
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Multi-Organizational Scheduling:
Individual Rationality, Optimality, and Complexity

Jiehua Chen1 , Martin Durand1,2 , Christian Hatschka1

1TU Wien, Institute of Logic and Computation, Vienna, Austria
2Sorbonne Université, CNRS, LIP6, Paris, France

{jchen, chatschka}@ac.tuwien.ac.at, martin.durand@lip6.fr

Abstract

We investigate multi-organizational scheduling
problems, building upon the framework introduced
by Pascual et al. in 2009. In this setting, multi-
ple organizations each own a set of identical ma-
chines and sequential jobs with distinct process-
ing times. The challenge lies in optimally assign-
ing jobs across organizations’ machines to mini-
mize the overall makespan while ensuring no orga-
nization’s performance deteriorates. To formalize
this fairness constraint, we introduce individual ra-
tionality, a game-theoretic concept that guarantees
each organization benefits from participation.
Our analysis reveals that finding an individually
rational schedule with minimum makespan is ΘP

2-
hard, placing it in a complexity class strictly harder
than both NP and coNP. We further extend the
model by considering an alternative objective: min-
imizing the sum of job completion times, both
within individual organizations and across the en-
tire system. The corresponding decision vari-
ant proves to be NP-complete. Through com-
prehensive parameterized complexity analysis of
both problems, we provide new insights into these
computationally challenging multi-organizational
scheduling scenarios.

1 Introduction
Multi-organizational scheduling (MOS) has emerged as a
crucial paradigm in distributed computing environments,
where organizations collaborate by sharing their computa-
tional resources to optimize job processing [Pascual et al.,
2009]. In this model, multiple organizations, each possess-
ing their own machines and jobs, connect their resources
through a grid network to create more efficient scheduling
solutions. Collaboration can potentially improve global per-
formance metrics, such as the overall makespan (i.e., com-
pletion time of the last job) or the total sum of completion
times of all jobs. A possible real-life application of such a
model would be a set of universities or research units, each
owning a cluster of machines used by their respective mem-
bers to run computer programs. These organizations may be

willing to mutualize their resources in order to balance the
computational load of their clusters.

However, this collaborative framework introduces strategic
considerations, as each organization prioritizes its own objec-
tives (e.g., minimizing its local makespan). From a game-
theoretical perspective, if any organization would achieve
worse performance in the collaborative schedule compared
to operating independently, it is unfair for that organization;
so the organization has an incentive to withdraw from the
cooperation. Such a withdrawal could cascade into disrupt-
ing other organizations’ schedules. Therefore, a fundamental
constraint in our scheduling problem is individual rationality,
ensuring that no organization performs worse under coopera-
tion than it would independently.

While individually rational schedules are guaranteed to ex-
ist (as organizations can always default to an optimal local
schedule), the challenge lies in finding one that addition-
ally optimizes global performance metrics. This work fo-
cuses on two fundamental metrics: the maximum completion
time (Cmax) and the sum of completion times (CΣ). We ex-
amine scenarios where both individual organizations and the
grand coalition as a whole optimize either Cmax or CΣ, lead-
ing to two distinct optimization problems: Cmax-MOS and
CΣ-MOS (formally defined in Section 2).

Main contributions. We introduce individual rationality to
the multi-organizational scheduling framework. Under this
fairness concept, no organization has an incentive to with-
draw from collaboration since no local schedule can achieve
a better performance. We systematically investigate the al-
gorithmic complexity of two optimization problems: Cmax-
MOS and CΣ-MOS. Generally speaking, both problems are
computationally hard. More precisely, the decision variant
of Cmax-MOS is ΘP

2-complete1 while the one of CΣ-MOS is
NP-complete.

We also present parameterized complexity analysis consid-
ering key parameters (and their combinations). They are:
– k: the number of organizations,
– m: the number of machines,
– n: the number of jobs,

1ΘP
2 (aka. PNP[log] and PNP

||) is a complexity class, consisting of
all problems which can be decided in polynomial time with logarith-
mically many queries to an NP-oracle [Wagner, 1990], positioning it
between NP and ΣP

2 in the complexity hierarchy.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

– τ : the target value of the objective (i.e., either makespan or
sum of competition times) function in the decision variant,

– pmax: the maximum processing time of a job,
– nmax: the maximum number of jobs owned by an organi-

zation, and
– mmax: the maximum number of machines owned by an or-

ganization.
Note that we chose parameters that are studied in the lit-
erature on scheduling [Mnich and Wiese, 2015; Mnich and
Van Bevern, 2018], as well as parameters that are unique to
the multi-organizational setting: k, nmax, and mmax. The lat-
ter two are localized versions of the global parameters n and
m, respectively.

Among the parameterized findings, for the parameter com-
bination k + pmax, we develop a fixed-parameter tractable
(FPT) algorithm for Cmax-MOS, based on integer-linear pro-
gramming (ILP). Our approach is based on an FPT-algorithm
by Mnich and Wiese [2015] for the classical problem of min-
imizing the makespan; this is equivalent to our model with a
single organization. They proved the existence of an optimal
solution that evenly distributes all jobs of the same processing
time among the machines; the difference is upper-bounded
by a function in pmax only. This implies that there are only
a few number of different types of machines. We extend this
idea and show that the number of different machine types is
upper-bounded by k+pmax. We can then introduce an integer
variable for each machine type and use ILP to find an optimal
solution.

Via a straightforward dynamic programming (DP) ap-
proach, we also demonstrate that Cmax-MOS (resp. CΣ-
MOS) is in XP with respect to m (resp. m + pmax). For the
hardness, we prove that Cmax-MOS remains DP-hard even
when k is a small constant2.

Table 1 summarizes our complete complexity findings.
Due to space constraints, proofs of results marked with a (⋆)
symbol are deferred to the full version of the paper [Chen et
al., 2025].

Related work. Pascual et al.[2009] initiated the study of
cooperation in multi-organizational scheduling, where jobs
may require parallel execution across machines. They ad-
dressed the problem of minimizing the global makespan un-
der a local constraint that no organization performs worse
compared to a specific local schedule, computed using a
heuristic. However, this constraint differs from the individual
rationality we focus on in this paper, as the heuristic-based
local schedule may not be optimal, meaning organizations
might still have an incentive to leave the cooperation. Pas-
cual et al. [2009] showed that their problem is NP-hard and
provided approximation algorithms.

Cohen et al. [2011] considered the same model and pro-
posed approximation algorithms for sequential jobs. Durand
and Pascual [2021] examined a more general setting where
the local schedules are given as input and studied its approx-
imability. Variants of these problems also allow organiza-
tions to pursue objectives beyond minimizing the makespan
of their own jobs, such as minimizing the sum of job com-

2DP is the class of problems expressible as the difference of an
NP- and a coNP problem [Papadimitriou, 1994, Chapter 17].

pletion times [Cohen et al., 2011] or the energy required to
schedule jobs [Cohen et al., 2014]. Other studies relaxed
the individual rationality constraint, allowing organizations to
accept schedules where their makespan increases, provided
the increase is within a given factor [Ooshita et al., 2009;
Ooshita et al., 2012; Chakravorty et al., 2013; Cordeiro et al.,
2011]. Rzadca [2007] introduces the notion of self-reliance
and Skowron and Rzadca [2014] employed cooperative game
theory in multi-organizational scheduling, but using Shapley
values as a measure of fairness. As mentioned earlier, our
definition of individual rationality is stronger as it compares
each organization’s outcome to its optimal local schedule, in
line with standard individual rationality definitions in coali-
tion formation games.

Parameterized complexity has recently gained attention in
scheduling [Mnich and Van Bevern, 2018]. In the classical
setting (with a single organization), the problem of minimiz-
ing the makespan is shown to be FPT with respect to the
maximum processing time of a task pmax [Mnich and Wiese,
2015; Knop et al., 2020]. Multi-organizational coopera-
tion has also been studied in other contexts, such as match-
ing [Biró et al., 2019; Gourvès et al., 2012] and kidney ex-
change [Sönmez and Ünver, 2013; Ashlagi and Roth, 2012;
Ashlagi and Roth, 2014; Klimentova et al., 2021].

2 Preliminaries
For details and definitions from parameterized complexity,
we refer to the textbook by Cygan et al. [2015].

Given an integer z ∈ Z, let [z] = {1, . . . , z}. An instance
of MOS is a tuple ⟨O, (Mi)i∈[k], (Ji)i∈[k], (p

i
j)i∈[k],j∈[ni]⟩,

where O denotes a set of organizations with |O| = k such
that for each i ∈ [k],
– Mi denotes a non-empty set of mi= |Mi| identical ma-

chines,
– Ji denotes of a set of ni = |Ji| non-preemptive (i.e., each

job has to be completely processed before another job) and
sequential jobs αi

j , and
– for each j ∈ [ni], pij denotes the processing time of the jth

job3, called αi
j in Ji,

all associated with organization Oi.
Throughout, we assume that I denotes an instance of MOS

of the form ⟨O, (Mi)i∈[k], (Ji)i∈[k], (p
i
j)i∈[k],j∈[ni]⟩. More-

over, we denote by M the set of all machines, i.e., M =⋃
i∈[k] Mi, by J the set of all jobs, i.e., J =

⋃
i∈[k] Ji, by n

the total number of jobs, and finally by m the total number of
machines.
Feasible schedules. A schedule σ : J → M × N is a
function that assigns to each job a machine and a completion
time. For notational convenience, for each organization Oi

and each j ∈ [ni], we denote by mi
j(σ) the scheduled ma-

chine and by Ci
j(σ) the scheduled completion time of the jth

job of organization i under σ.
A schedule is feasible if each job is assigned a machine

with feasible completion time and no two jobs can occupy
the same machine in the same processing time. Formally, we
have that

3In this paper we suppose that the instance is encoded in unary.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

α1
1 α1

3

α1
2

m1 = 2

α2
1 α2

2 α2
3 α2

4 α2
5 α2

6m2 = 1

60

Figure 1: Possible local schedules for O1 (top) and O2 (bottom)
from Example 1. Interpretation: Each job is represented by a rectan-
gle, with the length depicting the processing time. Jobs on the same
row are assigned to the same machine. Time goes from left to right,
i.e., a job represented left to another job is processed earlier in the
schedule. O1’s jobs are in blue, while O2’s jobs in red.

– for each job αi
j , Ci

j(σ) ≥ pij and
– for each two jobs αi

j ̸= αi′

j′ scheduled on the same ma-
chine, |Ci

j(σ) − Ci′

j′(σ)| ≥ min(pij , p
i′

j′), i.e., either the
starting time of αi

j is later or equal than the completion
time of αi′

j′ or the completion time of αi
j is earlier or equal

to the starting time of αi′

j′ .
A schedule σ is a local schedule for organization Oi ∈ O
if it is feasible and for every job αi

j ∈ Ji it holds that
mi

j(σ) ∈ Mi. We will oftentimes just use “schedules” to refer
to “feasible schedules” when it is clear from the context.

Makespan and sum of completion times. Let σ be a
schedule. Then, the makespan (resp. the sum of completion
times, in short Σ-time) of a set of jobs J ′ with respect to
σ, denoted as Cmax(σ,J ′) (resp. CΣ(σ,J ′)), is the maxi-
mum completion time (resp. sum of completion times) of all
jobs in J ′. The makespan (resp. the Σ-time) of organiza-
tion Oi ∈ O with respect to σ is Ci

max(σ) = Cmax(σ, Ji)
(resp. Ci

Σ(σ) = CΣ(σ, Ji)). We omit the second argument J ′

when we refer to the makespan (resp. Σ-time) of all jobs, i.e.,
Cmax (σ) = Cmax(σ,J) and CΣ (σ) = CΣ(σ,J), respec-
tively.

The optimal local-makespan (resp. optimal local-Σ-time)
of organization Oi, denoted as OPT-Ci

max (resp. OPT-Ci
Σ) is

the minimum over the makespans (resp. minimum over the
Σ-times) of all local schedules of Oi. In other words, the op-
timal local-makespan (resp. optimal local-Σ-time) of an or-
ganization Oi is the minimum makespan (resp. minimum Σ-
time) achievable by any schedule where all jobs of Oi are
only scheduled to the machines of Oi.

A schedule σ is an optimal local schedule for organiza-
tion Oi if it is a local schedule for Oi and has makespan equal
to OPT-Ci

max (resp. Σ-time equal to OPT-Ci
Σ).

Example 1. We consider an example with two organizations:
O1 and O2. Organization O1 owns m1 = 2 machines and
n1 = 3 jobs with processing times p11 = p12 = p13 = 3.
Organization O2 owns m2 = 1 machine and n2 = 6 jobs
with processing times p21 = p22 = · · · = p26 = 1. Possible
local schedules for the instance are drawn in Figure 1.

Individual rationality. A schedule σ is called individually
rational if no organization is worse-off by looking at the
optimal local-makespan or local-sum of completion times.
More precisely, for the objective of minimizing the makespan
(Cmax), we require that Ci

max(σ) ≤ OPT-Ci
max holds for

each Oi ∈ O, while for the objective of minimizing the
sum of competition times (CΣ), we require that Ci

Σ(σ) ≤
OPT-Ci

Σ holds for each Oi ∈ O.
Clearly, for both objectives, individually rational schedules

exist as one can compute an optimal schedule for each orga-
nization and combine them into a global one.

Example 2. The local schedules displayed in Figure 1 are
optimal local schedules for both organizations and both ob-
jectives. The optimal local-makespans of both organizations
are OPT-C1

max = OPT-C2
max = 6. By definition, this is an

individually rational schedule. We consider a schedule σ in
which two jobs of O2 are first on each machine followed by
one of the three jobs of O1, then σ is individually rational and
minimizes the overall makespan: The processing times of all
jobs sum up to 15 and we have 3 machines. So the minimum
makespan is at least 5. Moreover, the makespan of O1 is 5
while the makespan of O2 is 2.

One can check that σ is also optimal when we aim at min-
imizing Σ-time instead, with a total of 24 = 3 + 6 + 15.
However it is not individually rational if Σ-time is the ob-
jective. Indeed, the optimal local-Σ-time of the organiza-
tions are OPT-C1

Σ = 3 + 3 + 6 = 12 and OPT-C2
Σ =

1 + 2 + 3 + 4 + 5 + 6 = 21 and the sum of completion
times of O1 in σ is 15.

Central problems. We look at two optimization problems,
which aim for an optimal solution among all individually ra-
tional schedules. In the following, let Ω ∈ {Cmax,CΣ}.

Ω-MOS
Input: An instance I of MOS.
Task: Find a schedule σ among all individually rational
schedules for I such that Ω(σ) is minimum.

The decision variants, called Ω-MOS-DEC have additionally
a non-negative integer τ as input and ask whether there exists
an individually rational schedule σ with Ω(σ) ≤ τ .

Remarks. Note that in the classical setting (i.e., when the
number of organizations is one), it is NP-hard to find a sched-
ule with minimum makespan whereas for the minimum Σ-
time case it is polynomial-time solvable [Brucker, 2004].
Hence, Cmax-MOS-DEC is contained in ΣP

2 while CΣ-MOS-
DEC in NP. We will show that Cmax-MOS-DEC is between
NP and ΣP

2; it is ΘP
2-complete (Theorem 1), while CΣ-MOS-

DEC is NP-complete (Theorem 3).

3 Minimizing the Makespan
3.1 General Complexity
We start this section by showing that Cmax-MOS-DEC is
ΘP

2-complete.

Theorem 1 (⋆). Cmax-MOS-DEC is ΘP
2-complete.

Proof Sketch. We start with the containment proof. To this
end, we introduce an intermediate scheduling NP problem for
MOS and show how to answer Cmax-MOS-DEC by making
only logarithmically many calls to the NP-oracle of the newly
introduced problem.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Cmax-MOS CΣ-MOS

Dec. Variant ΘP
2-c [T1] NP-c [T3]

k DP-h/? [P1] W[1]-h/? [P5]
m W-h♠/XP [P4] ? ?
n FPT [P3] FPT [P6]
τ FPT [C1] FPT [C3]

pmax ? ? ? ?
nmax +mmax NP-c† [P2] NP-c [T3]

pmax + k FPT [T2] ? ?
pmax +m FPT [T2] ?/XP [P7]

pmax + nmax FPT [C2] ? ?

Table 1: See the introduction for the definition of the parameters.
“DP-h” means the problem remains DP-hard even if the value of the
corresponding parameter is a constant. “W-h♠” means the problem
is W[1]-hard and it is due to Jansen et al. [2013]. “NP-c” for the
parameter combination nmax +mmax means that the decision variant
is contained in NP when either of the parameters is a constant and
it remains NP-hard even if both parameters have values bounded by
a constant, the Cmax-MOS proof follows directly from [Cohen et
al., 2011]. Note that all other two parameter combinations either
have one parameter subsumed by the other, or have the result follow
directly from another.

Cmax-MOS-LOCALSCHEDULES (Cmax-MOS-LS)
Input: An instance I of MOS, two integers τg and T ′.
Question: Are there two schedules σ and σlo of all jobs
such that:
(1) For all (i, j) ∈ [k]× [ni] : m

i
j(σlo) ∈ Mi,

(2)
∑

i∈[k]

(
maxj∈[ni] C

i
j(σlo)

)
≤ T ′,

(3)
(
maxαi

j∈J Ci
j(σ)

)
≤ τg, and

(4) for all (i, j) ∈ [k]× [ni] : C
i
j(σ) ≤ max

j′∈[ni]
{Ci

j′(σlo)}?

Clearly, Cmax-MOS-LS is contained in NP as we can
check in polynomial time whether two given schedules σ
and σlo fulfill the conditions. Intuitively, this problem asks
whether there is a local schedule with sum of makespans
of the organizations equal to T ′ and a global schedule with
makespan at most τg such that no organization has a larger
makespan in the global schedule than in the local schedule.
We now describe an algorithm answering the Cmax-MOS
problem using only a logarithmic number of calls to an or-
acle solving Cmax-MOS-LS.

Let I be an instance of Cmax-MOS and τ the target
makespan. First, we perform a binary search on Cmax-MOS-
LS to find the minimum sum T ′ of makespans among all local
schedules of I . We can do this because if σlo is a local sched-
ule with minimum sum T ′ of makespans, then (I, T ′, T ′)
is a yes-instance of Cmax-MOS-LS such that (σ, σlo) with
σ = σlo is a witness. Formally, we start with T ′ = pmax · n.
For every NP-oracle call, we set τg = T ′ and then do a binary
search to find the minimum value T ′ towards which the in-
stance is still a yes-instance of Cmax-MOS-LS. Note that a lo-
cal schedule with minimum sum T ′ of makespans among all
local schedules is also an optimal local schedule for each or-

ganization. This is because if one organization would have a
smaller local-makespan, then by exchanging the correspond-
ing schedule one would get a smaller sum of makespans of
all organizations.

Once the minimum sum is found, we make one last call of
the NP-oracle, where we set T ′ to be the found minimum and
τg = τ ; recall that τ is the target makespan. We answer yes
if and only if the last call gives a yes-answer. The correct-
ness follows by checking the definition. This completes the
containment proof. Regarding hardness, we only give a brief
sketch and defer the detailed proof to the full paper. We re-
duce from a ΘP

2-complete problem consisting of comparing
two ordered sets of 3-PARTITION instances, where we as-
sume that in each ordered set, all yes-instances appear before
all no-instances. An instance of the ΘP

2-complete problem
is a yes-instance if and only if there are more 3-PARTITION
yes-instances in the first set than in the second. We group in-
stances by pairs, one from the first set, I, and one from the
second, I ′, and create a set of organizations for each pair.
The local schedules of these organizations are such that if I ′

is a yes-instance, then I must also be a yes-instance to meet
both individual rationality and the makespan requirement of
τ .

By reducing from a DP-hard problem, we can show that the
problem is beyond NP and coNP, even in the case where there
are only two organizations. We conjecture that the problem
remains ΘP

2-complete in this case.
Proposition 1 (⋆). Cmax-MOS is DP-hard even if k = 2.

The next result shows that the problem remains NP-hard
even for the case when finding an optimal local schedule for
each organization is easy. The hardness persists even if each
organization has only two jobs. The hardness proof follows
from [Cohen et al., 2011].
Proposition 2 (⋆). For constant nmax or constant mmax,
Cmax-MOS-DEC is NP-complete. It remains NP-hard even
if nmax = 2 and mmax = 1.

3.2 Algorithmic Results
We start with a fairly straightforward FPT result for the num-
ber n of jobs.
Proposition 3 (⋆). Cmax-MOS is FPT with respect to n.

Now, we turn to our main result: Theorem 2. As mentioned
in the introduction, we extend the idea of the FPT algorithm
by Mnich and Wiese [2015]. The idea is to group machines
that for each processing time have the same number of jobs
of that time together since jobs of the same processing time
are interchangeable. They observed that there is always a bal-
anced optimal schedule. Here, balanced means that all jobs
of the same processing time can be evenly assigned among
the machines so the difference is upper-bounded by a func-
tion in pmax. Due to this, the number of different groups is
bounded by a function in pmax. Finally, one can design an
ILP formulation that has an integer variable for each group
specifying how many machines of that group exist in a bal-
anced optimal schedule.

For the MOS setting, jobs belong to different organizations
and may not be interchangeable, even if they have the same

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

processing time. We circumvent this by also considering the
parameter “the number k of organizations”. By grouping the
jobs according to the optimal local-makespan of their organi-
zation and showing that for each group and each processing
time, each machine has the same number of jobs of that pro-
cessing time up to a difference of a function of pmax, we are
able to design an ILP similarly to Mnich and Wiese.

Before we show Theorem 2, we need two auxiliary lem-
mas and an observation and some additional definitions. In
the Cmax-MOS, each organization cares only about when its
last job is finished. This time cannot exceed their optimal
local-makespan. We order the jobs based on the optimal
local-makespan of their organization. We say two jobs αi

j

and αi′

j′ belong to the same phase if their organizations
have the same optimal local-makespan, i.e., OPT-Ci

max =

OPT-Ci′

max. The jobs that belong to organizations with the
smallest optimal local-makespan belong to phase 1. For-
mally, phase 1 consists of the jobs {αi

j | ∄i′OPT-Ci′

max <

OPT-Ci
max}=

⋃
argminOPT-Ci

max
Ji. Similarly, the jobs that

have the next smallest optimal local-makespan will be re-
ferred to as jobs in phase 2 and so on. As all the jobs be-
longing to a single organization belong to the same phase it
follows that the number of phases is upper-bounded by k.
Let phase(αi

j) be the phase that job αi
j belongs to. We de-

fine the end of phase b for machine z and schedule σ to be
endσ(b, z) = max{0} ∪ {Ci

j(σ) | phase(αi
j) ≤ b ∧mi

j(σ) =
z}. Note that 0 is added to the set, as it would be possible for
the set to be empty otherwise.

We start with a simple observation that jobs in an individ-
ually rational schedule can be well ordered.
Observation 1. For each individually rational schedule σ,
there exists another individually rational schedule σ′ with
makespan at most Cmax(σ) such that for each two jobs α and
β that are assigned to the same machine, if α is in a phase
earlier than β, then α is scheduled earlier than β as well.

Proof. Such a schedule σ′ can be found by iteratively switch-
ing consecutive jobs if they violate the well-ordered property.
Each such exchange maintains individual rationality, as a job
from a later phase belongs to an organization with larger op-
timal local-makespan and no job except the two which were
exchanged in the ordering has a different completion time af-
ter this exchange. Repeating this process exhaustively yields
the desired schedule σ′.

By Observation 1, we assume from now on that every indi-
vidually rational schedule satisfies the well-ordered property.
We utilize this to upper-bound the difference between com-
pletion times of each phase between two machines.
Lemma 1 (⋆). For each individually rational schedule σ,
there exists an individually rational schedule σ′ with
Cmax(σ

′) ≤ Cmax(σ) such that for each pair of machines
z1 and z2 and for each phase b it holds that |endσ′(b, z1) −
endσ′(b, z2)| ≤ p3max + pmax.

The next lemma upper-bounds the number of machines of
the same type and phase. Specifically, we upper- and lower-
bound the number of jobs of each processing time and phase
that can be assigned to a machine.

Lemma 2 (⋆). Given an instance I of Cmax-MOS let Jt,b be
the set of jobs of processing time t in phase b. Then I admits
an optimal individually rational solution in which for every
phase b and every distinct processing time t it holds that the
number of jobs in Jt,b scheduled on each machine is in the
range [⌊ |Jt,b|

m ⌋ −O(ppmax
max), ⌊

|Jt,b|
m ⌋+O(ppmax

max)].

The observation and lemmas allow us to search for an op-
timal solution with a very specific structure. This allows us
to formulate an ILP with FPT running time and leads to the
following theorem:

Theorem 2. Cmax-MOS is FPT with respect to pmax+ k and
therefore pmax +m.

Proof. First note that k ≤ m, as each organization has at
least one machine. Therefore, it suffices to show the result for
pmax + k. This approach is based on the FPT algorithm with
respect to pmax that solves (P ||Cmax) described by Mnich and
Wiese [2015]. Intuitively, the proof works by running an ILP
that fixes the schedule for each phase and linking the phases
together afterwards.

We start by computing the number of phases by comput-
ing the optimal local makespan for each organization. By
Mnich and Wiese’s result this is doable in FPT time for each
of the organizations. So computing it for all organizations
is also doable in FPT time. We now ignore the organiza-
tions and group jobs by phases as previously described. Let
[B] be the set of phases and tb the latest time by which
jobs of phase b must be finished. Let Pb be the jobs in
phase b ∈ [B] and P ℓ

b the jobs with processing time ℓ in
phase b. For each phase b ∈ [B] we compute yb := |Pb|

m ,
this is the average makespan among the machines for jobs
of only phase b. Note that these precomputation steps are
also doable in polynomial time once the optimal local so-
lutions for the organizations have been computed. Due to
Lemma 1, we know that for every machine z, we can require
that a machine must satisfy that endσ(b, z) ∈ [

∑b
ℓ=1 yℓ −

(p3max + pmax),min
∑b

ℓ=1 yℓ + (p3max + pmax), tb], for an op-
timal schedule S. Note that the left-hand side of the inter-
val does not need a minimum, as assigning the optimal local
schedule for each machine is individually rational.

Similarly we can see that the first job of the
phase b must be scheduled in [

∑b−1
ℓ=1 yℓ − (p3max +

pmax),min
∑b−1

ℓ=1 yℓ + (p3max + pmax), tb−1], as we can
assume that the jobs are ordered according to their phase due
to Observation 1.

We can now describe the constraints and variables of the in-
teger linear program (ILP) that solves this problem instance.
Note that we do not distinguish between jobs that belong to
the same phase and type, in the following. We start by de-
scribing the variables:
– For each phase b ∈ [B], each possible starting point

start ∈ [
∑b−1

ℓ=1 yℓ − (p3max + pmax),min{
∑b−1

ℓ=1 yℓ +
(p3max + pmax), tb−1}] (if b = 1 we fix start = 0),
each possible ending point end ∈ [

∑b
ℓ=1 yℓ − (p3max +

pmax),min{
∑b

ℓ=1 yℓ+(p3max+pmax), tb}], and each vector
M of length pmax that satisfies that Mt is at least ⌊ |Pp

b |
m ⌋ −

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

f(pmax) and at most ⌊ |Pp
b |
m ⌋+ f(pmax) and

∑pmax

t=1 Mt · t =
end − start, we create a variable vb,start,end,M . Intuitively,
the vector M keeps track of how many jobs of processing
time t are scheduled on a machine through the entry Mt.
Note that all parameters must be non-negative integers (in-
cluding zero) and that M may be the zero vector. These
variables must all take integer values in the range [0,m].
Informally, the value this variable takes is the number of
machines that finished the previous phase(s) at time start,
has exactly the number of jobs of each processing time as
in M scheduled on them in phase b, and finishes phase b
exactly at time end.

– We can also introduce an auxiliary variable e in order to
solve the optimization problem. This is not necessary.

These variables turn out to be the only variables that are
needed. In this proof, parameters will be called valid if they
can form a variable as described above. We now describe the
constraints that are needed.
(1) We need a constraint that limits the number of machines

that can be used in each phase. As the total number of
machines is m, this simply means that the variables need
to sum up to m for each fixed b ∈ [B].

∀ b ∈ [B] :
∑

∀ valid start, end, M

vb,start,end,M = m

(2) We need a constraint that makes sure that the starting
times and end times of machines match between phases,
such that each machine is ensured to only run one job at a
time and not have any time when it is not processing any
job. For the following constraint, let C = p3max + pmax.

∀ b ∈ [B] \ {1}, ∀ time ∈[b−1∑
ℓ=1

yℓ − C,min{
b∑

ℓ=1

yℓ + C, tb}
]
:∑

∀ valid start, M1

vb−1,start,time,M1 =

∑
∀ valid end, M2

vb,time,end,M2

(3) We need a constraint that ensures that in each phase all
the jobs that are part of this phase are scheduled. For
each processing time t we add:

∀ b ∈ [B] :
∑

∀ valid start,end,M

Mt · vb,start,end,M = |P t
i |

(4) In order to find an optimal solution we need to link the
auxiliary variable e to the other variables.

∀ vb,start,end,M : min{vb,start,end,M · end, end} ≤ e

In order to solve the optimization problem for the makespan
we can then minimize e in the ILP.

We now show correctness of the ILP, by arguing that each
valid schedule σ that has the form as described in Observa-
tion 1, Lemma 1, and Lemma 2 is a valid solution for the ILP
(ignoring the minimization over e) and showing that every
solution to the ILP can be transformed to a valid schedule σ.

Let σ be a valid schedule, for each phase b, start, end, and
M we set vb,start,end,M to be equal to the number of machines
that schedule jobs according to the vector M in that phase,
such that endσ(b − 1, z) = start. This satisfies constraint 1,
as each phase obviously only uses m machines. Constraint 2
is satisfied, as we set endσ(b− 1, z) = start, and constraint 3
is satisfied as we have a valid schedule.

For the other direction, we assign jobs phase by phase. For
the first phase, we v1,0,end,M many machines with exactly the
job seen in M . Then in step b we choose vb,start,end,M many
machines that satisfy that endσ(b− 1, z) = start and assign
the jobs in M to them. This is necessarily possible, due to
constraint 2. Note that the number of machines in this step
is exactly m due to constraint 1 and all jobs in this phase are
scheduled due to constraint 3.

Finally, as e only tracks the largest end among variables
vb,start,end,M ̸= 0, it returns the makespan.

As the number of variables as well as the number of con-
straints is FPT with respect to pmax + k, it follows that the
ILP solves the problem in FPT time with respect to pmax + k.
This concludes the proof.

The next two corollaries follow directly from the proof of
Theorem 2, as the number of phases and pmax can be upper-
bounded by the given parameters.
Corollary 1 (⋆). Cmax-MOS is FPT with respect to τ .

Corollary 2 (⋆). Cmax-MOS is FPT with respect to nmax +
pmax.

Finally, we use a dynamic programming approach that
keeps track of the makespans of each machines for the as-
signed jobs in order to show the following result:
Proposition 4. Cmax-MOS is XP with respect to m.

Proof. We first show how to compute an optimal local sched-
ule for an arbitrary organization in XP-time with respect to m;
we call this problem MINCmax via DP. Then, we show how
to modify it to solve our problem Cmax-MOS. For MINCmax,
we describe the DP for a given organization Oi with jobs Ji
and Mi machines. We note that the ordering of jobs on a ma-
chine does not matter, but rather their processing times. We
go through the jobs of Oi in this order αi

1, . . . , α
i
|Ji|.

We maintain a dynamic table Dlo(z1, . . . , zmi
, j) ∈ {0, 1},

where z1, . . . , zmi ∈ [
∑|Ji|

ℓ=1 p
i
ℓ] and j ∈ [|Ji|] ∪ {0}. In-

tuitively, the table entry is 1 if it is possible to assign the
first j jobs to the machines such that machine d, d ∈ [mi]
has makespan zd. We initialize the table with
Dlo(0, . . . , 0, 0) = 1. We now describe the recurrence:

Dlo(z1, . . . , zmi , j) =


1, if ∃d ∈ [mi] : Dlo(z1, . . . ,

zd − pij , . . . , zmi
, j − 1) = 1

0, else

The correctness of the recurrence is straightforward since it
branches over the options of where to assign the jth job. Since
the table has (n · pmax)

m+1 entries, by finding the table entry
Dlo(z1, . . . , zm′ , |Ji|) = 1 that minimizes max{z1, . . . , zm′}
an optimal schedule can be found. Therefore, we can solve
MINCmax and compute OPT-Ci

max for each organization

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Oi in XP-time with respect to m. Note that we require
OPT-Ci

max for the individual rationality constraint.
Now, we turn to our problem. Similarly to the proof

of Theorem 2 we divide the jobs according to phases. As
a reminder, phase(αi

j) refers to the phase of αi
j . We or-

der the jobs in a way α1, . . . , αn, such that the jobs satisfy
phase(α1) ≤ . . . ≤ phase(αn). Note that jobs from the same
phase can be ordered in an arbitrary manner. We go through
the jobs in this order.

We use t(b) to refer to the time by which jobs in phase b
need to be done, i.e., the optimal local-makespan of the orga-
nizations whose jobs belong to this phase.

We maintain a dynamic table D(z1, . . . , zm, j) ∈ {0, 1},

where z1, . . . , zm ∈ [
∑∑

i∈[k] ni

ℓ=1 piℓ] and j ∈ [
∑

i∈[k] ni] ∪
{0}. Intuitively, the table entry is 1 if it is possible to assign
the jobs α1, . . . , αj to the machines such that machine d, d ∈
[m] has a makespan of zd and individual rationality is upheld.

We initialize the table with D(0, . . . , 0, 0) = 1. We now
describe the recursive step:

D(z1, . . . , zm, j) =
1, if ∃d ∈ [m] : D(z1, . . . ,

zd − pj , . . . , zm, j − 1) = 1

and max{z1, . . . , zm} ≤ t(phase(αj))

0 , else

The correctness of the recurrence is straightforward since
it branches over the options of where to assign the jth job.
We can do this, as we can assume that the optimal sched-
ule is well-ordered due to Observation 1 and the ordering
of jobs in the same phase on the same machine does not
matter for a well-ordered schedule. Individual rationality
is guaranteed, as the job must be done before the dead-
line due to max{z1, . . . , zm} ≤ t(phase(αj)). Since the
table has (n · pmax)

m+1 entries, by finding the table entry
D(z1, . . . , zm, n) = 1 that minimizes max{z1, . . . , zm} an
optimal schedule can be found. Therefore Cmax-MOS is in
XP with respect to m.

4 Minimizing the Sum of Completion Times
While Cmax-MOS inherits hardness from the matching
scheduling problem, minimizing the makespan, it is not clear
that CΣ-MOS is NP-hard. Indeed, in the traditional schedul-
ing setting, a schedule with minimum sum of completion
times can be found in polynomial time [Brucker, 2004]. We
show that CΣ-MOS-DEC is NP-complete, even for a constant
maximum number of jobs (resp. machines) per organization.
Theorem 3 (⋆). CΣ-MOS-DEC is NP-complete. It remains
NP-hard even if nmax = 3 and mmax = 2.

Proof sketch. Containment follows from the fact that opti-
mal local schedules can be computed in polynomial time.
For hardness, we reduce from the NP-complete problem 3-
PARTITION which aims at partitionning a set of integers into
triplets of the same sum B. We will create “triplet” organi-
zations which benefit from the cooperation by starting one of
their jobs earlier. A triplet organization can then accept to de-
lay its jobs but only by a total processing time B, otherwise

the schedule would not be individually rational. Other orga-
nizations own “integer” jobs with processing times matching
the integers from the 3-PARTITION instance. To meet the
sum of completion times objective, it will be necessary to
schedule an integer job first on all machines, therefore delay-
ing jobs from triplet organizations. To both fulfill individual
rationality and meet the sum of completion times objective,
it will be necessary to delay jobs from each triplet organiza-
tions by exactly B, which is only possible if the integers can
be partitioned into triplets of sum B.

Using a similar idea as for Theorem 3, we show that CΣ-
MOS is W[1]-hard with respect to k, i.e., it is unlikely to be
in FPT according to current complexity assumptions.
Proposition 5 (⋆). CΣ-MOS is W[1]-hard with respect to k.

Similarly to Proposition 3, the sum of completion times
case allows for an FPT result with respect to n using a simple
brute-forcing approach.
Proposition 6 (⋆). CΣ-MOS is FPT with respect to n.

As the τ upper-bounds the number of jobs, the following
corollary follows directly.
Corollary 3 (⋆). CΣ-MOS is FPT with respect to τ .

Finally, we use a dynamic programming approach similar
to the one used in the proof of Proposition 4. As it is not
possible to order the jobs according to phase, as it was done
for the Cmax-MOS case, we require an additional parameter
for the dynamic programming approach to function.
Proposition 7 (⋆). CΣ-MOS is XP with respect to pmax+m.

5 Conclusion
We introduce the concept of individual rationality into multi-
organizational scheduling and explore the parameterized
complexity of two optimization problems, Cmax-MOS and
CΣ-MOS. For the former problem, an important open ques-
tion remains: Is the problem fixed-parameter tractable (FPT)
with respect to the maximum completion time pmax? Notably,
the classical single-organization variant of this problem is al-
ready known to be FPT with respect to pmax.

Our research opens up several promising avenues for fu-
ture work. First, an immediate extension is to consider the
case of parallel jobs. Second, our framework can be applied
to other scheduling problems, such as those with precedence
constraints or hard deadlines. Third, it would be also inter-
esting to study scenarios where each organization provides a
precomputed local schedule as input. For CΣ-MOS, the com-
plexity remains unchanged, as optimal local schedules can be
computed in polynomial time. For Cmax-MOS, this setting
reduces the problem to within NP, and preliminary investiga-
tions suggest that the parameterized results carry over.

Finally, an intriguing direction is to study scenarios where
the local and global objectives differ. For instance, the global
objective might be to minimize CΣ, while individual rational-
ity mandates that the makespan of each organization matches
its locally optimal makespan. A related model was previously
examined by Cohen et al. [2011], but without considering in-
dividual rationality as a constraint.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgements
The authors are supported by the Vienna Science and Tech-
nology Fund (WWTF) [10.47379/ VRG18012]. We would
like to thank the reviewers for their helpful comments.

References
[Ashlagi and Roth, 2012] Itai Ashlagi and Alvin E. Roth.

New challenges in multihospital kidney exchange. Ameri-
can Economic Review, 102(3):354–359, 2012.

[Ashlagi and Roth, 2014] Itai Ashlagi and Alvin E. Roth.
Free riding and participation in large scale, multi-hospital
kidney exchange: Free riding. Theoretical Economics,
9(3):817–863, 2014.

[Biró et al., 2019] Péter Biró, Walter Kern, Dömötör
Pálvölgyi, and Daniël Paulusma. Generalized matching
games for international kidney exchange. In proceedings
of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pages 413–421, 2019.

[Brucker, 2004] Peter Brucker. Scheduling algorithms (4.
ed.). Springer, 2004.

[Chakravorty et al., 2013] Anirudh Chakravorty, Neelima
Gupta, Neha Lawaria, Pankaj Kumar, and Yogish Sab-
harwal. Algorithms for the relaxed multiple-organization
multiple-machine scheduling problem. In proceedings of
the 20th Annual International Conference on High Perfor-
mance Computing, pages 30–38, 2013.

[Chen et al., 2025] Jiehua Chen, Martin Durand, and Chris-
tian Hatschka. Multi-organizational scheduling: Individ-
ual rationality, optimality, and complexity. Technical re-
port, arXiv:2505.12377, 2025.

[Cohen et al., 2011] Johanne Cohen, Daniel Cordeiro, De-
nis Trystram, and Frédéric Wagner. Multi-organization
scheduling approximation algorithms. Concurrency and
computation: Practice and experience, 23(17):2220–
2234, 2011.

[Cohen et al., 2014] Johanne Cohen, Daniel Cordeiro, and
Pedro Luis F Raphael. Energy-aware multi-organization
scheduling problem. In proceedings of the Euro-Par 2014
Parallel Processing: 20th International Conference, pages
186–197, 2014.

[Cordeiro et al., 2011] Daniel Cordeiro, Pierre-François Du-
tot, Grégory Mounié, and Denis Trystram. Tight anal-
ysis of relaxed multi-organization scheduling algorithms.
In proceedings of the 2011 IEEE International Parallel
& Distributed Processing Symposium, pages 1177–1186,
2011.

[Cygan et al., 2015] Marek Cygan, Fedor V. Fomin, Lukasz
Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parame-
terized Algorithms. Springer, 2015.

[Durand and Pascual, 2021] Martin Durand and Fanny Pas-
cual. Efficiency and equity in the multi organization
scheduling problem. Theoretical Computer Science,
864:103–117, 2021.

[Gourvès et al., 2012] Laurent Gourvès, Jérôme Monnot,
and Fanny Pascual. Cooperation in multiorganization
matching. Algorithmic Operations Research, 7(2), 2012.

[Jansen et al., 2013] Klaus Jansen, Stefan Kratsch, Dániel
Marx, and Ildikó Schlotter. Bin packing with fixed num-
ber of bins revisited. Journal of Computer and System
Sciences, 79(1):39–49, 2013.

[Klimentova et al., 2021] Xenia Klimentova, Ana Viana,
João Pedro Pedroso, and Nicolau Santos. Fairness mod-
els for multi-agent kidney exchange programmes. Omega,
102:1–14, 2021.

[Knop et al., 2020] Dušan Knop, Martin Kouteckỳ, and
Matthias Mnich. Combinatorial n-fold integer program-
ming and applications. Mathematical Programming,
184:1–34, 2020.

[Mnich and Van Bevern, 2018] Matthias Mnich and René
Van Bevern. Parameterized complexity of machine
scheduling: 15 open problems. Computers & Operations
Research, 100:254–261, 2018.

[Mnich and Wiese, 2015] Matthias Mnich and Andreas
Wiese. Scheduling and fixed-parameter tractability.
Mathematical Programming, 154:533–562, 2015.

[Ooshita et al., 2009] Fukuhito Ooshita, Tomoko Izumi, and
Taisuke Izumi. A generalized multi-organization schedul-
ing on unrelated parallel machines. In proceedings of the
2009 International Conference on Parallel and Distributed
Computing, Applications and Technologies, pages 26–33,
2009.

[Ooshita et al., 2012] Fukuhito Ooshita, Tomoko Izumi, and
Taisuke Izumi. The price of multi-organization constraint
in unrelated parallel machine scheduling. Parallel Pro-
cessing Letters, 22(02), 2012.

[Papadimitriou, 1994] Christos H. Papadimitriou. Computa-
tional complexity. Addison-Wesley, 1994.

[Pascual et al., 2009] Fanny Pascual, Krzysztof Rzadca, and
Denis Trystram. Cooperation in multi-organization
scheduling. Concurrency and Computation: Practice and
Experience, 21(7):905–921, 2009.

[Rzadca, 2007] Krzysztof Rzadca. Scheduling in multi-
organization grids: measuring the inefficiency of decen-
tralization. In proceedings of the Parallel Processing
and Applied Mathematics: 7th International Conference,
pages 1048–1058, 2007.

[Skowron and Rzadca, 2014] Piotr Skowron and Krzysztof
Rzadca. Fair share is not enough: measuring fairness in
scheduling with cooperative game theory. In proceedings
of the Parallel Processing and Applied Mathematics: 10th
International Conference, pages 38–48, 2014.

[Sönmez and Ünver, 2013] Tayfun Sönmez and Utku M.
Ünver. Market design for kidney exchange. In The Hand-
book of Market Design, pages 92–137. Oxford University
Press, 2013.

[Wagner, 1990] Klaus W. Wagner. Bounded query classes.
SIAM Journal on Computing, 19(5):833–846, 1990.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

