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Abstract
Parameterized Quantum Circuit (PQC) is a family
of structured quantum circuits that consists of quan-
tum gates whose parameters are optimized with
classical computers. With the quest for a poten-
tial speedup, there is a need to run larger quantum
circuits, which in turn results in the arduous task
of parameter optimization. In this paper, we pro-
pose a generic method, called Rotolasso, that uti-
lizes sparsity-inducing coordinate descent (CD) to
optimize parameters of a PQC for balancing its ac-
curacy and the number of parameterized gates. The
use of CD allows significant reduction in the num-
ber of quantum circuit runs, and the sparsity in the
model leads to simpler and faster PQCs, both of
which are important ingredients to overcome limi-
tations of near-term quantum devices. We provide
theoretical analyses and demonstrate experiments
showing the effectiveness of Rotolasso to solve in-
stances of combinatorial optimization problems.

1 Introduction
Advancement of quantum computer hardware has enabled ex-
ecuting quantum circuits that consists of thousands of imper-
fect quantum gates operating on tens to hundreds of noisy
quantum bits [Arute et al., 2019; Layden et al., 2023]. De-
spite this remarkable achievement, such quantum hardware
is still not sufficient to run prominent quantum algorithms,
such as the prime factorization, that require several order of
magnitude more quantum gates, qubits, and noise mitigation.
Nevertheless, near-term quantum devices are already promis-
ing to deliver quantum advantage for non-trivial tasks in sam-
pling [Arute et al., 2019] and quantum simulation [Kim et al.,
2023] via their capabilities to execute quantum circuits with
parameterized quantum gates.

Such quantum circuits are believed to be useful building
blocks of quantum algorithms (QAs) to achieve potential
quantum advantange on near-term quantum devices[Cerezo
et al., 2021a]. The objective of such QAs is to find the op-
timal parameters of quantum gates in a quantum circuit that
outputs quantum states corresponding to optimal solutions by
the following iterative steps: run the PQC with a parameter
set initially chosen at random, measure the outcome, optimize

the parameters by classical computation to obtain a better set
of parameters, and go back to rerun the PQC until a stopping
criterion is satisfied.

One bottleneck of the aforementioned approach of QA
is the slow clock of quantum gates in PQC. There have
been active research in optimizing parameters of PQCs with
less quantum circuit runs [Harrow and Napp, 2021; Sweke
et al., 2020]. In addition, as in the classical AI/ML, the
more parameters, the harder it is to optimize, and this phe-
nomenon is more severe in PQCs as it can easily be trapped
in the almost-flat landscape of objective function, a phe-
nomenon known as barren plateau [McClean et al., 2018;
Wang et al., 2021; Cerezo et al., 2021b] which is akin to van-
ishing gradients in deep learning [Glorot and Bengio, 2010;
Shalev-Shwartz et al., 2017].

For these reasons, optimization strategies which are less
dependent on gradient, e.g., those based on adiabatic-inspired
heuristics [McClean et al., 2016], parameter concentration
and parameter transfer [Shaydulin et al., 2023; Sureshbabu
et al., 2024] have been quite popular. In particular, QAOA,
which utilizes 2p parameters of quantum circuits with p layers
of non-commutative quantum operations [Farhi et al., 2014],
has emerged as the most promising to solve various com-
binatorial optimization problems. In practice, however, the
value of p is severely limited by the decoherence time of near-
term quantum devices, and despite its favorability over other
PQCs, selecting models of QAOA with p as small as possible
is crucial to improve its performance [Niu et al., 2019].

Selecting and optimizing models of PQCs have been the
central topics in various quantum algorithms. Like in con-
ventional AI, many important results [Mari et al., 2021;
Mitarai et al., 2018] with regards to PQCs are based on gra-
dient even though at early stages there were results support-
ing the power of coordinate descent (CD) [Nakanishi et al.,
2020], or popularly introduced as Rotosolve in [Ostaszewski
et al., 2021]. With Rotosolve, one can fix all but few pa-
rameters of a PQC to solve lower-dimensional optimization
problems, and iteratively perform the same optimization on
other parameters until the stopping criterion is satisfied. Dif-
fers from its properties in classical machine learning, CD for
PQCs seems to be a natural approach due to the unitary con-
dition of quantum operation that imposes periodicity in the
output of PQCs; such periodicity condition seldom holds in
classical (more about this is explained in the Supplementary
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Material). Nevertheless, as in classical AI, the appeal of CD
for PQCs is often eclipsed by the popularity of gradient-based
approaches partly due to its apparent lack of sophistication
despite its acceptable performances in theory and running real
quantum devices [Gujju et al., 2024].

In this paper, we show the possibility of CD framework
towards the goal of efficient runs of PQCs in the context
of model selection. The progress of quantum hardware has
significantly scaled the number of quantum operations exe-
cutable on quantum devices by at least two orders of mag-
nitude within less than a decade. While this is good for in-
creasing the complexity of PQCs to deal with larger instances
of optimization and AI tasks, optimizing their parameters be-
come more challenging. For this reason, selecting models of
PQCs balancing their number of parameters, trainability, and
accuracy is crucial. There have been many proposals in this
direction, but they are mostly heuristics mimicking drop-out
by randomly omitting quantum gates and bits [Coyle et al.,
2024; Kobayashi et al., 2022; Scala et al., 2023].

Our proposed CD-based framework incorporates model se-
lection, a popular statistical tool in AI [James et al., 2013;
von Luxburg and Schoelkopf, 2008], to efficiently execute
quantum circuits used in quantum algorithms. Our method
utilizes CD which is known effective for various optimiza-
tion with L1 regularization, popularly known as Lasso [Tib-
shirani, 1996]. For this reason, we call our new method Roto-
lasso. It is based on recent theoretical insights with regards to
PQCs where CD/Rotosolve is known to have similar perfor-
mance as its gradient-based counterparts against the barren
plateau [Wada et al., 2024]. Thanks to the CD framework,
we can identify two sparsity opportunities to reduce quantum
circuit runs; in the spectrum of functions approximating the
objective value, and in the parameters of PQCs.

The sparsity in the spectrum enables us to utilize the com-
pressive sensing [Candès et al., 2006] to reduce the runs of
quantum circuits from polynomial in the number of qubits
down to proportional in the number of dominant frequencies,
which is often constant in practice. The sparsity in the param-
eters of PQCs is similar to [Pan et al., 2022]. However, thanks
to the CD framework we can derive closed-form conditions to
eliminate a subset of parameters, or layers/depths of QAOA
circuits. The closed-form conditions can be easily extended
to deal with group sparsity [Simon et al., 2013], and can be
combined with a recent heuristic proposal to optimize param-
eters of QAOA with Fourier [Zhou et al., 2020]. We show
the efficacy of CD-based model selection by experimenting
on instances of MaxCut and LABS, two hard problems with
promising near-term quantum algorithms. Our proposal shed
lights on AI techniques, such as model selection, that are use-
ful to improve quantum computing. Supplementary Material
is available at 10.5281/zenodo.15425252.

2 Related Work
Because parameter optimization of PQC is NP hard, one has
to rely on heuristic optimizers classified into those based on
gradient, gradient-free, and machine learning. The gradient-
based optimizers were first introduced in [Guerreschi and
Smelyanskiy, 2017; Wang et al., 2018] while Stochastic Gra-

dient Descent (SGD), was shown also effective for finite num-
ber of measurements of QAOA runs in [Sweke et al., 2020].
Unlike the classical case, evaluating gradients are difficult
and costly, thus, gradient-free optimizers, such as, Nelder-
Mead or SPSA are often preferred in practice. [Hao et al.,
2024] proposed an end-to-end protocol for setting high qual-
ity QAOA parameters efficiently. A review on setting QAOA
parameters is presented in [He et al., 2024].

Our proposed model selection falls into heuristics based
on combining gradient-free and machine-learning based op-
timizers. It is based on the gradient-free Rotosolve first in-
troduced in [Nakanishi et al., 2020; Ostaszewski et al., 2021]
with the first proposal of model selection using L1 regular-
ization in [Pan et al., 2022]. Meanwhile, other machine-
learning based optimizers include those based on Bayesian
optimization [Otterbach et al., 2017], Kernel Density Estima-
tion (KDE) [Khairy et al., 2020], and Reinforcement Learn-
ing (RL) [Yao et al., 2020; Wauters et al., 2020].

3 Preliminaries
We start by describing combinatorial optimization in the form
of Binary Optimization and PQCs with emphasis on QAOA.
For ease of explanation, the binary optimization is on vari-
ables whose values are either −1 or 1 (instead of 0 or 1);
switching between those pairs of values is trivial.

3.1 Combinatorial Optimization
We consider (combinatorial) binary optimization problem in
the following unconstrained minimization problem:

min
z∈{−1,1}n

f(z), (1)

where z is an n-dimensional binary vectors representing de-
cision variables, and f : Rn → R is the objective function.
MaxCut. A typical example of binary optimization is find-
ing optimal bipartition (or, cut) of graph G(V,E), where
V = {1, . . . , n} is the node set ofG, andE = {(i, j) ∈ [n]2}
is its edge set. For simplicity, in this paper we only discuss
unweighted graphs. A cut value of the graph is the sum of
edges connecting vertices with different labels. MaxCut is a
problem to label each node i of G with zi ∈ {−1, 1} to max-
imize the cut value maxz∈{−1,1}n

1
2

∑
(i,j)∈E (1− zizj). In

the standard form it can be formulated as

min
z∈{−1,1}n

1

2

∑
(i,j)∈E

zizj , (2)

because
∑

(i,j)∈E 1/2 = |E|/2 is constant. Due to its NP-
hardness, almost all optimization algorithms solve the relax-
ation by treating z ∈ Rn. The quality of an algorithm for
MaxCut is measured in Approximation Ratio (AR) which is
defined as the ratio of its cut value against the optimal one.

MaxCut on G(V,E) can be solved on quantum computers
by constructing its qubit Hamiltonian, which is essentially an
2n × 2n complex matrix so that the eigenvector (or, ground
state) corresponding to its smallest eigenvalue (or, ground
state energy) encodes the optimal solution. The Hamiltonian
of MaxCut is given as

HMC =
1

2

∑
(i,j)∈E

ZiZj , (3)
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where Zi ≡ I2 ⊗ . . .⊗ I2︸ ︷︷ ︸
i−1

⊗Z ⊗ I2 ⊗ . . .⊗ I2︸ ︷︷ ︸
n−i

, such that I2

is the 2 × 2 identity matrix, and Z is the 2 × 2 Pauli Z ma-
trix which is a diagonal matrix. Notice the relation between
Eq. (3) and Eq. (2): zi is replaced by Zi, and vice versa.
We can also confirm that HMC is a diagonal 2n × 2n matrix
whose (i, i)-th element is the value of Eq. (2) corresponding
to the binary representation of i.
LABS. Another hard problem we consider is the so-called
low-autocorrelation binary sequences (LABS) [Shaydulin et
al., 2024] whose objective is to minimize the sum of the
squares of autocorrelations of z ∈ {−1, 1}n formulated as

min
z∈{−1,1}n

n−1∑
k=1

(
n−k∑
i=1

zizi+k

)2

. (4)

It has applications in communication engineering and statis-
tical mechanics [Golay, 1977; Bernasconi, J., 1987]. Some
aspects of LABS are its optimal solutions are known only for
n ≤ 66 [Packebusch and Mertens, 2016], and its instance is
unique for each n. The quality of an algorithm for LABS
outputting z is measured in Merit Factor (MF) which is de-
fined as MF(z) = n2/ (2E(z)), where E(z) is the value of
the function inside the min in Eq. (4). Similar to MaxCut,
LABS can be solved on quantum computers by constructing
its qubit Hamiltonian: by substituting Zi for zi in Eq. (4) we
can obtain an 2n×2n matrix whose ground state corresponds
to the optimal solution of Eq. (4).

3.2 Parameterized Quantum Circuits (PQCs)
Here, we give basic concepts of PQCs necessary while more
are given in the Supplementary Material. For details of quan-
tum computing and PQCs, please see, e.g., [Nielsen and
Chuang, 2010; Cerezo et al., 2021a].

PQCs are promising tools to utilize near-term quantum de-
vices for combinatorial optimization tasks. They include vari-
ational quantum circuits (VQCs) whose typical circuit is de-
picted in Fig. 1 (a), and Quantum Approximate Optimization
Algorithm (QAOA), whose typical circuit is shown in Fig. 1
(b). Notice that both circuits are executed from the same ini-
tial quantum states, and both consist of repeated layers of en-
tangling gates. There are two main differences between VQC
and QAOA which can be observed from the figures. First,
the structure of the entangling gates in VQC is independent
of the minimization problem, while that in QAOA depends
on the minimization problem through the “Cost” block. For
example, in Fig. 1 (b), the two-qubit gates are applied on the
i-th and j-th qubits if and only if zizj appears in the objec-
tive function (e.g., Eq. (2)). Secondly, the parameters of the
quantum gates in VQC can take different values, while those
in QAOA are the same if they belong to the same block.

Despite theoretical evidences that VQC may suffer from
the barren-plateau problems [Cerezo et al., 2021b], experi-
mental evidences showed possibility of quantum advantage
for QAOA on LABS [Shaydulin et al., 2024] and other op-
timization tasks [Bravyi et al., 2022]. On the other hand,
many experimental evidences point to the potential of VQC
for MaxCut and could find better solutions than QAOA with

(a) Repeated for l = 1, . . . , p/3

|+⟩
RZY (θ3l−2)|+⟩

RZY (θ3l−1)|+⟩
RZY (θ3l)|+⟩

(b) Repeated for l = 1, . . . , p

|+⟩
RZZ(γl) · · ·

RX(βl)

|+⟩
RZZ(γl)

RX(βl)

|+⟩
RZZ(γl)

RX(βl)

|+⟩ RX(βl)

Cost Mixer

Figure 1: (a) An example of 4-qubit VQC with RZY (θi) two-qubit
(or, entangling) gates. Each line in the circuit denotes a qubit, whose
initial quantum state is |+⟩ ≡ 1/

√
2(|0⟩ + |1⟩). Notice that the

structure of the circuit (i.e., alignment of quantum gates or ansatz),
is independent of the objective function. (b) An example of 4-qubit
QAOA circuit with a block of RZZ gates with parameter γl (marked
as “Cost”) and a block of RX gates with parameter βl (marked as
“Mixer”) at each layer l for realizing U(βl, γl) as in Eq. (5). The
block of RZZ gates is for realizing e−iγlHC , which depends on the
objective function to be optimized, while that of RX gates is for
e−iβlHM and does not depend on the objective function.

less circuit depth or layers, e.g., in [Kondo et al., 2024]. Our
proposed solution is demonstrated on both VQC and QAOA.

There are two main steps for the utility of PQCs for com-
binatorial optimization: constructing a Hamiltonian H of
the optimization problem and approximating the ground state
|ψ⟩ ∈ C2n of H from the optimal parameters of PQCs. The
solution of the combinatorial optimization can be read from
the ground state. The Hamiltonians corresponding to MaxCut
and LABS were introduced in the previous section.

The second step of using PQCs is to approximate the
ground state of the Hamiltonian. The quantum state gener-
ated by a VQC, whose example shown in Fig. 1 (a), is param-
eterized by θ ≡ (θ1, . . . , θm), where each θi ∈ R is the pa-
rameter of the i-th single-qubit gate of the PQC. Similarly, as
shown in the instance of QAOA circuit in Fig. 1 (b), a p-layer
QAOA is parametrized by θ ≡ (γ1, β1, . . . , γp, βp), where
γl ∈ R and βl ∈ R are the parameters for the l-th sublayer of
the Cost Hamiltonian HC and the Mixing Hamiltonian HM ,
respectively. Here, the cost and mixing Hamiltonian of an
n-qubit QAOA system for the MaxCut are, respectively,

HM =

n∑
i=1

Xi, HC =
∑

(i,j)∈E

ZiZj ,

where Xi is defined similarly as the Zi, albeit Z at the i-
th qubit is replaced by the Pauli X matrix. Meanwhile, for
LABS, the mixing Hamiltonian is the same but the corre-
sponding HC becomes its qubit Hamiltonian.

The l-th layer of the n-qubit system QAOA is defined by
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the following unitary transformation

U(βl, γl) = e−iβlHM e−iγlHC , (5)

so that the (pure) quantum state after the p-th layer becomes

|ψp⟩ = U (βp, γp) . . . U (β1, γ1) |ψ0⟩ , (6)

where the initial quantum state |ψ0⟩ is |+⟩⊗n , which is the
ground state of the mixing Hamiltonian HM . QAOA is in-
spired by adiabatic process of evolving the ground state of
Hamiltonian H = αHC +(1−α)HM from α = 0 to α = 1.

The optimization of QAOA’s parameters is formulated as

{(β∗
l , γ

∗
l )}pl=1 = arg min

{(βl,γl)}p
l=1

⟨ψp|HC |ψp⟩ , (7)

where ⟨ψp| is the conjugate transpose of |ψp⟩.
The challenge in utilizing QAOA is to find the optimal

{(β∗
l , γ

∗
l )}pl=1, which can be extremely difficult for large p.

There are various proposal to optimize them by gradient-
based methods [Wierichs et al., 2022], or by gradient-free
methods such as Cobyla, or by extracting generic and uni-
versal patterns that can be transferred to other instances as
in Fourier [Zhou et al., 2020]. Nevertheless, they still require
huge computational resources and communication between
quantum devices and classical co-processors so that research
on QAOA with as small p is possible is still active. Addi-
tionally, [Choi et al., 2023] shows the smaller parameter θi of
QAOA, the easier it is to detect and correct noise of near-term
quantum devices. These strongly suggest the importance of
restricting parameters of QAOA by regularization.

3.3 Sparsity-Inducing L1-regularization
Learning over-parameterized models has been very success-
ful and has been the backbone to the success of neural net-
work and its applications. Suppose that f(θ) ∈ R is the func-
tion with parameters θ ∈ R2p to be optimized. Lasso [Tib-
shirani, 1996] is a popular method to optimize f(·) so that
most of the elements of θ are zeroes (or, sparse). The sparsity
is considered effective for improving the efficacy and inter-
pretability of the statistic model associated with f(·). The
objective function for inducing sparsity in θ is

min
θ
f(θ) + λ∥θ∥, (8)

where λ > 0, and ∥θ∥ is the L1-norm defined as ∥θ∥ =∑2p
i=1 |θi|. CD and its variants are popular methods for solv-

ing this optimization problem [Wright, 2015].

4 Sparsity-Inducing Coordinate Descent
We propose a CD method to induce sparsity in the parameters
of PQCs in general, and of QAOA in particular. For QAOA,
the resulting parameters are expected to be those with small p
and smaller θi as the sparsity in θ means that most of (βi, γi)
are zeroes and hence can be omitted.

To unifiedly explain our proposed solution, based on
Eq. (7), let us denote f(θ) as

f(θ) ≡ ⟨ψp|HC |ψp⟩ ,
where for simplicity, we write θ = (θ1, . . . , θ2p) =
(γ1, β1, . . . , γp, βp), i.e., θ2i−1 = γi and θ2i = βi for

i = 1, . . . , p, and |ψp⟩ is the quantum state output by the
PQC with parameters θ.

Our proposed solution starts from the following observa-
tion, first shown in [Nakanishi et al., 2020] that if we fix all
θi except at i = j, then f(·) is a univariate function that can
be written as f̂(·) according to

f̂(θj) = c0,j+
m∑

k=1

ck,j cos(kθj)+
m∑

k=1

cm+k,j sin(kθj), (9)

where m is the number of gates with the same parameter
θj . That is, for VQC it is usually m = 1, while for QAOA
it is m = n when j is even and m equals to the number
of zz terms when j is odd. Eq. (9) provides an opportu-
nity to apply CD without regularization. Namely, by keeping
θ(t) = (θ

(t)
1 , . . . , θ

(t)
2p ) at each iteration t = 1, . . . , T one can

update the value of θ(t)j , for j ≡ t mod (2p), by the rotation
angle that (globally) minimizes Eq. (9). For completeness,
the procedure is given as below, see, e.g., [Wada et al., 2024].
Coordinate Descent (CD)

• Evaluate VQC or QAOA at 2m + 1 different rotation
values to obtain the tuples {(θj,l, f̂(θj,l))}2m+1

l=1 .
• Build a system of linear equations as Eq. (9) for obtain-

ing (c0,j , c1,j , . . . , c2m,j) with classical computers from
{(θj,l, f̂(θj,l))}2m+1

l=1 .

• Compute θ∗j = argminθj f̂(θj) by classical computers.
This can be computed efficiently from the solution of the
previous step and grid search.

When optimizing PQCs with state-vector simulators, the
number of quantum circuit executions isO(m), while the rest
of the computational cost is poly(m) of classical computa-
tion. For VQC, m can be made constant, but for QAOA it
can grow quadratically in the number of qubits n which can
be too costly for dealing with large instances of optimiza-
tion problems. Fortunately, we can significantly reduce it to
O(κ logm), where κ is the number of non-zero coefficients
of Eq. (9), by applying compressive sensing [Candès et al.,
2006] to approximate Eq. (9).

4.1 Sparse Approximation of Univariate Functions
For QAOA circuits m can be large and simulating them with
quantum simulators on classical computers can be very time-
consuming. The compressive sensing can be utilized to re-
duce quantum cirtcuit runs by finding a function ĝ(θj) that
approximates f̂(θj) in the form of

ĝ(θj) = c′0,j +
m∑

k=1

c′k,j cos(kθj) +
m∑

k=1

c′m+k,j sin(kθj),

(10)
so that (c′0,j , c

′
1,j , . . . , c

′
2m,j) is sparse and ĝ(θj) = f̂(θj) for

j = 1, . . . , m̃ for m̃ ≪ m. The sparse approximation func-
tion ĝ can be computed by slightly modifying the first two
steps of CD as below.

• Evaluate QAOA circuits at m̃ ≪ m random values of
{θj,l}m̃l=1 to obtain {f̂(θj,l)}m̃l=1.
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• Let A be the m̃ × (2m + 1) matrix whose i-th row is
(1, cos(θj,i), . . . , cos(mθj,i), sin(θj,i), . . . , sin(mθj,i)).
Let f be a column vector (f̂(θ1), . . . , f̂(θm̃))T , and
c be a (2m + 1)-dimensional column vector. Then,
the sparse ĝ(·) approximating f̂(·) can be computed
from the following linear programming (LP) so that the
values of (c′0,j , c

′
1,j , . . . , c

′
2m,j) can be read from c∗.

c∗ = argmin
c

∥c∥
s.t. Ac = f (11)

According to [Candès et al., 2006], m̃ = O(κ logm) suf-
fices which means exponentially fewer runs of quantum cir-
cuits than CD in the previous section. In practice it is reported
that even m̃ = O(κ) is sufficient. Once we have ĝ(·), we can
use it to compute the optimal rotation parameter and to guide
finding the sparse model of PQCs, which constitutes our most
important contribution. For simplicity, in the hereafter we use
ĝ(·) and f̂(·) interchangeably.

When optimizing PQCs on real quantum devices (or, non-
state-vector simulators), we can only obtain the approximated
values of f(·) by repetition of quantum circuit runs that has
to be measured with many shots. Fortunately, the number of
shots to obtain samples of f(·), which are sufficient to solve
the Eqs. (9)–(11), is only polynomial in the size of the opti-
mization instances, and can be further reduced with the com-
pressive sensing. We state them in the following theorem and
corollary whose proofs are in the Supplementary Material.

Theorem 1. Let c is the optimal solution of the (2m + 1)
linear system of equalities as in Eq. (10) under the noiseless
data f satisfying Ac = f , and let c̃ be that under noisy cir-
cuit samplings f̃ satisfying Ac̃ = f̃ . For 0 < δ, ϵ≪ 1. Then,
there exist algorithms that with probability at least 1− δ out-
put c̃ which is ϵ-near to c, i.e., ∥c̃ − c∥ ≤ ϵ, by sampling

the quantum circuits for O
(

m2|E|2 ln(m/δ)
ϵ2

)
times on Max-

Cut instance of G(V,E), and for O
(

m2n6 ln(m/δ)
ϵ2

)
times on

LABS instance of n variables.

Corollary 1. Let c and c̃ be the noiseless and noisy vectors
defined similarly for the solution of the compressive sensing
for m̃ ≪ m as in Eq. (10). Then, there exist algorithms that
with probability at least 1−δ output c̃ which is ϵ-near to c by
sampling the quantum circuits for O

(
m̃2|E|2 ln(m̃/δ)

ϵ2

)
times

on MaxCut instance of G(V,E), and for O
(

m̃2n6 ln(m̃/δ)
ϵ2

)
times on LABS instance of n variables.

4.2 Sparse PQC Models
Now, we can conveniently represent a subproblem of the p
layers of QAOA or any other parameterized quantum circuits
in Eq. (8) from the univariate trigonometric polynomials in
Eq. (9) and Eq. (10). Our proposal of using sparsity-inducing
CD aims at solving Eq. (8). Namely, for θ = (θ1, . . . , θ2p)
we will find optimal schedules in which zero θi’s are pre-
ferred. Let us fix all θi except at j to have Eq. (9) for simplic-
ity. We can turn the trigonometric polynomial into algebraic
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Figure 2: Sparsity of the coefficients of Eq. (9) for QAOA on Max-
Cut and LABS instances. (a) plots the average sparsity over p pa-
rameters of γ and β for n = 10 LABS problem with p = 10, 20, 30.
Each data point is derived from 10 random initial θ’s. (c) shows the
coefficients of cos and sin basis at p = 30 for one γ parameter under
one initialization. (b) plots the average sparsity over p parameters of
γ and β when p = 10 on graphs with n = 10, 12, 14, 16 nodes.
Each data point is derived from 5 random initial θ’s. (d) shows the
coefficients of cos and sin basis at n = 16 for one γ parameter under
one initialization. The shaded regions represent the standard errors.

polynomial h(xj) by variable transformation as

xj = tan

(
θj
2

)
, cos(θj) =

1− x2j
1 + x2j

, sin(θj) =
2xj

1 + x2j
,

which transforms f(θ) in Eq. (8) into a multivariate algebraic
polynomial h(x), and Eq. (8) becomes as in the following
optimization problem

min
x∈R2p

h(x) + λ∥x∥, (12)

for ∂h(x)
∂xj

=
dĥ(xj)
dxj

where

ĥ(xj) =
1

(1 + x2j )
n

(
d0 +

2n∑
k=1

dkx
k
j

)
, (13)

and dk ∈ R. From this, we can reparametrize θ with x and
obtain sparse θ from sparse x.

From the above equations, we can confirm

dĥ(xj)

dxj

=

(∑2n
k=1 kdkx

k−1
j

) (
1 + x2

j

)
− 2nxj

(
d0 +

∑2n
k=1 dkx

k
j

)(
1 + x2

j

)n+1 ,

while

∂λ|x|
∂xj

=


−λ, if xj < 0,

[−λ, λ] , if xj = 0,

λ, if xj > 0.

By the stationary condition, from the above equations we ob-
serve that for xj = 0 to be a local optima, the necessary
condition is

λ ≥
∣∣∣∣∂h(x)∂xj

∣∣∣
xj=0

∣∣∣∣ =
∣∣∣∣∣dĥ(xj)dxj

∣∣∣
xj=0

∣∣∣∣∣ = |d1| ,
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Figure 3: Performance of QAOA on MaxCut and LABS instances. (a) For LABS instance n = 10, we show the results under different
p = 10, 20, 30 over different models: Rotosolve, Rotolasso with full (exact) linear equations, and Rotolasso with compressive sensing
keeping 50% and 30% of the γ’s while 50% of the β’s. Each point is derived from 5 random initial θ’s. (b) Fixing p = 8 and varying
n = 10, 12, 14, 16 MaxCut instances, we compare Rotosolve, Rotolasso with full linear equations, and Rotolasso with compressive sensing
keeping 70% and 30% of the γ’s while 50% of the β’s. Each point is derived from 5 initial θ’s and 5 random graphs. (c) Fixing n = 10
MaxCut instances and varying p = 2, 4, 6, 8, 10, we perform similar comparison as in (c). Each point is derived from 5 random initial θ’s
and 5 random graphs. The shaded regions represent the standard errors.

where d1 = 2
∑m

k=1 kcm+k,j because dĥ
dxj

=
dĝ(θj)
dθj

dθj
dxj

by

the chain rule. Thus, having f̂(·), i.e., (c0,j , c1,j , . . . , c2m,j),
we can obtain both the global optimal of f̂(·), and the con-
dition of θj to become zero. The update rule of θ(t) for
sparsity-inducing CD is as the following: at the t-th itera-
tion for t = 1, 2, . . . , T , the value of θ(t)j = θ

(t−1)
j if j ̸= t

mod 2p, and otherwise if j ≡ t mod 2p,

θ
(t)
j =

{
0 , if |d1| ≤ λ,

argminθj f̂(θj) , otherwise.
(14)

5 Numerical Results
Experiments demonstrating the role of sparsity-inducing CD
in PQCs are conducted using qujax [Duffield et al., 2023] for
classical simulation of quantum circuits of both QAOA and
VQC for LABS and MaxCut (3-regular graphs) instances. We
compare our method with Rotosolve that has been shown to
be significantly better than state-of-the-art methods, such as
SPSA, BFGS, CG and others [Nakanishi et al., 2020].

Following the standard usage of L1-regularized optimizer
in conventional machine learning, we iteratively run Roto-
lasso on a randomly initialized θ(0) with the regularization
factor λ initialized to λstart, and update each parameter cycli-
cally to obtain a (sub)optimal θ∗. The value of λ is then re-
duced by a factor while utilizing the previously obtained θ∗

as the new initial parameter set. This is repeated until λ be-
comes very close to 0. In our experiments, λstart is addition-
ally divided by the number of parameters.

5.1 Sparsity of Univariate Functions
The sparsity of coefficients in Eq. (9) is particularly impor-
tant for justifying Eq. (10), the use of compressive sensing,
and hence reducing quantum circuit runs for QAOA. Fig. 2
(a) and (b) depict the sparsity, i.e., the ratio of number of co-
efficients whose absolute values are smaller than 1e-4 over
the total absolute sum of coefficients. We can see that the

sparsity is high for a LABS instance; the ratios of zero coeffi-
cients are between 90%–94% and they are less p dependent.
As seen from the subfigure (c), the magnitude of the coeffi-
cients are small (there are roughly 50 dominant coefficients
out of 250 ones). Meanwhile, the sparsity is less outstand-
ing at instances of MaxCut with the ratios of zero coefficients
are between 35% – 80%. That is because the QAOA circuit
of LABS is much more complicated than the MaxCut one.
The sparsity is also independent of n, implying that we can
be more aggressive in compressive sensing to deal with large-
size instances. Subfigure (d) shows one example of the coef-
ficients for a MaxCut instance.

5.2 Rotolasso on QAOA
The effectiveness of regularized QAOA parameters is demon-
strated by the experiments, as shown in Fig.3. In subfig-
ure (a), we illustrate that Rotolasso, both with and without
compressive sensing, achieves better MF than Rotosolve on
LABS instances. The improvement over Rotosolve becomes
more pronounced as p increases. Additionally, we show that
the sparsity within Eq.(9) can be leveraged, potentially lead-
ing to even better results using less circuit runs.

Regarding MaxCut instances, subfigure (b) shows that Ro-
tolasso, with and without compressive sensing, outperforms
Rotosolve across different instance sizes n. Subfigure (c)
demonstrates that Rotolasso consistently performs better than
Rotosolve for all values of p. Additionally, as p increases, the
AR of Rotolasso with compressive sensing improves.

Fig. 4 (a) and (c) show the sensitivity of Rotolasso to λstart.
The performance ratio, defined as the ratio of Rotolaso’s AR
to Rotosolve’s AR, is close to 1 when λstart is very small
(e.g., 10−7). However, across a wide range of λstart, the
AR of Rotolasso is generally slightly better than that of Roto-
solve, indicating the robustness of Rotolasso with respect to
the regularization term. Although the performance ratios are
generally close to 1, indicating that Rotosolve performs well
for QAOA in these MaxCut instances, the final |θ|1 under
a large λstart is significantly smaller than that of Rotosolve.
This makes it less prone to errors when executed on a quan-
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Figure 4: The sensitivity of the initial value of the regularization
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ing Rotolasso without compressive sensing. (a) shows the final ratio
between the AR of Rotolasso against that of Rotosolve as λstart in-
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is derived from 50 random initial θ. In the second column, we ana-
lyze Rotolasso on VQC for a LABS instance with n = 13. Each data
point is derived from 10 random initial θ’s. (b) shows the final ra-
tio between MF of Rotolasso against Rotosolve for LABS instances
as λstart increases. (d) shows the final ∥θ∥1 of the VQC optimized
with Rotolasso whose regularization term is initialized with λstart.
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Figure 5: The effectiveness of Rotolasso measured in Merit Factor
(MF) against Rotosolve on instances of LABS for 12 ≤ n ≤ 16.
Optimal and Random are, resp., the provably optimal MF and the
average MF of random assignment.

tum processor, where errors are known to be proportional to
absolute value of the rotation angles [Moses et al., 2023].

5.3 Rotolasso on VQC
We use a n-qubit VQC with one layer of RZY gates on every
unique pair of qubits as the ansatz to solve the LABS prob-
lem, which is the same as in [Morris and Lotshaw, 2024].

The results on instances of LABS for 12 ≤ n ≤ 16 are
as shown in Fig. 5. It can be observed that Rotolasso is sig-
nificantly better than Rotosolve and as a matter of fact, the
optimal MF was obtained for n = 13, 14, 15. Interestingly,
Rotolasso is also better for this range of n when compared to
the prior benchmark using QAOA [Shaydulin et al., 2024].

We can also see how the regularization strength λ affects
the quality of the objective function obtained by the proposed
solution in Figs. 4. We can confirm that the L1 norm of the
optimized parameters indeed tends to decrease as the initial
value of the regularization strength increases as depicted in
Fig. 4 (d). Moreover, the Merit Factor (MF) is low when λ
starts from λstart which is too small, such as 10−4. This im-
plies Rotosolve without regularization easily trapped into bad
local optimal. On the other hand, when λstart is too big, such
as 103, the MF is not optimal but still much better than the
too-small λstart as shown in Fig. 4 (b) where the performance
ratio is defined as the ratio of Rotolasso’s against Rotosolve’s,
implying that the L1 regularization indeed helps improving
the solution. The figure also shows that there is a range of
Goldilocks zone of λstart that provides better MFs, which is
around 10−1 – 100 in Fig. 4 (b). We also observe that under a
large range of λstart, the VQC parameter optimization results
are less dependent on the initialization, which is also different
from the QAOA results.

6 Concluding Remarks

In this study, we propose a method to optimize parameters of
quantum circuits pertaining to solving optimization problems
by combining gradient-free coordinate descent with sparsity-
inducing L1 regularization. The method was designed to ben-
efit from the sparsity of functions representing the objective
values obtained from the output state of quantum circuits so
that compressive sensing can be utilized to further reduce ex-
ecution of quantum circuits. We derive analytical rules of
updating the parameters based on the closed-form solution of
coordinate-descent method. Through numerical experimen-
tation, the effectiveness of the proposed method was demon-
strated, especially on the efficacy and robustness of the regu-
larization strength to improve the quality of the solutions of
parameterized quantum circuits. The proposed method can be
run on top of the recently proposed random CD whose total
number of iterations is shown theoretically the same as that of
the full gradient descent [Ding et al., 2024]. Our new method
thus sheds light on the application of model selection tech-
niques in machine learning to assist in quantum computing.

Disclaimer. This paper was prepared for informational pur-
poses by the Global Technology Applied Research center of
JPMorgan Chase & Co. This paper is not a product of the
Research Department of JPMorgan Chase & Co. or its affil-
iates. Neither JPMorgan Chase & Co. nor any of its affili-
ates makes any explicit or implied representation or warranty
and none of them accept any liability in connection with this
paper, including, without limitation, with respect to the com-
pleteness, accuracy, or reliability of the information contained
herein and the potential legal, compliance, tax, or accounting
effects thereof. This document is not intended as investment
research or investment advice, or as a recommendation, offer,
or solicitation for the purchase or sale of any security, finan-
cial instrument, financial product or service, or to be used
in any way for evaluating the merits of participating in any
transaction.
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