVb),~(aNd),=bdbr L

Figure 5: Derivation for Example 5

calculus for total HT models is used to enumerate all mod-
els. With another dedicated calculus, those total models are
then checked for stability in the second stage. Finally, in the
last stage, it is checked via tableaux whether the given for-
mula holds in the previously obtained total and stable models.
Hence, due to the required enumeration and multi-stage con-
cept, this calculus does not fully satisfy requirements (R1) and
(R3) introduced in Section 1.

Several proof systems have been studied directly for ASP.
Bonatti [2001] introduced a resolution calculus for answer
set entailment and provided another calculus for brave en-
tailment [Bonatti et al., 2008]. The latter is different from
the notion of entailment we study in the sense that the con-
sequence does not need to hold in all models but rather in at
least one. The calculi differ from their classical counterparts
and operate on pairs of sets of literals and suffer from some
drawbacks: they support only normal logic programs and rely
on a rather complicated notion of counter-supports which is
not axiomatised by the calculus but computed externally. The
calculi are thus weak on requirements (R1-R3).

Gebser and Schaub [2013] presented a tableau calculus
which is aimed at axiomatising satisfiability and how solvers
obtain their solutions and thus differs in motivation from our
work. However, it can also be used for answer set entailment
by translation of the entailment into an inconsistent program.
While their calculus supports a large number of advanced
ASP language features like disjunction and weight constraints,
it does not cover arbitrary nested formulas like our calculus
does. Furthermore, some rules in their calculus heavily rely on
global syntactic notions which only work for programs, which
clashes with our requirement (R1).

Proofs for ASP also appear in the context of proof logging
that ASP solvers provide to justify whenever they report unsat-
isfiability [Alviano er al., 2019; Chew et al., 2024]. However,
those proofs are generally not geared towards human inter-
pretability but rather verification and are not very concise.
Thus, they are violating requirement (R3).

Proof-like systems have been used to provide explanations
as to why certain atoms are, or are not, in a given answer
set [Pontelli et al., 2009; Alviano et al., 2024]. While the
explanations given by those approaches share some similarity
with a formal proof, they are not actual complete proof systems
and cannot be applied without a model. Furthermore, they are
limited to the basic ASP language.

Similarly, the fix-point characterisation for equilibrium
logic [Pearce, 2006] does not axiomatise the inference re-
lation over equilibrium models, but rather only provides a
definition of stable models via HT entailment and model se-

lection. The characterisation can be used in conjunction with
an HT sequent calculus [Mints, 2010] to justify the atoms in
an equilibrium model in a proof-theoretic manner. However,
this is not the scope of our work.

Finally, we mention some inspiring related sequent calculi
that axiomatise other nonmonotonic formalism, viz. the one by
Olivetti [1992] for propositional circumscription, which is also
two-sided, and those by Bonatti and Olivetti for Circumscrip-
tion [Bonatti and Olivetti, 1997b] and Default Logic [Bonatti
and Olivetti, 1997a], which also use an anti-sequent calculus.

7 Conclusion

In this work, we have introduced an axiomatisation of answer
set entailment in the form of a sequent calculus for equilibrium
logic. The calculus was then shown to be sound as well as com-
plete. All rules, except one are natural and structurally simple,
the remaining rule utilises an refutation calculus to ensure the
stability condition necessary for equilibrium models.

We also discussed an alternative to this refutation rule which
is based on cautious monotonicity. However, this property
only holds for a syntactic fragment of the logic that includes
positive ASP programs. However, it is unlikely that there is
an axiomatisation which operates on purely standard rules.
We further showed how answer set entailment can serve as a
framework for explainability and how our calculus can in turn
justify why an entailment holds.

For future work, we plan to further explore the use of proof-
based explanations for ASP, for example, by studying transla-
tions of proofs into natural language including proof search
and human-friendly presentation of proofs, or investigating
contrastive explanations. Extensions of the calculus to cover
more general versions of equilibrium logic, which encompass
programs with variables [Pearce and Valverde, 2008] or linear
constraints [Cabalar et al., 2016] are also of interest.
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