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Abstract

We focus on the design of algorithms for finding
equilibria in 2-player zero-sum games. Although
it is well known that such problems can be solved
by a single linear program, there has been a surge
of interest in recent years for simpler algorithms,
motivated in part by applications in machine learn-
ing. Our work proposes such a method, inspired
by the observation that the duality gap (a standard
metric for evaluating convergence in min-max opti-
mization problems) is a convex function for bilinear
zero-sum games. To this end, we analyze a descent-
based approach, variants of which have also been
used as a subroutine in a series of algorithms for
approximating Nash equilibria in general non-zero-
sum games. In particular, we study a steepest de-
scent approach, by finding the direction that min-
imises the directional derivative of the duality gap
function. Our main theoretical result is that the de-
rived algorithms achieve a geometric decrease in
the duality gap until we reach an approximate equi-
librium. Finally, we complement this with an ex-
perimental evaluation, which provides promising
findings. Our algorithm is comparable with (and in
some cases outperforms) some of the standard ap-
proaches for solving 0-sum games, such as OGDA
(Optimistic Gradient Descent/Ascent), even with
thousands of available strategies per player.

1 Introduction

Our work focuses on the design of algorithms for finding
Nash equilibria in 2-player bilinear zero-sum games. Zero-
sum games have played a fundamental role both in game the-
ory, being among the first classes of games formally studied,
and in optimization, as it is easily seen that their equilibrium
solutions correspond to solving a min-max optimization prob-
lem. Even further, solving zero-sum games is in fact equiva-
lent to solving linear programs, as properly demonstrated in
[Adler, 2013].

Despite the fact that a single linear program (and its dual)
suffices to find a Nash equilibrium, there has been a surge

of interest in recent years, for faster algorithms, motivated in
part by applications in machine learning. One reason for this
is that we may have very large games to solve, corresponding
to LPs with thousands of variables and constraints. A second
reason could be that e.g., in learning environments, the play-
ers may be using iterative algorithms that can only observe
limited information, hence it would be impossible to run a
single LP for the entire game. As an additional motivation,
finding new algorithms for such a fundamental problem can
provide insights that could be of further value and interest.

The above considerations have led to a variety of ap-
proaches and algorithms, spanning already a few decades of
research. Some of the earlier works on this domain have fo-
cused purely on an optimization viewpoint. In parallel to this,
significant attention has been drawn to learning-oriented al-
gorithms, such as first-order methods. The latter class of algo-
rithms performs gradient descent or ascent on the utility func-
tions of the two players, and some of the proposed variants
have been very successful in practice, such as the optimistic
gradient and the extra gradient methods [Korpelevich, 1976;
Popov, 1980]. Several works have focused on theoretical
guarantees for their performance, and a standard metric used
in the analysis is the duality gap. This is simply the sum of the
regrets of the two players in a given profile, and therefore the
goal often amounts to proving appropriate rates of decrease
for the duality gap over the iterations of an algorithm.

Our work is motivated by the observation that the duality
gap is a convex function for zero-sum games. This naturally
gives rise to the suggestion that instead of performing gradi-
ent descent on the utility function of a player, which is not
a convex function, we could apply a descent procedure di-
rectly on the duality gap. It is not straightforward that this
can indeed be useful as it is not a priori clear that we can per-
form a descent step fast (i.e., finding the direction to move
to). Nevertheless, it can form the basis for investigating new
approaches for zero-sum games.

1.1 Our Contributions

Motivated by the above discussion, we propose and ana-
lyze an optimization approach for finding approximate Nash
equilibria in zero-sum games. Our algorithm is a descent-
based method applied to the duality gap function, and is
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essentially an adaptation of a subroutine in the algorithms
of [Tsaknakis and Spirakis, 2008; Deligkas er al., 2017,
Deligkas et al., 2023] which are for general games, tailored
to zero-sum games and with a different objective function.
The method is applying a steepest descent approach, where
we find in each step the direction that minimises the direc-
tional derivative of the duality gap function and move to-
wards that. In Section 3 we provide the algorithm and our
theoretical analysis. Our main result is that the derived algo-
rithm achieves a geometric decrease in the duality gap until
we reach an approximate equilibrium. This implies that the

algorithm terminates after at most O (% -log (%)) iterations
with a d-approximate equilibrium, where p is a parameter, re-
lated to the computation of the directional derivative. We ex-
hibit that the method can also be further customized and show

that a different variant also converges after O(%) iterations.

In Section 4, we complement our theoretical analysis with
an experimental evaluation. Even though the method does
need to solve a linear program in each iteration to find the
desirable direction, this turns out to be of much smaller size
on average (in terms of the number of constraints) than solv-
ing the linear program of the entire game. We compare our
method against standard LP solvers, but also against state-
of-the-art procedures for zero-sum games, such as Optimistic
Gradient Descent-Ascent (OGDA). Our findings are promis-
ing and reveal that the running time is comparable to (and
often outperforms) OGDA, even with thousands of strategies
per player. We therefore conclude that the overall approach
deserves further exploration, as there are also potential ways
of accelerating its running time, discussed in Section 4.

1.2 Related Work

As already mentioned, conceptually, the works most related
to ours are [Tsaknakis and Spirakis, 2008; Deligkas et al.,
2017; Deligkas er al., 2023]. Although these papers do not
consider zero-sum games, they do utilize a descent-based part
as a starting point. The main differences with our work is
that first of all, their descent is performed with respect to the
maximum regret among the two players, whereas we use the
duality gap function. Furthermore the descent phase is only
a subroutine of their algorithms, since it does not suffice to
establish guarantees for general games. Hence their focus is
less on the decent phase itself and more on utilizing further
procedures to produce approximate equilibria.

There is a plethora of algorithms for linear programming
and zero-sum games, which is impossible to list here, but we
comment on what we feel are most relevant. When focus-
ing on optimization algorithms for zero-sum games, [Hoda
et al., 2010] use Nesterov’s first order smoothing techniques
to achieve an e-equilibrium in O(1/¢) iterations, with added
benefits of simplicity and rather low computational cost per
iteration. Following up on that work, [Gilpin e al., 2012] pro-

pose an iterated version of Nesterov’s smoothing technique,

which runs within O(% - In(1/€)) iterations. However,

while this is a significant improvement, the complexity de-
pends on a condition measure d(A), with A being the pay-
off matrix, not necessarily bounded by a constant. Another
optimization approach that is relevant in spirit to ours is via

the Nikaido-Isoda function [Nikaido and Isoda, 1955] and its
variants. E.g., in [Raghunathan et al., 2019] they run a de-
scent method on the Gradient NI function, which is convex
for zero-sum games. We are not aware though of any direct
connection to the duality gap function that we use here.

Apart from the optimization viewpoint, there has been
great interest in designing faster learning algorithms for zero-
sum games. Although this direction started already several
decades ago, e.g. with the fictitious play algorithm [Brown,
1951; Robinson, 1951], it has received significant attention
more recently given the relevance to formulating GANSs in
deep learning [Goodfellow et al., 2014] and also other appli-
cations in machine learning. Some of the earlier and standard
results in this area concern convergence on average. That is,
it has been known that by using no-regret algorithms, such as
the Multiplicative Weights Update (MWU) methods [Arora et
al., 2012] the empirical average of the players’ strategies over
time converges to a Nash equilibrium in zero-sum games.
Similarly, one could also utilize the so-called Gradient De-
scent/Ascent (GDA) algorithms.

Within the last decade, there has also been a great inter-
est in algorithms attaining the more robust notion of last-
iterate convergence. This means that the strategy profile
(z¢,y:), reached at iteration ¢, converges to the actual equi-
librium as ¢ — oo. Negative results in [Bailey and Pil-
iouras, 2018] and [Mertikopoulos et al., 2018] exhibit that
several no-regret algorithms such as many MWU as well as
GDA variants, do not satisfy last-iterate convergence. Mo-
tivated by this, there has been a series of works on ob-
taining algorithms with provable last iterate convergence.
The positive results that have been obtained for zero-sum
games is that improved versions of Gradient Descent such
as the Extra Gradient method [Korpelevich, 1976] or the
Optimistic Gradient method [Popov, 1980] attain last iter-
ate convergence. In particular, [Daskalakis et al., 2018] and
[Liang and Stokes, 2019] show that the optimistic variant of
GDA (referred to as OGDA) converges for zero-sum games.
Analogously, OMWU (the optimistic version of MWU) also
attains last iterate convergence, shown in [Daskalakis and
Panageas, 2019] and further analyzed in [Wei et al., 2021].
The rate of convergence of optimistic gradient methods in
terms of the duality gap was studied in [Cai et al., 2022;
Gorbunov et al., 2022], and was later improved to O(1/t) in
[Cai and Zheng, 2023]. Further approaches with convergence
guarantees have also been proposed, based on variations of
the Mirror-Prox method [Fasoulakis et al., 2022] as well as
primal-dual hybrid gradient methods [Lu and Yang, 2023].

Finally, several of the methods mentioned above are ap-
plicable beyond bilinear min-max problems (e.g., to convex-
concave). For even more general games, [Diakonikolas et al.,
2021] obtain positive results for a class of non-convex and
non-concave problems. Multi-player games are also studied,
among others in [Golowich ef al., 20201, where Optimistic
Gradient is analyzed. The picture however is overall more
complex for general games with negative results also estab-
lished in [Daskalakis et al., 2021].
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2 Preliminaries

We consider bilinear zero-sum games (R, —R), with n pure
strategies per player, where R is the payoff matrix of the row
player. We assume R € [0, 1]"*™ without loss of generality'.
We consider mixed strategies © € A"~ ! as a probability dis-
tribution (column vector) on the pure strategies of a player,
with A"~! be the (n — 1)-dimensional simplex. We also de-
note by e; the distribution corresponding to a pure strategy
1, with 1 in the index ¢ and zero elsewhere. A strategy pro-
file is a pair (x,y), where x is the strategy of the row player
and y is the strategy of the column player. Under a profile
(x,y), the expected payoff of the row player is " Ry and
the expected payoff of the column player is —= ' Ry.

A pure strategy i is a p-best-response strategy against y for
the row player, for p € [0, 1], if and only if, ] Ry + p >
ejT Ry, for any j. Similarly, a pure strategy j for the column
player is a p-best-response strategy against some strategy x
of the row player if and only if  Re; < = Re; + p, for
any 7. Having these, we define as BR”(y) the set of the p-
best-response pure strategies of the row player against y and
as BRF(x) the set of the p-best-response pure strategies of
the column player against . For p = 0, we will use BR,.(y)
and BR.(x) for the best response sets.

Definition 1 (Nash equilibrium [Nash, 1951; Von Neumann,
1928]). A strategy profile (x*,y*) is a Nash equilibrium in
the game (R, —R), if and only if, for any 1, j,

v = :E*TRy* >e] Ry*, and, v = w*TRy* < :E*TRej,

where v is the value of the row player (value of the game).

Definition 2 (§-Nash equilibrium). A strategy profile (x,y)
is a 0-Nash equilibrium (in short, 0-NE) in the game
(R, —R), with § € [0, 1], if and only if, for any i, j,

:cTRy + > eZTRy, and, :BTRy —-6< wTRej.
With these at hand, we can now define the regret functions
of the players as follows.

Definition 3 (Regret of a player). For a game (R, —R), the
regret function fr : A""1 x A"~1 — [0, 1] of the row player
under a strategy profile (x,y) is

fr(®,y) = maxe] Ry — =" Ry.
Similarly, for the column player the regret function is
f-r(@.y) = maxa (~R)e, + 2" Ry
J

= —min mTRej +z" Ry.
J
An important quantity for evaluating the performance or
convergence of algorithms is the sum of the regrets, i.e., the
function V(z,y) = fr(x,y)+ f-r(x,y) = max; e;—Ry—
min; :cTRej. This is referred to in the bibliography as the
duality gap in the case of zero-sum games.

'We can easily see that we can do scaling for any R € R™*" s.t.
R € [0, 1)™*™ keeping exactly the same Nash equilibria.

2.1 Warmup: Duality Gap Properties

Next, we present some known results about the duality gap
function V' (, y) and its connection to Nash equilibria.

Theorem 1. The duality gap V (x,y) is convex in its domain.

Theorem 2. A strategy profile (x*,y*) is a Nash equilibrium
of the game (R, —R), if and only if, it is a (global) minimum?
of the function V(x,y).

Similarly to the previous theorem, we also have the following.

Theorem 3. Let (x,y) be a strategy profile in a zero-sum
game. If V(x,y) < 6, then (x,y) is a §-NE.

3 Descent-based Algorithms on the Duality
Gap: Theoretical Analysis

In this section, we present our main algorithm along with
some improved variants, based on a gradient-descent ap-
proach for the function V' (x, y) in zero-sum games. The al-
gorithm can be seen as an adaptation® of a descent procedure
that forms the initial phase of algorithms proposed for gen-
eral non-zero-sum games, in [Tsaknakis and Spirakis, 2008;
Deligkas et al., 2017; Deligkas ef al., 2023]. The main idea
behind the algorithm is that since the global minimum of the
duality gap function V(x,y) is a Nash equilibrium and the
duality gap is a convex function for zero-sum bilinear games,
we use a descent method based on the directional derivative
of V(x,y). This differs substantially from applying the more
common idea of gradient descent/ascent (GDA) on the utility
functions of the players, which are not convex functions. To
identify the direction that minimizes the directional derivative
at every step we use linear programming (albeit solving much
smaller linear programs on average than the program describ-
ing the zero-sum game itself). As a drawback of the method,
we note that it requires the full knowledge of the payoff ma-
trix instead of just gradient feedback in each iteration.
To begin with, we define first the directional derivative.

Definition 4. The directional derivative of the duality gap
at a point z = (x,y), with respect to a direction z' =
(x',y") € A"t x A" L is the limit, if it exists,

v((1—5) ~z—|—5~z’> V()
VaV(z) = limy e

We provide below a much more convenient form for the
directional derivative that facilitates the remaining analysis.

Theorem 4. The directional derivative of the duality gap

V at a point z = (x,y) with respect to a direction z’ =
(x',y") € A"~1 x A"~ is given by
V.V(z)= max e/ Ry — min (z') Re; —V(z)

i€BR,(y) JEBR.(x)

Furthermore, by the definition of directional derivative we
have the following consequence.

“Note that the set of Nash equilibria in zero-sum games and the
set of optimal solutions, minimizing the duality gap are convex and
identical to each other.

*Here as the objective function we use the sum of the regrets
instead of the maximum of the two regrets.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Lemma 1. Given 6 € [0,1], let z = (x,y) be a strategy
profile that is not a 6-Nash equilibrium. Then

VZ/V(Z) < =4,

where 2/ = (x',y') € A" x A" is a direction that
minimizes the directional derivative.

The proof of Lemma 1 follows by a more general result
presented in Lemma 3 below (using also Lemma 2). In a sim-
ilar manner to Definition 4, we define now an approximate
version of the directional derivative. The reason we do that
will become clear later on, in order to show that the duality
gap decreases from one iteration of the algorithm to the next.
The main idea in the definition below is to include approx-
imate best responses in the maximization and minimization
terms involved in the statement of Theorem 4. Namely, for
p >0, recall the definition of BRP(y) as the set of p-best re-
sponse strategies of the row player against strategy y of the
column player (and similarly for BR?(x)).

Definition 5 (p-directional derivative). The p-directional
derivative of the duality gap V at a point z = (x,y) with
respect to a direction 2’ = (z',y') € A"71 x An~Lis

Vo V(z) =

i€ BR. (y) jEBRE(x)

Lemma 2. Iz holds that for any direction 2’ = (x',y’) €
A" 5 A" and for any p > 0,

Vo V(2) <V, V(2).

Lemma 3. Given § € [0,1], let z = (x,y) be a strategy
profile that is not a 6-Nash equilibrium. Then

prz/V(z) < =0,

where 2’ = (x',y’') € A"! x A" is a direction that
minimizes the p-directional derivative.

The proofs of these lemmas and any other missing proofs
from this section are deferred to the full version of this work
in [Fasoulakis et al., 2025].

3.1 The Main Algorithm

We now present our algorithm. Algorithm 1 takes as input a
game and 3 parameters, namely § € (0, 1], which refers to
the approximation guarantee that is desired, p € (0, 1] which
involves the approximation to the directional derivative, and
€, which refers to the size of the step taken in each iteration.
Our theoretical analysis will require p and € to be correlated.

Observation 1. If p = 1, then Algorithm 2 returns an exact
Nash equilibrium of the game (R, —R).

We conclude the presentation of our main algorithm with
the following remark.

Remark 1. The choice of p demonstrates the trade off be-
tween global optimization (Linear Programming) and the
descent-based approach. In the extreme case where p = 1,
Observation 1 shows one iteration would suffice, solving the
(large) linear program of the entire zero-sum game. On the
other hand, when p is small, close to 0, then the method solves
in each iteration rather small linear programs in Algorithm 2
(dependent on the sets BR?(x), BRE(y)).

max e Ry'~ min (z')" Re;—V(z).

Algorithm 1 The gradient descent-based algorithm

Input: A 0-sum game (R, —R), an approximation parameter
0 € (0,1], aconstant p € (0,1], and a constant € € (0, 1].
Output: A §-NE strategy profile.

: Pick an arbitrary strategy profile (z, y)
while V(z,y) > d do
(z',y’) = FindDirection(x, y, p)
(2,9) = (1-¢) - (@,y) + = (@3
return (x,y).

A T

Algorithm 2 FindDirection(x, y, p)

Input: A strategy profile (x, y) and parameter p € (0, 1].
Output: The direction («,y’) that minimizes the p-
directional derivative.

1: Solve the linear program (w.r.t. (', y’) and ~):
2:  minimize vy

v sty > (e) Ry — (@) Re;,

4: for any ¢ € BR?(y), forany j € BRA(x),
5 and with ', ¢y’ € A"~ 1,

6: return (z',y’).

3.2 Proof of Correctness and Rate of Convergence

Our main result is the following theorem.

Theorem 5. For any constants 6,p € (0,1], and with ¢ =
p/2, Algorithm 1 returns a 0-Nash equilibrium in bilinear
zero-sum games after at most O(ﬁ log %) iterations, and
with a geometric rate of convergence for the duality gap.

To prove Theorem 5, we will start with the following auxil-
iary lemma. The interpretation of the lemma is that when the
column player moves from y to the strategy (1 —e€)y + €y, it
is still better for the row player to choose a strategy from the
set BR,(y), as long as p is large enough.

Lemma 4. Ife < £, then it holds that

max {O, max e?R((l —e)-y+e- y’)
1€BRL(y)

T /
— ma eiR<1—€- +e- )}:0.
ieBRgi(y) ( )y Y

Similarly, for the column player, it holds that

.
max{O,— min ((1—8)~£B+8-:L'/) Re;
JEBRZ(x)
-
+ min ((1-a)-m+e-m’) Rej}:O.
JEBRZ(x)

We can now establish that the duality gap decreases geo-
metrically, as long as we have not yet found a §-approximate
equilibrium. We first show an additive decrease.

Lemma 5. Let € < £ and suppose that after t iterations we

are at a profile (xt,y"), which is not a 6-Nash equilibrium.
Then,
Vit < Viaty') o

where (2T, yt*1) is the strategy profile at iteration t + 1.
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Proof. To shorten notation, let ' = z,y’ = y,x x’,
yli=vy' 2zt = (x,y), 2!t = (2!, y'T1). Then we have
@y ) =(1-e)-zt+e-a,(1-c)-y+e y)

Similar to the arguments used for the proof of Theorem 4, we
have that

maxe; TRy = max e; TRyt
i i€EBRI(y)
+ max {O7 max e;—RytJrl max e; Ry“‘l}
i€BRE(y) i€ BRY(y)

Note that since ¢ < £, Lemma 4 applies and zeroes out the
last term. Respectively, we obtain that

min(z't1)"Re; = min (') Re;
J JEBRE ()

Hence,

V(zith) = max e; TRy"™ — min(z'"") " Re;
J
TR t+1

= max e,

i€BRY(y)

= max e; R((l—s)-y+e-y’)
i€ BRY (y)

min (') " Re;
JEBRE ()

— min

T
j€ BRE( )((1—5)-w+5-m’) Re;
J€ T

IN

(175)maxe Ry +¢ max e/ Ry
i€ BRY (y)

—(1—¢)minz' Re; —¢ min (2')" Re;

J jEBRE(x)

= maxe, Ry — min(z) ' Re;
i j

+5~< max e Ry’ — min (2')" Re;
i€ BR{ (y)

JEBRA(x)
— maxe; Ry + min(w)TRej)
i J
=V(") +e-V,.V(z") <V(z")—e-4,

where the last inequality follows from Lemma 3. O
The next step is to turn the additive decrease of Lemma 5

into a multiplicative decrease.

Corollary 1. For e = p/2, we have that

t+1 , t+1 _ POy t ot
Vi@ tyt < (1-220) vty

Y
Proof. Using Lemma 5, we get that V(2!*!) < (1 —¢) -
V(zt) with ¢ = Va(jt) > %’5, since V(x,y) < 2 for any

profile, and € = £. O

Finally, we can complete the proof of our main theorem.

Proof of Theorem 5. We have already proved the geomet-
ric decrease of the duality gap, for constant p and J. Hence,
the algorithm eventually will satisfy that the duality gap is at
most § and will terminate with a 6-NE. It remains to bound
the number of iterations that are needed. Suppose that the al-
gorithm terminates after ¢ iterations, with profile (z?, y*). By
repeatedly applying Corollary 1, we have that

V(xt,yt) S (1 _ C)t . V(m()’y(])

Algorithm 3 Decaying Delta Speedup

Input: A 0-sum game (R, —R), an approximation parameter
§ € (0,1] and a constant p € (0, 1].
Output: A §-NE strategy profile.

Pick an arbitrary strategy profile (x,y)
Seti=0,0g=1,e =
while TRUE do
i=i+1,6 =6_1/2.
Update (z, y) via Algorithm 1 ((R, —R),d;, p, 5).
if §; < ¢ then break
return (x,y).

14
5

A A L e

with ¢ = %5. In order to ensure that V (x! ,y t <
fices to have that 2 - (1 — ¢)! < 4, since V (z°,y") < 2.

log 2 1— 2
Og‘ls = t> Clogf
log = c )

21— ¢)' < = t >

where the last inequality holds due to logz < x — 1, forz >
1. Since 2=¢ = O(1), the proof is completed by substituting
the value of c. O

Finally, we note that the worst-case complexity of each it-
eration occurs when Algorithm 2 has to solve LPs of size sim-
ilar to the initial game. Empirically however, these LPs are of
much smaller size as discussed in Section 4.

3.3 Decaying Schedule Speedups

In this section, we present a different implementation of our
main approach, which results in an improved analysis. The
idea is to gradually decay ¢ and use it to bound ¢, instead of
the more coarse approximation of V(x, y) < 2, that we used
in the proof of Theorem 5. This is presented as Algorithm 3.

Theorem 6. Algorithm 3 maintains a geometric decrease
rate in the duality gap and reaches a 0-NE after at most

O(% -log (%)) iterations.

Proof. We think of the iterations of the entire algorithm as
divided into epochs, where each epoch corresponds to a new
value for §. Fix an epoch 4, with ¢ > 0. Within this epoch,
Algorithm 1 is run with approximation parameter ;. Con-
sider an arbitrary iteration of Algorithm 1 during this epoch,
say at time ¢ + 1, starting with the profile z* = (z!,y") and
ending at the profile z!*1 = (z!*! y'*1). By Lemma 5, we
have that V (z!*1) < V(2!) —€-8; = (1—¢;) - V(2!), where
€0,
T VEH T
V(zt) < §;—1 = 2 §;, because the duality gap was at most
d;—1 at the beginning of epoch ¢ and within the epoch it only
decreases further due to Lemma 5 (for epoch 1, it is even bet-
ter, since V' (2%) < V(2°) < 2 = 26y < 467, where 2 is the
initial profile). Therefore, ¢; > 2%':5_"1 = £. Hence, we have

established that in any iteration, regardless of the epoch:

C; = 2.(),'?;3) . Since we are at epoch ¢, we know that

V(zH) < (1 - g) V() < (1 _ g)t V(0.
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Figure 1: The decrease in the duality gap for a random game.

Since p is constant, we have a geometric decrease, and this
proves the first part of the theorem.

To bound the total number of iterations, let ¢; be the num-
ber of iterations of Algorithm 1 within epoch ¢, after which,
the algorithm achieves a §;-NE. Then, similar to the proof of
Theorem 5, and since in the beginning of epoch ¢, the duality
gap is at most §;_1, we have that ¢; should satisfy

1—07;

(1—c)li i1 <6 = t; >

= 1; >

log Ci

1
lfci

Thus, at epoch 4, we need t; = O(%) to reach a 0;-NE. Next,
note that if k is the total number of epochs required to achieve
a 0-NE, when starting with dg, it holds that ‘25—‘,3 < 4§ =
k > log %0. Since §p = 1, the number of required epochs

is O(log ). Therefore, the total number of iterations for the
entire algorithm is O (% - log %) O
To demonstrate the flexibility of our approach, we con-
clude the theoretical exploration with yet another variation,
where we additionally use a decreasing schedule for the value
of p. Specifically, this gives rise to the following scheme
which we refer to as Algorithm 4.
* Use the same schedule for §; as Algorithm 3.
* Atiteration i set p; = /&;, for Algorithm 1 (with &; = £}).
Note that we have now eliminated the dependence on p but at
the expense of making more expensive the dependence on d.
This new algorithm has the following performance.

Theorem 7. Algorithm 4 reaches a 0-Nash equilibrium after
at most O (%) iterations, for any constant 6.

4 Experimental Evaluation

All our algorithms were implemented in Python 3.10.9, and
were run on a Macbook M1 Pro(10 core) with 16GB RAM.
Before proceeding to our main findings, we exhibit first that
the geometric decrease in the duality gap can indeed be ob-
served experimentally. Figure 1 shows a typical behavior of
our algorithms, in terms of the duality gap. The figure here is
for a random game of size n = 1000.

4.1 From Theory to Implementation

We deem useful to discuss first how to approach the selection
of the parameters that the algorithms depend on. We have
seen in Algorithm 1 and its variants two families of parame-
ters: p; and 6;. A third parameter is the learning rate €, which
is the step size that we take in each iteration.

Choice of e. We have established that as long as ¢ < p/2,
the points along the line (1 —¢) - (x,y) +¢- (', y’) decrease
the duality gap (Lemma 5). Note, though, that the problem
of minimizing V" along this set is a convex optimization prob-
lem. Hence, we can try to find the optimal ¢; at each iteration
1, and there are a few possible approaches for this: line search,
ternary search or even solving it exactly using dynamic pro-
gramming. We decided to use the following heuristic: for
large values of the duality gap, namely V' > 0.1, we employ
ternary search and as the duality gap decreases we use line
search but only on a small part of the line. More specifically,
once V' < 0.1 we start with ¢ = 0.2 and decrease it by 10%
across iterations. We decided upon this method since we no-
ticed that experiments conform to theory for smaller values
of V and p. Finally, a more ML-like approach would be to
set a constant ¢, similarly to a constant step size i in gradi-
ent methods. While this approach has merit, it did not show
improved performance.

Choice of p (and a new algorithm). The most critical pa-
rameter regarding the running time of our algorithms is p,
since it controls the size of the LPs in Algorithm 2, i.e., the
number of constraints, via the sets of p-approximate best re-
sponses, BR?(y) and BRE(x). We need p to be large enough
to avoid having only a single best response, in which case our
algorithms reduces to Best Response Dynamics, while at the
same time it should be small enough so that the LPs have
small size and we can solve them fast. Our experimentation
did not reveal any particular range of p with a consistently
better performance. As a result, in addition to our existing al-
gorithms, we developed one more approach, independent of
p: we fix a number k£ (much smaller than ), and in every iter-
ation, we include in the approximate best response set of each
player its top k better responses. We refer to this approach as
the Fixed Support Variant in the sequel. We used k=100 for
our experiments and point to our full version in [Fasoulakis
et al., 2025] for justification.

Optimizing FindDirection. For this we used two imple-
mentation tricks. The first one is quite simple: it is easy to
observe that the LP of Algorithm 2 is equivalent to solving
two smaller LPs, one per player; it turns out that solving it
this way is faster. The second trick revolves around p. Recall
that the direction we find is itself an approximation. Hence,
solving the LP approximately is meaningful, in the sense that
it provides an even coarser approximate direction. It turns out
that even a 0.1 approximate solution (which is achievable by
setting an appropriate parameter in the LP solver) works for
most cases, and results in significantly less running time.

4.2 Comparisons between Our Variants

We report first on our comparisons between Algorithm 3 with
p = 0.001, henceforth called the Constant p Variant, Algo-
rithm 4 with p; = 0.014/5;, which we refer to as the Adap-
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Figure 2: Average time and number of iterations for our variants

tive p Variant and our Fixed Support Variant discussed in
Section 4.1. We note that for the variant with the adaptive
value of p, we did not follow precisely the values presented
by our theoretical analysis, of p; = 1/d;. Although theoret-
ically equivalent, this change was only to avoid a blowup in
the number of best response strategies used in Algorithm 2
during the first iterations, i.e. for §; and § we would have
p > 0.7, which is quite large and undesirable.

To test our algorithms we generated random games of size
n X n, where each entry is picked uniformly at random from
[0,1]. The size of the games range from 500 to 5000 pure
strategies with a step of 500. For each size we generate 30
games and solve them to an accuracy of 6 = 0.01. We used
two types of initialization in all methods, the fully uniform
strategy profile and the profile (e1, e;), i.e., first row, first
column. The latter has the advantage of not being too close
to a Nash equilibrium from the start, in almost all games,
and reveals more clearly the exploration that the method per-
forms. The averaged results are presented in Figure 2, where
we show both the actual time and the number of iterations.
In terms of actual time, our Fixed Support variant is the clear
winner. Although Figure 2 reveals that as n grows, the Fixed
p variant attains a lower number of iterations, this does not
translate into improved running time. The intuition for this
is that as n grows and p remains constant, we expect a larger
number of strategies to be p-best responses. Consequently,
the LP in Algorithm 2 is closer to the full LP and thus more
informative, but at the same time more expensive to solve.

As a result of these comparisons, we select our Fixed Sup-
port variant as the variant to compare against other methods
from the literature in the next subsection.

4.3 Comparisons with LP and Gradient Methods

We compared our Fixed Support variant against solving di-
rectly the full LP with a standard LP solver, and against a
prominent first order method. Regarding the LP solver, we
used the standard method of SciPy. We note that we used the
same method for the smaller LPs that we solve in Algorithm 2
of our methods. To maintain an equal comparison with our al-
gorithms, we used a tolerance of 0.01. As for first order meth-
ods, we compared against the last-iterate performance of Op-
timistic Gradient Descent Ascent (OGDA), which is among
the fastest gradient based methods, with step size n = 0.01.
Another popular method is Optimistic Multiplicative Weights

Figure 3: Time comparison between our Fixed Support Variant, LP
solver and Optimistic Gradient Descent-Ascent

Update (OMWU), which however does not behave as well in

practice, as also explained in [Cai et al., 2024].

For each value of n that we used, we generated 50 uni-
formly random games and 50 games using the Gaussian dis-
tribution. We also generated more structured but still ran-
dom games, such as games with low rank. We present here
the comparisons for the uniformly random games and we re-
fer to the full version for the other classes of games. As in
Section 4.2, we used two different initializations: starting
from (ey, e1) and starting from the uniform strategy profile:
(L,...,%). The average running time can be seen in Fig-
ure 3. We summarize our findings as follows:

e The LP solver was far slower, even for lower values of n,
as shown in the left subplot, and we dropped it from the
experiments with larger games.

* When the initialization is (eq, e1) (or any pure strategy pro-
file), the advantage of our method is more clear (see left
subplot of Figure 3). When we start with the uniform pro-
file, we observe that our method is slower for smaller games
but becomes faster in very large games (right subplot).

* Another observation is that our method seems smoother
with less sharp jumps than OGDA when starting from
(e1, e1) while the opposite holds for the uniform profile.
We view as the main takeaway of our experiments that our

method is comparable to OGDA and in several cases even
outperforms OGDA. One limitation of our current implemen-
tation is the choice of § = 0.01. For much lower accuracies,
our methods occasionally get stuck. We therefore feel that
the overall approach deserves further exploration, especially
on potential ways of accelerating its execution.

5 Conclusions

We have analyzed a descent-based method for the duality gap
in zero-sum games. Our goal has been to demonstrate the
potential of such algorithms as a proof of concept. We expect
that our method can be further optimized in practice and find
this a promising direction for future work. In particular, one
idea to explore is whether we can reuse the LP solutions we
get in Algorithm 2 from one iteration to the next (since we
only change the current solution slightly by a step of size €).
Exploring such warm start strategies (see e.g. [Yildirim and
Wright, 2002]) could provide significant speedups.
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