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Abstract

We present a computationally grounded semantics
for counterfactual conditionals in which i) the state
in a model is decomposed into two elements: a
propositional valuation and a causal base in propo-
sitional form that represents the causal information
available at the state; and ii) the comparative simi-
larity relation between states is computed from the
states’ two components. We show that, by means of
our semantics, we can elegantly formalize the no-
tion of actual cause without recurring to the prim-
itive notion of intervention. Furthermore, we pro-
vide a succinct formulation of the model checking
problem for a language of counterfactual condition-
als in our semantics. We show that this problem
is PSPACE-complete and provide a reduction of it
into QBF that can be used for automatic verification
of causal properties.

1 Introduction

The theory of counterfactual conditionals is one of the corner-
stones of modern analytic philosophy since the seminal works
of Lewis [Lewis, 1973] and Stalnaker [Stalnaker, 1968].
It has been recently applied in the field of explainable Al
to explain the decisions and predictions of artificial intelli-
gent systems [Mittelstadt et al., 2019; Mothilal et al., 2020;
Sokol and Flach, 2019; Kenny and Keane, 2021]. The theory
of counterfactual conditionals is intimaly related to the theory
of causation, and the logic of counterfactual reasoning to the
logic of causal reasoning.

As an alternative to Lewis’ logic of counterfactual condi-
tionals, Halpern and Pearl [Galles and Pearl, 1998; Halpern,
2000; Halpern and Pearl, 2005a] have introduced a logic of
interventionist conditionals as a special kind of counterfac-
tual conditionals in which the antecedent of the conditional
is an intervention on a causal model. Unlike Lewis who
interprets his logic of counterfactual conditionals by means
of abstract comparative similarity relations between possible
worlds, Halpern and Pearl interpret their logic by means of
a structural equation model (SEM) semantics. The fact that
counterfactual conditionals are more general than interven-
tionist conditionals is emphasized by Pearl [Pearl, 2009] who
introduced the notion of the three-layer ‘causal ladder’ (or

hierarchy) in which counterfactuals are at the top of of the hi-
erarchy, interventions are in the middle and mere associations
are at the bottom layer. Counterfactuals are placed at the top
of the ladder since they subsume interventions, in the sense
that an interventional question can be formulated as a special
kind of counterfactual question but not vice versa.

The theory and the corresponding logic of interventionist
conditionals have become the dominant paradigm in the field
of formal causal reasoning in Al in the recent years, while
Lewisian conditionals are much less prominent. A variety
of causal concepts have been formalized using interventionist
conditionals including actual cause [Halpern, 2016; Beckers,
2021; Halpern, 2008; Beckers and Vennekens, 2017], NESS
(Necessary Element of a Sufficient Set) cause [Beckers, 2021;
Halpern, 2008], contrastive cause [Miller, 2021], explana-
tion [Halpern and Pearl, 2005b; Woodward, 2003; Wood-
ward and Hitchcock, 20031, responsibility and blame [Chock-
ler and Halpern, 2004; Halpern and Kleiman-Weiner, 2018;
Alechina et al., 20171, discrimination [Chockler and Halpern,
2022] and harm [Beckers et al., 2022]. Thus, the general im-
pression we get from these works is that the primitive no-
tion of intervention is necessary to define and formalize such
causal concepts. In this paper, we show that this impression
is not well-founded. In particular, we prove that the notion of
actual cause, one of the central pillars in the modern theory of
causality, can be naturally and elegantly formalized in a lan-
guage of counterfactual conditionals in Lewis’ style without
recurring to the notion of intervention.

To obtain our result, we rely on the computationally
grounded semantics for causal reasoning recently proposed
in [Lorini, 2023; de Lima and Lorini, 2024]. There is a cru-
cial difference between Lewis’ original semantics for coun-
terfactual conditionals and the semantics on which we rely. In
the former, the notion of possible state (or world) in a model
is undecomposed and the comparative similarity relation be-
tween states used to interpret counterfactuals is abstract. In
the latter, a state is decomposed into two elements: i) a propo-
sitional valuation, and ii) a causal base in propositional form
that represents the causal information available at the state.
Moreover, the comparative similarity relation is grounded in
and computed from the states’ two components. In this sense,
it is a two-dimensional semantics for counterfactual condi-
tionals. Specifically, according to this semantics, a state S’ is
considered at least as similar to a state S as a state S if i)
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the causal information the state S” shares with the state .S is
at least as much as the causal information the state S’ shares
with the state S, and ii) S differs from S with respect to
the truth values of propositional atoms at least as much as S’
differs from S.

Our semantics offers greater flexibility than the abstract
Lewisian semantics and allows us to give a precise interpre-
tation of Lewis’ vague concept of a ‘small miracle’ [Lewis,
1979]. Lewis uses this concept to distinguish backtracking
from non-backtracking counterfactuals. Roughly speaking,
according to Lewis, in a backtracking counterfactual only
the propositional atoms representing the initial conditions
can be changed to satisfy the antecedent of the conditional,
while the causal laws are kept fixed. On the contrary, in
a non-backtracking counterfactual, the causal laws can be
changed by imagining ‘small miracles’. According to the
two-dimensional semantics we use, a ‘small miracle’ is noth-
ing but a minimal change of a causal base that can possibly
occur to satisfy the antecedent of a conditional.

The paper is structured as follows. In Section 2 we discuss
some work that is directly related to our work. In Section 3
we present the formal framework: the two-dimensional se-
mantics, the language of counterfactual conditionals and its
interpretation over it, and a list of interesting validities for
this language. Section 4 presents the main conceptual result
of the paper. After some formal preliminaries introducing the
notion of equational state, we prove a theorem highlighting
that the notion of actual cause, as defined in [Halpern, 2015]
using the notion of intervention, can be equivalently defined
in our language of Lewisian counterfactuals without recur-
ring to interventions. Section 5 is devoted to the computa-
tional aspects of our novel semantic approach to counterfac-
tual conditionals. We provide a succinct formulation of the
model checking problem for the language of counterfactual
conditionals in our semantics. With ‘succinct’ we mean that
the model with respect to which a formula has to be checked
is not given explicitly with its set of possible worlds and its
comparative similarity relations, but it is given in a compact
form. We show that this problem is PSPACE-complete and
provide a reduction of it into QBF that can be used for auto-
matic verification of causal properties. As far as we know, no-
body before us provided a succinct formulation of the model
checking problem for Lewis’ logic of counterfactual condi-
tionals and a tight complexity result for this problem.

The extended version of this paper with all proofs is avail-
able in https://arxiv.org/pdf/2505.12972.

2 Related Work

The connection between the logic of interventionist condi-
tionals and Lewis’ logic of counterfactual conditionals was
studied in [Galles and Pearl, 1998] and more recently in
[Zhang, 2013]. Galles & Pearl show how a comparative simi-
larity relation between possible worlds can be computed by a
means of interventions: a first world is more similar to a sec-
ond world than a third world is if it takes less local interven-
tions to transform the first world into the second world than
to transform the third world into the second world. As no-
ticed by Zhang, the semantics of counterfactual conditionals

based on selection functions in Stalnaker’s style can also be
reconstructed by means of interventions: the function selects
for each intervention the solutions of the underlying causal
model produced by it, as the closest worlds to the actual
one relative to the intervention. Zhang studies the subclass
of causal models, the so-called solution-conservative causal
models, for which the principles of the logic of intervention-
ist conditionals that correspond to the axioms of Lewis’ logic
of counterfactual conditionals are valid. However, Galles &
Pearl’s and Zhang’s approach is fundamentally different from
our approach. They focus on the logic of interventionist con-
ditionals and aim to elucidate the relation with Lewis’ logic.
We focus on counterfactual conditionals and get rid of inter-
ventions. We show that the notion of actual cause has a nat-
ural and elegant interpretation in the logic of counterfactual
conditionals that do not require the notion of intervention.

A recent analysis of the distinction between backtracking
and non-backtracking counterfactuals in an interventionist
setting was given in [von Kiigelgen et al., 2023]. This seman-
tic account of non-backtracking counterfactuals is fundamen-
tally different from ours. Following Pearl [Pearl, 2009], they
make the concept of non-backtracking counterfactual condi-
tional coincide with the concept of interventionist conditional
and the concept of ‘small miracle’ with the concept of inter-
vention. As pointed out above, our interpretation of Lewis’
concept of a ‘small miracle’ does not rely on the concept of
intervention but rather on the concept of minimal change of a
causal base.

Alternative semantics for actual causality based on the
situation calculus (SC) have also been proposed. Ba-
tusov and Soutchanski [Batusov and Soutchanski, 2018] for-
malize actual causality using atemporal SC action theories
with sequential actions. Khan and Lespérance [Khan and
Lespérance, 2021] extend causal reasoning to epistemic con-
texts involving incomplete information and multiagent set-
tings, analyzing how agents acquire knowledge of actual
causes through actions and sensing.

Last but not least, it is worth mentioning the work on the
connection between counterfactuals and causal rules in the
framework of causal calculus presented in [Bochman, 2018;
Bochman, 2021]. We share with Bochman and previous work
in [Lorini, 2023; de Lima and Lorini, 2024] the idea of ex-
pressing causal information through causal rules expressed in
propositional form, as an alternative to the SEM semantics
of Halpern and Pearl and to the causal team semantics intro-
duced in [Barbero and Sandu, 2021].

3 Formal Framework

In this section, we first present the two-dimensional seman-
tics for counterfactual conditionals. Then, we introduce a lan-
guage that supports reasoning about propositional facts, in-
formation in a causal base and counterfactuals. We show how
the language can be interpreted using the two-dimensional se-
mantics. Finally, we discuss some of its formal properties in
relation to Lewis’ logic.

3.1 Semantics

In [Lorini, 2023] a rule-based semantics for causal reasoning
is presented. The main feature of the semantics is its two-
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dimensional nature: one dimension representing the actual
environment, and the other dimension representing the causal
information. In this section, we extend this semantics with
comparative similarity relations to be able to interpret coun-
terfactual conditionals.

Let P be an infinite countable set of atomic propositions
whose elements are denoted p, g, ... We note Lprop(P), or
simply Lprop, the propositional language built from P. Ele-
ments of Lprop are denoted w,w’, . .. Given w € Lprop, We
note with P(w) the set of atomic propositions occurring in w.
Moreover, if X C Lprop then P(X) = (J,,c x P(w).

The following definition introduces the concept of state,
namely, a causal base supplemented with a propositional val-
uation that is compatible with it.

Definition 1 (State). A state is a pair S = (C, V), where
C C Lprop is a causal base, and V- C P is a valuation s.t.
VYw € C,V | w. The set of all states is denoted by S. A state
S = (C,V) is said to be finite if both C' and V' are finite.

The propositional valuation V' represents the actual envi-
ronment, while C represents the base of causal information
(viz. the causal base). It is assumed that the former is com-
patible with the latter, that is, if w is included in the actual
causal base (i.e., w € () then it should be true in the actual
environment (i.e., V' |= w). We let super- and subscripts to be
inherited, e.g., S* always stands for (C*, V*).

A model is nothing but a state supplemented with a set of
states that includes it.

Definition 2 (Model). A model is a pair (S,U) such that S €
U C S. The set of models is denoted M.

The component U is called context (or universe) of inter-
pretation. We call (S, S) a universal model (i.e., a model in-
cluding all possible states). For notational convenience, we
simply write S instead (S, S) to denote a universal model.

Let us illustrate the previous notion of model with the help
of an example.

Example 1 (Videogame). Consider a virtual character con-
trolled by a video gamer using three keyboard keys. Each
configuration of these keys corresponds to a specific causal
base, which determines the action the virtual character will
perform depending on which key is activated by the gamer.
Assume that three actions are possible: ‘move forward’ (fo),
‘move backward’ (ba), and ‘jump’ (ju). Suppose that:

i) the controls are configured such that activating key 1
(aci1) causes the character to move forward; activating
key 2 (acs) causes it to move backward; and activating
key 3 (acs) causes it to jump;

ii) in the actual situation, no key is activated and the char-
acter remains stationary;

iii) a hard constraint in the game prevents the gamer from
activating more than one key at the same time.

So, according to hypotheses i), ii) and iii), we are in a

model (Sy, Uy) with Sy = (Cy, Vo) such that
Cy= {a01 — fo,aco — ba, acs %ju},

Vo =10,
Ug={(C"V)es: V' E /\ (acy — —acy)}.
z,y€{1,2,3} :
Ay

We define the following comparative similarity relation be-
tween states.

Definition 3 (Similarity relation between states). Let S =
(c,v),s" = (C',vV",8" = (C", V") € S. We say that
state S’ is at least as similar to state S as state S” is, denoted
S// jS S/, lf

(CnC”yc(CnCand (VAV') C (VAV"),
where A stands for symmetric difference.

According to the previous definition, state S’ is at least as
similar to state S as state S” is if i) the causal information
that S shares with S is included in the causal information
that S’ shares with S, and ii) the environment of S” differs
from the environment of S at least as much as the environ-
ment of S’ differs from the environment of S. The reason why
the similarity relation uses ‘set-inclusion’ for the causal part
and ‘symmetric difference’ for the propositional part is that
the causal similarity between two states is determined by the
information that is shared by their causal bases, while their
propositional similarity is determined by the set of atomic
propositions whose truth values are the same in their propo-
sitional valuations.

3.2 Language

The following definition introduces our modal language for
causal reasoning.

Definition 4 (Language). We structure the language in two

layers:
Lo 4 ax=p|T|-a|ahal|lAw,
def
L= pu=alwleAple|eooe,

where p ranges over P and w over Lprop. The boolean con-
structs L, V, —, and <> are defined in the standard way as
abbreviations.

We call L the language of causal information and L the
language of causal counterfactual conditionals. Formula Aw
is read “it is causally relevant that w” or “w is a causal infor-
mation of the actual state”. Formula ¢ O— 1 is read “if ¢
were true, ¢ would be true”. Its dual ¢ ¢ ¥ = —(p O
—)) is read “if ¢ were true, v might be false”.

The following definition introduces the satisfaction relation
between models and formulas of the language £. (We omit
semantic interpretations for the boolean connectives —, A and
for T since they are defined in the usual way.)

Definition 5 (Satisfaction relation). Letr (S,U) € M with
S = (C,V). Then, (boolean cases are omitted)

(S, U)Ep iff pev,

(S,U) F LAw iff wedC,

(S,U) Epo- iff forall S’ € Closest(p,S,U),
(8 U) E v,
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where
Closest(p,S,U) :{S’ ceU: (S U)Eypand AS" €U
such that (S",U) = ¢ and S" <g S"},

and 8" <g S" iff S’ X5 5" and 8" A5 S’

The set Closest(y,S,U) is the set of yp-closest states to
state .S relative to the context U.

The formula Aw has the expected set-theoretic interpreta-
tion: it is causally relevant that w iff the propositional formula
w is included in the actual causal base. The counterfactual
conditional ¢ O— % holds at model (S, U) if ¢ were true, ¢
would be true iff all -closest states to state .S relative to the
context U satisfy 1.

Let us go back to Example 1 of the videogame to illustrate
the semantic interpretation of formulas.

Example 2 (Videogame continued). It is easy to verify that
at model (So, Uy) i) if the gamer activated key 3, the virtual
character might jump, and ii) if the gamer activated key 3
without changing the causal rule relating key 3 to the jumping
action, the virtual character would jump, that is,

(S0, Uo) E (acs & ju) A ((a03 A A(acg — ju)) O ]u)

Recall that we write S = ¢ instead of (S,S) = ¢ for
notational convenience. We say that a formula ¢ € L(P)
is valid, denoted by = ¢, if (S,U) = ¢ for every model
(S,U) € M. We say o is satisfiable if - is not valid.

3.3 Some Properties

The following proposition highlights some interesting prop-
erties of our counterfactual conditionals.

Proposition 1. Let p,1) € L, w € Lprop and p € P. We
have the following validities:

Feooop 1)
Flpoo ) = (e =) 2
EpooxAvo=x) = (pVe)osx  (3)
E@Alpo= ) = (pAp) o> ¢ 4)
E(pA (0= 9)) = (pA-p) O ¢ )
F(lwA(pood) = (pALw)B= Y (6)
EAwoow @)

The first three validities can be proven straightforwardly.
The validity (1) is standard in conditional logics. The va-
lidity (2) is called weak centering in the literature [Lewis,
1973]. The name comes from its semantic condition, namely
if (S,U) = ¢, then S € Closest(p,S,U). However, the
property strong centering, i.e., if (S,U) | ¢ then {S} =
Closest(yp,S,U), does not hold. A counterexample would
be

U = {S.5'} with § = {0, {p}} and §' = {{p}, {p}}.

We have {S} # Closest(p,S,U) = U, albeit (S,U)
p. The validity (3) comes from the fact that the comparative
similarity relation <g of Definition 3 is a partial preorder.

The validities (4), (5) and (6) are of particular interest since
they highlight the interaction between counterfactual condi-
tionals, propositional atoms and causal information. If <g
were a total preorder, the formula

(b)) A(p oo X)) = (PAX) B Y
would be valid. This formula is an axiom of Lewis’ V-logics
that relates to many axioms/postulates in other fields, e.g.,
the last postulate in AGM theory [Alchourrén et al., 1985],
and rational monotonicity (RM) in non-monotonic reason-
ing [Kraus ef al., 1990]. Since =g is not total, RM is not
valid here. Nevertheless, the validities (4), (5) and (6) indi-
cate that our semantics is monotonic under cumulation of true
propositional atoms and their negation, and of actual causal
information. Finally, the validity (7) highlights the interaction
between causal information and counterfactual conditionals,
and comes from the validity (1) and the validity of Aw — w.

4 Actual Cause

In this section, we turn to actual cause. We first provide some
preliminary notions, the notion of equational state and the no-
tion of intervention, that are needed to define actual cause
in Halpern & Pearl’s sense. We focus on the most recent
interventionist definition of actual cause given in [Halpern,
2008]. The section culminates with a theorem showing that
Halpern’s notion of actual cause can be equivalently formu-
lated in our language of counterfactual conditionals without
interventions.

4.1 Equational States

We consider a subclass of states in which, in line with the
structural equational modeling (SEM) approach to causality,
causal information is represented in equational form.

An equational formula for a proposition p is a propositional
formula of the form p <> w which unambiguously specifies
the truth value of p using a propositional formula w made
of propositions other than p, with <+ the usual biconditional
boolean connective “if and only if”. We note Lgq the corre-
sponding set of equational formulas:

Leq = {p —w:p€P,we Lprop; and p ¢P(w)}.

For every p € P, Leq(p) is the set of equational formulas
for p. For notational convenience, elements of Lgq are also
denoted ¢, ¢, . ..

An equational state is a special kind of state whose causal
base is a finite set of equational formulas.

Definition 6 (Equational state). An equational state is a state
S = (C,V), with C C Lgq finite, and such that

VpeP,Vp - w,perw €Cow=uw.
The set of equational states is denoted by S gq.

According to the previous definition, the causal base of an
equational state should contain at most one equational for-
mula for each atomic proposition.

From an equational state, it is straightforward to extract a
a set of endogenous variables and a set of exogenous ones. A
variable is endogenous if there is an equational formula for it
in the actual causal base, it is exogenous if it appears in the
actual causal base but there is no equational formula for it.
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Definition 7 (Exogenous and endogenous variables). Let
S = (C,V) be an equational state. Its set of exogenous vari-
ables exo(S) and its set of endogenous variables end(S) are
defined, as follows:

end(S) ={p € P(C) : 3w € Lpror (P \ {p}) such that
P weE C’},
exo(S) =P(C) \ end(S).

From an equational state it is also possible to extract its
graphical counterpart. Specifically, given an equational state
S = (C,V) € Sgg, we can extract the causal graph Gg =
(Ns,Ps) with Ng = P*(C) and where the causal parent
function Pg: Ng — 2V is defined as follows, for every
p € Ng:

(i) Ps(p) = ]P’+(w) ifp+weC,
(i1) Ps(p) = 0 if Leq(p) N C = 0,

where P (w) = P(w)U{T }if T occurs in w, PT(w) = P(w)
if T does not occur in w, and P*(C) = |J,,c P (w). Note
that if p € Ng then, Ps(p) = 0 iff p € exo(S).

The following example is a classic in the literature on for-
mal models of causality. We use it to illustrate the previous
definition.

Example 3. Suzy and Billy decide to throw a rock simulta-
neously, aiming at the bottle. Suzy is a bit faster, so her rock
breaks the bottle, not Billy’s. However, Billy is just as ac-
curate as Suzy: had she not thrown, Billy’s rock would have
shattered the bottle shortly after. This leads to the following
causal structure: i) Suzy throws her rock (st) iff she decides to
do so (sd), ii) Billy throws his rock (bt) iff he decides to do so
(bd), iii) Suzy hits the bottle (sh) if and only if she throws her
rock (st), iv) Billy hits the bottle (bh) if and only if he throws
his rock (bt) while Suzy does not hit the bottle (—sh), v) the
bottle is shattered (bs) if and only if either Billy or Suzy hits
it. The actual state Sy = (Cy, Vy) is described as follows:

Co :{st < sd, bt < bd,
sh <> st, bh <> (bt A —sh), bs <> (sh V bh)},
Vo ={sd, bd, st, bt, sh, bs}.

The causal graph extracted from it is given in Figure 1.

sd st sh

J\’bs
/

bd bt bh

Figure 1: Causal graph

4.2 Interventions

We conceive an intervention as a possibly empty finite set of
equational formulas of type p <+ T or p +> L with at most
one equational formula for each variable. We define the set
of interventions as follows:

Int :{{pl Tl .., PE & Tk} (V1 < ]{3/,/{3” < k,
lfk/ # k// thenpkl ;épk?” andTla"'>7—k S {T>J-}}

Elements of Int are denoted E, E’,.... Given E € Int, let
E=wr N\ »A N\ —»
poTeE peLeE

For every finite set of atomic propositions Z C P, we note
Int z the set of interventions for Z, that is,

IntZ:{EEInt:(VpGZ,pHTGEorpHJ_GE)
and(Vp &€ Z,p< T ¢ Eandp <> L ¢ E)}.

From a semantic point of view, an intervention {p; <>
T1,...,Pk > Tk} replaces any equational formula for py.
with 1 < K’ < k in a causal base by the equational formula
prr <> Ti. Following this idea, the following definition in-
troduces the notion of causal compatibility post intervention.

Definition 8 (Causal compatibility post intervention). Let
E € Int. We define =¥ to be the binary relation on the set of
states S such that, for every S = (C,V),8" = (C',V') € S:

S = 8" ifand only if C' = (C\ U Leq(p)) VE.
pEP(E)

S =% S’ means that state S’ = (C’, V") is compatible
with state S = (C, V) after the occurrence of the intervention
E. Specifically, the latter is the case if the causal base C’ is
the result of the following replacement operation applied to
the causal base C: first of all remove from C all equational
formulas for the propositions on which we intervene through
E, and then add to the resulting causal base all equational
formulas included in E. Note that if § € Sg, and S =E 5
then S” € Sg,. This means that intervening on an equational
state results in an equational state.

4.3 Formalization of Actual Cause

In this section, we recall the definition of actual cause given in
[de Lima and Lorini, 2024]. As shown by de Lima & Lorini,
under the assumption that the causal graph induced by the
underlying equational state is a DAG (directed acyclic graph)
their definition is equivalent to Halpern’s definition given in
[Halpern, 2015].

Before defining actual cause formally, some preliminary
notation is needed. A term is a conjunction of literals in which
a propositional variable can occur at most once. The set of
terms is denoted by Term with elements A, ), ... The set
Termz with Z C P denotes the set of terms built from the
variables in Z. Given X\, \' € Term, with a slight abuse of
notation, we write A’ C X (resp. X' C \) to mean that the
set of literals appearing in X\’ is a subset (resp. strict subset)
of the set of literals appearing in \. Lastly, A denotes the
conjunction of the negations of \’s literals. That is,

A =def /\ﬁp/\ /\ D-

PCA —pCA

The definition below introduces the so-called “but” condi-
tion. A term A is a “but” condition for a propositional fact w
at a state S if there exists an intervention on the endogenous
variables in A, along with another intervention that fixes the
actual values of some endogenous variables not included in
A, such that, if the values of the exogenous variables remain
unchanged, the formula ¢ will necessarily be false after these
interventions.
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Definition 9 (“But” condition). Ler S = (C,
Term epa(s s) and w € Lprop such that P(w ) -

) S SEq» A€
P(C). We
denoted by

say that X\ is a “but” condition for w at state S,
But(S, \,w), if

JE € Intpy),3Z C end(S),3E" € Intz such that
ZNPA) =0,5 = E and
VS €S, if S =PV S and S = A& then S' = —w,

A =aer N A N\ P

pEezo(S)NV pEezo(S)\V

The definition seems complicated, especially the E’ part
that consists in fixing the actual truth values of some endoge-
nous variables. The existential quantification over such E’
is a core aspect of Halpern’s definition of actual cause. This
quantification is needed to check the absence of causal in-
fluence from the other variables on the produced effect. As
we will show in Section 4.4, this quantification is not needed
when expressing actual cause through counterfactuals.

We use the notion of “but” condition to define the notion of
actual cause below. Namely, A is an actual cause of w if both
A and w are true, and ) is a minimal ‘“but” condition for w.

Definition 10 (Actual cause). Let S = (C,V) € Sgq A €
Term cna(sy and w € Lprop such that P(w) C P(C). We say
A is an actual cause of w at state S if:

S EAw,
i1) But(S, A\, w) holds,

i11) YN C A, But(S, X', w) does not hold.

Let us emphasize again that, as shown in [de Lima and
Lorini, 20241, the previous definition of actual cause is equiv-
alent to Halpern’s definition given in [Halpern, 2015] when
the causal graph induced by the equational state S is a DAG.

Let us go back to Billy and Suzy’s example.

Example 4 (Billy and Suzy continued). We have that st is an
actual cause of bs at state Sy in Example 3, while bt is not,

for But(Sp, bt, bs) does not hold.

4.4 Reduction to Counterfactuals

In this section, we are going to present the central concep-
tual result of the paper: a theorem highlighting that actual
cause can be expressed by means of counterfactual condition-
als without interventions. The following Lemma 11 is the key
to prove it.

Lemma 11. Ler S = (C,V) € Sgq, such that its causal
graph Gs is a DAG, A € Term,q(s) and P(w) C P(C). If
S |= A then But(S, A\, w) if and only if

SE

A€ Termp(y)

(N AAXE?) o> —w).

The lemma states that the “but” condition can be captured
in terms of a might-conditional under the assumption that the
underlying causal graph is a DAG. In particular, under the
assumption that the causal graph induced by the state S is a

DAG, ) is a “but” condition for the propositional fact w at S if
and only if, at S there exists a term \’ sharing its propositions
with A such that if A’ were true and the exogenous variables
had their actual truth values, w might be false.

We sketch the proof idea of the lemma here. In the first
glimpse, we must construct an intervention £ U E’ witnessing
But(S, A\, w) from some S’ € Closest(\ AAE™°, S, S) with
S’ = —w and vice versa. Apparently, a concern Would be that
the intervention does not necessarily give rise to the closest
states to S, as required by S’. Nonetheless, such a concern is
unfounded: since w is a propositional formula, its truth value
is only determined by the propositional valuation. The causal
base plays the role, together with the fact that the causal graph
Gy is a DAG, of ensuring that we can associate some S’ with
the states resulting from the intervention £ U E’, in such a
way that they share the same propositional valuation.

We are now in a position to show the main result of this
section, namely the following Theorem 12.

Theorem 12. Let S = (C,V) € Sgq s.t. Gg is a DAG,
A € Termenq(sy and P(w) C P(C). Then, X is an actual
cause of w at S, if and only if

SEAA((AAAF) 0> —w)A
N (N AXG?) o> w).

ZCP(N),
X € Termz

According to Theorem 12, under the assumption that the
underlying causal graph is a DAG, the notion of actual cause
can be captured by a combination of conditionals and one
might-conditional. In particular, under the assumption that
the causal graph induced by the state S is a DAG, A is an ac-
tual cause of w at S if and only if at S 1) A is true, ii) if the
truth values of all variables in A\ were changed and the exoge-
nous variables had their actual truth values, w might be false,
and iii) for every term X’ built from a strict subset of the set of
propositions in ), if A’ were true and the exogenous variables
had their actual truth values, w would be true. Theorem 12
highlights the main message of our paper: actual cause is de-
finable using counterfactual conditionals without having to
resort to interventions.

Example 5 (Billy and Suzy revisited). We have that st is an
actual cause of bs, for Sy = st A\ (mst A AG?) O —bs) A
MG O bs, but bt is not, for Sy = (—bt A AG°) O bs.

S Model Checking

In this section, we study the model checking problem in the
defined framework. To date, satisfiability checking received
more attention in the literature on counterfactuals: a seminal
paper [Friedman and Halpern, 1994] established PSPACE-
completeness for it in general (with a few exceptions for some
properties of similarity ordering) and subsequent works pro-
posed various decision procedures [Giordano et al., 2009;
Lellmann and Pattinson, 2012; Girlando et al., 2021]. At
the same time, using standard methods in model checking
[Gridel and Otto, 1999], it is straightforward to verify that
model checking can be performed in PTIME if the whole
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model is given explicitly as input, including the set of possi-
ble states and the comparative similarity relations. However,
explicit models may be extremely large and so unpractical.
In our semantics, model checking can be formulated in a
succinct way since the model does not need to be given ex-
plicitly: the set of possible states and the comparative similar-
ity relations can be computed ex post. Specifically, following
[de Lima and Lorini, 2024], we define a succinct “relativized”
version of model checking in which three elements are given
as input: i) a formula ¢ of the language L to be checked, ii) a
finite vocabulary I" of propositional facts from which the con-

ext ST € {§=(C,V)eS : C CT} is defined, and i)
a finite state S from S with respect to which the formula ¢

is evaluated. The context ST includes all states whose causal
bases are constructed from I'.

Model checking problem.
Input: ¢ € L, finite I’ C 24ProP _finite S € ST
Output: true if (S, SY) = 1, false otherwise.

In the rest of this section, we are going to show that this
problem is PSPACE-complete by its polynomial reduction
to the quantified Boolean Formula problem (QBF) and vice
versa.

Let I' and v be given. The set of relevant atoms is defined
as follows: ¥ = P(T") UP(¢)). We can represent each state of
ST by |T| + |X] bits, defining which facts from I are present
in the causal base and which relevant atoms are present in
the valuation. Accordingly, we use sets of variables X* =
{vl, JweT}U{v) | p e X} fori € N to represent the states
in the QBF encoding. Then, any state from S' corresponds
to some valuation on variables from X*.

We define an encoding function Sat(y, X*), which maps
a subformula ¢ of ¥ (or of some formula in I') into an open
QBF formula satisfiable exactly by valuations on X* that cor-
respond to states satisfying ¢ (boolean cases are omitted):

Sat(p, X*) = v}

Sat(Aw, X*) = b,

Sat(p1 O o, X¥) = VX1 State(X1) —
(Closest (1, X¥, XT1) — Sat(pg, X*t1))

Notice that for encoding quantification over states we need
to use a set of variables Xt different from X?, and we need
to check that causal base and the valuation given by choice
of values of X**! will be compatible (as required by Defini-
tion 1). For this, we use the following predicate State:

State(X') = A (b}, = Sat(w, X7)).
wel

Predicate Closest encodes the definition of the closest state
(Definition 5). However, this definition uses predicate Sat on
( twice: to assert that given state satisfies ¢ and that no closer
state satisfies ¢. To keep the encoding polynomial, we need
to merge these two instances into one via standard Tseitins
Tranformation [Tseitin, 1983] by introducing an extra quan-

tifier:

Closest(p, X, X7) = VX*. Vr. State(X*) —
(Sat(p, X*) <3 r) — ((Eq(X7, X*) — r)A
(Closer(X?, X7, X¥*) — =r)).

Here k = max(i, j) + 1 (to ensure that variables are differ-
ent). Predicates Eq and Closer encode equality and similarity
of states from S!' directly by definitions.

Notice that |[State(X")] = O crlw|) since
|Sat(w, X*)| = O(|w|2 for w € Lprop, while Eq(X?, X7)
and Closer(X*, X7, X*) require to do O(|T'| 4+ |X|) checks
on corresponding variables. So the predicate Sat makes a
recursive call for each immediate subformula exactly once
with an overhead at each step that is polynomial w.r.t. size
of the input. Thus, we have a polynomial-size reduction to
QBEF, which immediately implies PSPACE-membership of
the model checking problem.

For PSPACE-hardness we provide a reverse re-
duction (from QBF). It is based on the observation
that for p,p’ € P\ V there are exactly two states in
Closest(p V p/, (0,V),S?), one satisfying p and one not
satisfying it (but satisfying p’), so we can use a counter-
factual with (pV p') in the antecedent to emulate boolean
quantification over p.

Theorem 13. The model checking problem is PSPACE-
complete.

Our reduction of actual cause to counterfactuals in Theo-
rem 12 requires model checking with respect to the context S
that contains all states. In general, model checking w.r.t. S
can not be easily reduced to model checking w.r.t. a context
ST defined from a finite vocabulary I" (we believe the former
problem belongs to a higher complexity class). However, we
can perform such a reduction in the special case when the in-
put formula does not contain nested counterfactuals (which is
the case for Theorem 12).

Lemma 14. If v € L does not contain nested counter-

factuals then ((C,V),S) = ¢ iff (C,V),SY) &= o for
I' = CU{w : Aw is a subformula of 1 }.

Due to this reduction, we can employ our QBF encodings
to check actual cause via Theorem 12. Moreover, although
the last conjunction over \' € Termy includes exponen-
tially many conjuncts, we can obtain a polynomial encod-
ing if we replace this conjunction with quantification over
terms (which we can also naturally represent with boolean
variables). With this modification we can achieve polynomial
QBF encoding with the depth of quantifier alteration equals
2: 3V in the second conjunct and V3 in the third conjunct of
the formula in Theorem 12. In this sense, our encoding is
“close” to being optimal, since the checking of actual cause
was shown to be X1’ -complete in [Eiter and Lukasiewicz,
2002] and so only requiring 3V alternation.

6 Conclusion

Let’s take stock. We have shown that the notion of interven-
tion is not essential for the formalization of actual cause, one
of the central concepts in the theory of causality. This concept
can be captured by Lewisian counterfactual conditionals once
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a two-dimensional semantics distinguishing the propositional
level from the causal level is adopted. We have also shown
that model checking for the language of counterfactual con-
ditionals defined in this semantics is PSPACE-complete by
means of its reduction into QBF and vice versa.

Our contribution has an impact at both the conceptual and
computational level. On the conceptual side, we offer a gen-
eral framework for unifying counterfactuals and actual cause.
On the practical side, we provide a semantics for counterfac-
tuals in which model checking can be formulated succinctly.
This is useful in practice for the automatic verification of
causal properties.

Directions for future work are manifold. First, we plan
to explore the proof-theoretic aspects of our logic of coun-
terfactual conditionals. In Section 3.3, we only presented
some interesting validities. We plan to develop a sound and
complete axiomatization. Second, we plan to implement the
QBF translation given in Section 5, in order to experimen-
tally investigate the automated verification of causal prop-
erties—actual cause in particular—in terms of computation
time. Third, we plan to extend our analysis based on Lewisian
counterfactuals to other notions of cause, with special at-
tention to Wright’s notion of NESS cause [Wright, 1988].
Finally, we plan to investigate the relationship between our
counterfactual atemporal approach to actual cause and recent
work on temporal causal reasoning [Gladyshev et al., 2025].
To this aim, we will extend our framework with an LTL tem-
poral component, in order to account for temporal informa-
tion in a causal base as well as counterfactual reasoning about
temporal facts.
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