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Abstract
Online Anomaly Detection (OAD) is critical for
identifying rare yet important data points in large,
dynamic, and complex data streams. A key chal-
lenge lies in achieving accurate and consistent de-
tection of anomalies while maintaining computa-
tional and memory efficiency. Conventional OAD
approaches, which depend on distributional devi-
ations and static thresholds, struggle with model
update delays and catastrophic forgetting, lead-
ing to missed detections and high false posi-
tive rates. To address these limitations, we pro-
pose a novel Streaming Anomaly Detection (SAD)
method, grounded in a sparse active online learn-
ing framework. Our approach uniquely inte-
grates ℓ1,2-norm sparse online learning with CUR
decomposition-based active learning, enabling si-
multaneous fast feature selection and dynamic in-
stance selection. The efficient CUR decomposi-
tion further supports real-time residual analysis for
anomaly scoring, eliminating the need for man-
ual threshold settings about temporal data distribu-
tions. Extensive experiments on diverse streaming
datasets demonstrate SAD’s superiority, achieving
a 14.06% reduction in detection error rates com-
pared to five state-of-the-art competitors.

1 Introduction
Online Anomaly Detection (OAD) is a critical technique
for identifying deviations from established behavioral pat-
terns in real-time data streams, enabling timely responses
to irregularities [O’Reilly et al., 2014; Salehi et al., 2016;
Guha et al., 2016; Manzoor et al., 2018; Lai et al., 2020;
Chen et al., 2023; Chen et al., 2024b]. It has broad ap-
plications in various domains, including intrusion and fraud
detection [Muhammad et al., 2020], financial and web ser-
vices [Pazarbasioglu et al., 2020], network security man-
agement [Du, 2022], and public health or military surveil-
lance [Burkle, 2020]. Early anomaly detection is cru-

∗Corresponding author: Dr. Yi He (yihe@wm.edu)

cial for minimizing operational disruptions, enhancing trou-
bleshooting efficiency, and facilitating rapid corrective ac-
tions, thereby safeguarding system integrity and ensuring
continuity in dynamic environments.

Subspace learning-based anomaly detection methods have
recently gained significant attention by identifying orthogo-
nal subspaces that capture latent patterns in data from un-
known distributions [Li et al., 2011; He et al., 2017; Chen
et al., 2021; Zhang and Zhao, 2022]. These methods re-
duce the dimensionality of input data into low-dimensional
subspaces, enhancing structural representation while miti-
gating noise. Prominent approaches such as online over-
sampling Principal Component Analysis (osPCA) [Lee et
al., 2012] and sketch-OAD [Huang and Kasiviswanathan,
2015] leverage matrix sketching, which maintains compact
sets of orthogonal vectors to approximate data streams effi-
ciently. Complementing these, non-parametric methods such
as Very Fast Decision Tree (VFDT) [Tan et al., 2011] and
Hoeffding Anytime Tree (HATT) [Bifet et al., 2017] ad-
dress concept drift challenges, offering interpretable solu-
tions for evolving data streams. Recent advancements inte-
grate online deep learning frameworks [Sahoo et al., 2018;
Lian et al., 2022], yielding robust models like the adaptive
deep log anomaly detector (Ada) [Yuan et al., 2020], deep
autoencoding Gaussian mixture model (DAGMM) [Zong et
al., 2018], and an adaptive model pooling approach for online
deep anomaly detection (ARCUS) [Yoon et al., 2022], which
adapt dynamically to complex, evolving data streams. These
innovations collectively enhance detection accuracy, scalabil-
ity, and adaptability in real-time anomaly identification.

Residual analysis has emerged as a promising approach for
effective anomaly detection by examining discrepancies be-
tween observed data and their reconstructed estimates, where
anomalies are identified through abnormally large residual er-
rors resulting from deviations from dominant patterns [Tong
and Lin, 2011; Peng et al., 2018; Ding et al., 2019]. A
commonly employed strategy involves reconstructing data
using representative instances, but challenges arise due to
noisy or irrelevant attributes, necessitating the simultaneous
selection of structurally relevant attributes and informative in-
stances for accurate reconstruction. To address this, recent
advancements pivot from traditional factorization methods
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Figure 1: CUR decomposition identifies a subset of representative instances (matrix C) and discriminative attributes (matrix R) from the
decision weight matrix W in a sliding window, constructing a low-rank approximation that minimizes reconstruction error while preserving
interpretability. The components are formed by small subsets of actual columns and rows of W . By dynamically selecting c instances and r
attributes, CUR captures structural patterns in streaming data, where anomalies often deviate significantly from these representative subsets.

to online CUR decomposition, which offers enhanced inter-
pretability by dynamically maintaining low-rank approxima-
tions through curated subsets of instances and attributes over
time. This method not only improves noise resilience but also
provides a transparent framework for temporal instance and
attribute selection, enabling real-time anomaly detection in
evolving data streams. By integrating residual analysis with
interpretable online decomposition, the approach systemati-
cally isolates anomalies while preserving the integrity of un-
derlying data structures, thereby enhancing detection accu-
racy and adaptability in dynamic environments.

Despite advancements, OAD remains challenging due to
several persistent issues. Firstly, the context-dependent na-
ture of anomalies, where definitions vary across applica-
tions, precludes one-size-fits-all solutions, and while density-
based anomaly scoring [O’Reilly et al., 2014] is common,
it struggles in high-dimensional, open feature spaces where
distance metrics lose discriminative power [He et al., 2019;
Wu et al., 2023; Schreckenberger et al., 2023; He et al., 2023;
Chen et al., 2024a]. Secondly, catastrophic forgetting in
streaming models necessitates rapid anomaly identification
and model updates before subsequent data arrives. Thirdly,
severe class imbalance arises as normal data overwhelms
anomalies, skewing detection accuracy. Lastly, balancing de-
tection efficiency with minimizing false positives is critical to
avoid alarm fatigue while ensuring timely anomaly capture.
To tackle these issues, we propose integrating ℓ1,2-norm-
based sparse online learning with CUR decomposition-based
online active learning, enabling concurrent streaming feature
selection and instance curation. This hybrid approach mit-
igates dimensionality challenges and catastrophic forgetting
while enhancing interpretability. By dynamically prioritizing
sparse, informative features and representative instances, the
framework supports robust residual analysis for precise OAD,
ensuring adaptability and scalability in evolving data streams.

1.1 Motivation
Effective OAD hinges on the dynamic selection of represen-
tative features and informative instances to mitigate catas-
trophic forgetting, ensuring incremental model updates retain

critical patterns. While existing subspace selection methods
[Li et al., 2011; He et al., 2017] isolate anomalies through
preprocessing steps, their decoupled optimization from de-
tection pipelines risks suboptimal performance. To overcome
this, we propose a unified framework integrating ℓ1,2-norm-
based sparse online learning for feature sparsity and CUR
decomposition-based active learning for instance selection,
synergistically optimizing both processes in streaming set-
tings. This approach leverages residual analysis from online
CUR decomposition to quantify instance normality, where
anomalies exhibit disproportionately large reconstruction er-
rors compared to normal data (Figure 1). By jointly prior-
itizing sparse, discriminative features and representative in-
stances, the method enhances adaptability to evolving data
streams while maintaining interpretability, addressing dimen-
sionality challenges and alleviating catastrophic forgetting.

1.2 Contribution
In this paper, we propose an effective streaming anomaly de-
tection (SAD) method from a sparse active online learning
perspective. Technically, our main idea is to seamlessly inte-
grate the ℓ1,2-norm based sparse online learning and the CUR
decomposition based online active learning, leading to an ef-
fective residual analysis for SAD. On one hand, SAD is able
to provide real-time feature interpretations by leveraging the
benefits of the ℓ1,2-norm penalty. On the other hand, SAD can
automatically detect anomalies in streaming data based on the
CUR decomposition theory, which does not require hand-set
thresholds and makes no assumption on the data distribution.
The main contributions of our work are as follows:

• We introduce a new perspective that optimizes feature
and instance selection and anomaly detection as a whole
instead of treating them as multiple separate steps.

• We leverage the power of sparse online learning and
CUR decomposition with residual analysis to learn and
detect anomalies in an online fashion.

• We evaluate the performance of the proposed framework
on real-world streaming datasets and compare SAD with
multiple online anomaly detection competitors.
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2 Related Work

Anomaly detection in data streams has been addressed
through diverse learning strategies, including k-nearest
neighbors (kNN), kernel density estimation (KDE), isolation
forest (iForest) [Xiang et al., 2023], extended isolation for-
est (EIF) [Hariri et al., 2019], and locality-sensitive hash-
ing (LSH) [Meira et al., 2022]. kNN-based methods like
NETS [Yoon et al., 2019] (with set-based updates) and MD-
UAL [Yoon et al., 2021] (leveraging data-query duality) iden-
tify outliers through proximity queries, while local outlier
factor variants such as MiLOF [Salehi et al., 2016] (using
summarization) and DILOF [Na et al., 2018] (via sampling)
focus on density deviations. KDE-based STARE [Yoon et
al., 2020] accelerates anomaly scoring by skipping station-
ary regions during density updates, and LSH-driven MStream
[Yoon et al., 2020] combines hashing with dimensionality re-
duction for efficient streaming. Isolation forest adaptations
such as RRCF [Guha et al., 2016] employ tree ensembles and
sketching to handle concept drift. While these methods adopt
window-based processing to manage evolving streams, their
primary emphasis lies on minimizing computational costs for
incremental model updates or preconfigured ensembles, often
relying on manual feature engineering, such as random sub-
sampling, linear transformations, or dimensionality reduc-
tion that restricts scalability and generalizability [Pang et al.,
2018]. This dependence on handcrafted features limits their
adaptability to complex and high-dimensional data dynamics.

Recent advances in online anomaly detection span diverse
methodologies to address evolving data streams. Xie et al.
[2018] introduce OnlineBPCA, enhancing Bayesian PCA to
jointly model row and column principal direction variations
for precise real-time detection. Pei et al. [2023] leverage suc-
cinct tensor sketches to dynamically maintain subspaces rep-
resenting non-anomalous historical data, enabling rapid out-
lier scoring for incoming streams. Siffer et al. [2017] apply
extreme value theory to identify outliers in high-throughput
time series, while Wang et al. [2020] propose incremental
frameworks (FKDA-X, FKDA-CX, FKDA-C) for novelty de-
tection in unlabeled chunk data streams. Boniol et al. [2021]
develop SAND, a domain-agnostic method adaptive to distri-
bution drifts, and Bhatia et al. [2023] extend higher-order
sketches to preserve dense subgraph structures in stream-
ing graphs. These approaches collectively advance real-time
detection through adaptive subspace maintenance, statistical
modeling, and incremental learning, though challenges per-
sist in balancing accuracy, scalability, and interpretability.
For a comprehensive overview, please refer to a recent sur-
vey [Bouman et al., 2024].

Our proposed framework introduces a novel paradigm for
OAD by synergizing ℓ1,2-mixed norm-based sparse online
learning with CUR decomposition-driven active learning, en-
abling dynamic, assumption-free identification of anomalies
in large-scale streaming data. Unlike existing methods that
often rely on predefined data distributions or disjoint opti-
mization of feature selection and detection, our approach uni-
fies sparse feature regularization and representative instance
curation in a single streaming workflow. The ℓ1,2-norm pro-
motes row sparsity to discard redundant features in high-

dimensional streams, while online CUR decomposition ac-
tively selects informative instances, maintaining a low-rank
approximation that captures evolving patterns. This dual op-
timization facilitates robust residual analysis, where anoma-
lies are flagged via large reconstruction errors derived directly
from the sparse and interpretable CUR basis, eliminating re-
liance on distributional assumptions.

3 Proposed Method
3.1 Problem Formulation of OAD
In online anomaly detection for streaming data, we con-
sider a continuous sequence D = {x1,x2, · · · ,xt, · · · },
where each instance xt ∈ Rd arrives at timestamp t in a
d-dimensional feature space. The objective is to identify
rare instances that deviate substantially from the majority of
reference data points over time. At each timestamp t, the
task involves computing an anomaly score, quantifying the
“abnormality” of xt, and classifying the instance via pre-
defined rules (e.g., thresholding), where yt = 1 denotes an
anomaly and yt = −1 a normal instance. Our approach
leverages CUR decomposition-based residual errors to de-
rive these scores, measuring the discrepancy between ob-
served and reconstructed data. Crucially, as both normal and
anomalous data distributions evolve dynamically, the detec-
tion framework must continuously adapt to shifting patterns.
This necessitates an online mechanism that updates its ref-
erence model incrementally, ensuring robust anomaly iden-
tification in non-stationary, high-dimensional streams while
avoiding reliance on static assumptions about data behavior.

3.2 Online Convex Optimization for OAD
Online convex optimization (OCO) [Shalev-Shwartz and oth-
ers, 2012] provides a formal framework for online learn-
ing and OAD, modeled as an iterative interaction between a
learner and a dynamic environment. In this setup, the learner
iteratively selects a model parameter wt from a convex set
S ⊆ Rd at each timestep t. The process unfolds as fol-
lows: upon receiving an instance xt, the learner predicts, in-
curs a convex loss ℓt(wt, (xt, yt)) upon observing the true
label yt, and updates wt to wt+1 via mechanisms such as
online gradient descent: wt+1 = wt − λt▽ℓt(wt, (xt, yt)),
where λt > 0 governs the step size. This framework enables
adaptive decision-making in adversarial or non-stationary en-
vironments by balancing immediate regret minimization with
long-term model stability, making it foundational for stream-
ing applications requiring continuous adaptation.

In general, the goal of OCO is to iteratively select model
parameters {wt} that minimize cumulative loss over time,
despite adversarially chosen convex loss functions ℓt revealed
only after each prediction. The performance metric is re-
gret, defined as the difference between the learner’s total loss
and the minimal loss achievable by a fixed optimal model
w⋆ ∈ S in hindsight: RegretT =

∑T
t=1 ℓt(wt, (xt, yt)) −∑T

t=1 ℓt(w
⋆, (xt, yt)), where the first term represents the

learner’s actual loss and the second term the best possible loss
with perfect hindsight. Common loss functions include the
least squares loss for regression, and the logistic loss or hinge
loss for classification (yt ∈ {−1,+1}). A core objective is to
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design algorithms with sub-linear regret (RegretT = o(T )),
ensuring the average regret diminishes to zero as T → ∞.
This no-regret property guarantees the learner’s performance
asymptotically matches the best fixed strategy in hindsight,
even in non-stationary environments [Siddiqui et al., 2018].
Such frameworks underpin robust OAD systems, as outlined
in Algorithm 1, by enabling adaptive model updates that bal-
ance immediate loss minimization with long-term stability.

Algorithm 1 Online Learning (OL) Algorithm for OAD

Require: the learning rate λ.
Ensure: the parameters of the classifier wT+1.

1: Initialization: w0 = 0
2: for t = 1, 2, · · · , T do
3: Receive xt ∈ Rd;
4: Optimize wt = argminw∈Rd

1
2∥wt−1 −w∥22 +R(w),

R(·) is the regularization term;
5: Predict ŷt = sign(wT

t xt);
6: Receive true label yt ∈ {−1, 1} of xt;
7: Suffer the loss ℓt(wt) = [1− ytw

T
t xt]+;

8: if ℓt(wt) > 0 then
9: Update wt+1 = wt − λt∇ℓt(wt);

10: else if ℓt(wt) ≤ 0 then
11: Update wt+1 = wt;
12: end if
13: end for
14: Return: wT+1

3.3 ℓ1,2 Regularization based SOL
In this section, we formalize the online anomaly detection
problem and propose a sparse online learning method using
ℓ1,2-mixed regularization to achieve structured sparsity. We
first observe a key property of ℓ2 regularization: when |w|2 ≤
λ, the solution reduces to the zero vector (Theorem 1). While
a zero weight vector lacks generalization power—potentially
undermining its utility as a regularizer—this behavior proves
advantageous in incremental online settings with grouped
weights. In sparse online learning, for instance, each slid-
ing window l (l = 1, . . . , L) employs a distinct weight vec-
tor wl ∈ Rd. The prediction for an instance x is the vec-
tor

(
⟨w1,x⟩, . . . , ⟨wL,x⟩

)
, with the final class determined

by argmaxl⟨wl,x⟩. Since all wl operate on the same fea-
ture space, sparsity should be enforced collectively across
corresponding features. Specifically, we seek to zero entire
rows of the weight matrix w1

i , w
2
i , . . . , w

L
i for each feature i

(i = 1, . . . , d). Here, the ℓ2 regularizer’s tendency to suppress
entire weight vectors becomes valuable. By applying ℓ1,2
regularization—combining the ℓ1 sparsity and the ℓ2 shrink-
age—we simultaneously achieve feature-wise sparsity while
preserving non-zero weights’ discriminative power.

Formally, let W ∈ Rd×L represent a d × L matrix where
the l-th (l = 1, 2, · · · , L) column of the matrix is the weight
vector wl, where d is the total number of all evolvable fea-
tures. Thus, the i-th (i = 1, 2, · · · , d) row corresponds to
the weight of the i-th feature with respect to all instances.
The mixed ℓ1,2-norm of W , denoted ∥W ∥ℓ1,2 , is obtained

by computing the ℓ2-norm of each row of W and then ap-
plying the ℓ1-norm to the resulting d dimensional vector, i.e.,
∥W ∥ℓ1,2 =

∑d
i=1 ∥wi∥2. Thus, in a mixed-norm regularized

optimization problem, we seek the minimizer of the objective
function,

f(W ) + λ∥W ∥ℓ1,2 (1)

where f(W ) is a loss function, we define specifically
f(W ) = 1

2∥W −Wt∥2F in our study.
Given the specific variants of various norms, the model

update for the ℓ1,2 mixed-norm is readily available. Let
wl ∈ Rd denote the l-th (l = 1, 2, · · · , L) column of the
matrix W ∈ Rd×L, i.e., W = [w1,w2, · · · ,wL], and
w̄i ∈ RL denote the i-th (i = 1, 2, · · · , d) row of the ma-
trix W ∈ Rd×L, i.e., W = [w̄1; w̄2; · · · ; w̄d]. Anal-
ogously to the standard norm-based regularization, we let
Wt = [wt−L+1,wt−L+2, · · · ,wt] ∈ Rd×L be the incre-
mental matrix with all good feature alignment. For the ℓ1,2
mixed-norm, we need to solve the problem,

min
W∈Rd×L

{1
2
∥W −Wt∥2F + λ∥W ∥ℓ1,2} (2)

where ∥ · ∥2F is the Frobenius norm of a matrix and λ > 0 is
the regularization parameter.

This problem is equivalent to

min
W=[w̄1;w̄2;··· ;w̄d]∈Rd×L

d∑
i=1

{1
2
∥w̄i − w̄i

t∥22 + λ∥w̄i∥2} (3)

where w̄i
t is the i-th row of Wt. It is immediate to see that

the problem given in Eq. (5) is decomposable into d sepa-
rate problems of dimension L in Eq. (6), each of which can
be solved by the procedures described in the following The-
orem 1. The end result of solving these types of mixed-norm
problems is a sparse matrix with numerous zero rows. In this
way, this method can not only alleviate the curse of dimen-
sionality by the incremental learning strategy, but also pro-
mote the sparsity of decremental and incremental features by
considering feature correlations over time.

Theorem 1 (Closed-form Solution). The closed-form so-
lution of the following ℓ2-norm minimization: w̄i

⋆ =
argminw̄i∈RL{ 12∥w̄

i − w̄i
t∥22 + λ∥w̄i∥2}, where i =

1, 2, · · · , d, is:

w̄i
⋆ =

{
0 if ∥w̄i

t∥2 ≤ λ

(1− λ
∥w̄i

t∥2
)w̄i

t if ∥w̄i
t∥2 > λ

(4)

Remark 1: Theorem 1 can be proved with the proximal
operator of the ℓ2-norm (Euclidean norm). It is worth noting
that the ℓ2 regularization results in a zero weight vector un-
der the condition that ∥w̄i

t∥2 ≤ λ. This condition is rather
more stringent for sparsity than the condition for ℓ1 (where a
weight is sparse based only on its value, while here, sparsity
happens only if the entire weight vector has ℓ2-norm less than
λ), so it is unlikely to hold in high dimensions. However, it
does constitute a very important building block when using a
mixed ℓ1/ℓ2-norm as the regularization function.
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Dataset/Method osPCA sketch-OAD VFDT HATT ARCUS Ours
a9a 21.726±0.103 18.792±0.079 32.710±1.436 31.633±0.306 18.792±0.079 16.270±0.046

codrna 16.812±0.383 21.782±0.151 16.714±0.096 16.601±0.176 16.696±1.073 15.510±0.466
german 36.294±0.973 36.185±1.079 36.361±1.472 41.130±1.284 37.130±1.246 39.125±1.305
ijcnn1 3.653±0.036 3.603±0.033 3.114±0.15 2.973±0.030 3.658±0.027 3.063±0.043

MITFace 5.336±0.230 11.333±1.285 5.331±0.225 5.097±0.264 5.275±0.272 4.725±0.183
PCMAC 32.391±1.183 39.954±2.064 32.344±1.220 32.643±1.147 32.020±1.261 27.012±1.272
spambase 26.352±0.561 36.072±13.322 28.201±0.691 28.959±0.398 27.376±0.373 21.383±0.459

splice 34.450±1.908 39.735±1.498 35.895±1.775 35.870±1.684 34.470±1.134 33.925±1.244
svmguide3 20.981±0.233 22.949±0.655 26.448±0.797 24.401±0.541 20.986±0.230 20.909±0.232

Table 1: Accumulated anomaly detection mistake rate (%) of different algorithms on all datasets. The best results are highlighted in bold.

3.4 OAL through CUR Decomposition
The CUR decomposition [Mahoney and Drineas, 2009] pro-
vides a low-rank approximation to a data matrix W ∈ Rd×L.
In particular, CUR decomposes the data matrix W into the
form of a product of three matrices as W ≈ CUR, where
C ∈ Rd×c, U ∈ Rc×r, and R ∈ Rr×L (c < L and r < d).
Unlike other low-rank approximations such as Singular Value
Decomposition (SVD), CUR extracts C and R as small num-
bers of the column and row vectors of W , respectively. In
other words, C and R are subsets of c columns and r rows of
the original data matrix W , respectively. This property helps
practitioners to interpret the result more easily than that in the
case of SVD.

Since the R has been determined by the ℓ1,2 constraint (r
rows of W will be zero vectors in Section 3.3), which im-
poses sparse rows of the incremental matrix W ∈ Rd×L. For
the selection of C, the optimization problem is defined as:

min
X∈RL×L

1

2
∥W −WX∥2F + η

L∑
i=1

∥X(i)∥2, (5)

where X ∈ RL×L is the parameter matrix, and η > 0 is a
regularization parameter. Given the matrix W , W(i) ∈ R1×L

and W (i) ∈ Rd×1 denote the i-th row vector and i-th column
vector of W , respectively. Similarly, given a set of indices I,
WI and W I denote the submatrices of W containing only
I rows and columns, respectively. The term ∥X(i)∥2 induces
X(i) to be a zero vector, where X(i) ∈ R1×L is the i-th row
vector of X . The regularization constant η controls the de-
gree of sparsity of the parameter matrix X . If X(i) = 0
is a zero vector, the corresponding column of the data ma-
trix W (i) can be considered as an unimportant column for
problem (5). On the other hand, W (i) is important when the
corresponding X(i) is a nonzero vector. Therefore, we can
select columns C as W I , where I ⊆ [L] = {1, 2, · · · , L}
represents the indices corresponding to the nonzero row vec-
tors of X . Hence, the proposed algorithm can select more
informative instances in the sliding window incrementally.

Problem (5) can be solved using the coordinate descent
[Bien et al., 2010]. The algorithm iteratively updates each
parameter vector X(i) corresponding to each row of the pa-
rameter matrix X until X converges. Then, the following
equation is used to update X(i) ∈ R1×L:

X(i) =

{
0 if ∥ui∥2 ≤ η

(1− η
∥ui∥2

)ui if ∥ui∥2 > η
(6)

where ui ∈ R1×L is computed by:

ui =
(W (i))⊤

∥W (i)∥2
(W −

L∑
j=1,j ̸=i

W (j)X(j)). (7)

where W (i) ∈ Rd×1 denote the i-th column vector of W .
Algorithm 2 shows the pseudocode of coordinate descent.
The inner loop (lines 3–4) performs Equation (6) to update
each row of X , and the outer loop (lines 2–5) repeats the
update process until X converges. The computation cost of
Equation (7) is O(L2d) time. Therefore, Equation (6) also
requires O(L2d) time. Equation (6) can be modified to have
O(Ld) time by updating the CUR every L rounds.

Algorithm 2 The CUR Decomposition Algorithm

1: [L] = {1, 2, · · · , L}, X ← 0 ∈ RL×L;
2: repeat
3: for i ∈ [L] do
4: Update X(i) by Equation (6);
5: end for
6: until X converges.

3.5 Streaming Anomaly Detection through CUR
Decomposition based Residual Errors

Residual analysis offers a principled approach to anomaly de-
tection by quantifying deviations between observed data and
their reconstructed estimates, where anomalies manifest as
instances with disproportionately large residual errors due to
divergence from dominant patterns. Traditional reconstruc-
tion methods rely on representative instances but face chal-
lenges from noisy or irrelevant attributes, necessitating joint
selection of discriminative features and informative instances
to accurately rebuild the underlying structure of the data ma-
trix W . To address this, we extend beyond standard fac-
torizations to CUR decomposition, which explicitly selects
a subset of representative instances (C) and attributes (R)
to form a low-rank approximation of W , enhancing inter-
pretability and noise resilience. Mathematically, our pro-
posed framework computes the residual matrix by

min
1

2
∥W −CUR− R̃∥2F , (8)

where R̃ is the residual matrix of the weight matrix W , and
anomalies are identified by analyzing column-wise residuals:
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(b) a9a (c) codrna (d) german

(e) ijcnn1 (f) MITFace (g) PCMAC

(h) spambase (i) splice (j) svmguide3

Figure 2: Dynamic learning curves in terms of online average error rates of all competing online algorithms.

a larger mixed norm ∥R̃⊤∥2,0 of R̃(:, i) indicates that the i-th
instance deviates significantly from the CUR-approximated
structure, signaling higher anomaly likelihood. By integrat-
ing residual analysis with CUR’s explicit instance-attribute
selection, the method simultaneously mitigates noise interfer-
ence and provides interpretable criteria for real-time anomaly
ranking in dynamic streams.

4 Experimental Evaluation
4.1 Datasets and Evaluation Metrics
To validate the effectiveness of the proposed method, we con-
duct the experiments on nine streaming datasets and 10% of
anomalies/outliers are randomly added in such datasets. Ta-
ble 2 summarizes the attributes including number of samples,
features, and classes. The online average error rate of the
anomalies is utilized as the evaluation metric.

4.2 Experimental Settings
To evaluate the proposed SAD algorithm, we compare it with
five state-of-the-art online anomaly detection algorithms:
osPCA [Lee et al., 2012], sketch-OAD [Huang and Ka-
siviswanathan, 2015], VFDT [Tan et al., 2011], HATT [Bifet

Dataset #Samples #Features #Classes
a9a 48,842 123 2

codrna 59,535 8 2
german 1,000 24 2
ijcnn1 141,691 22 2

MITFace 6,977 361 2
PCMAC 1,943 3,290 2
spambase 4,601 57 2

splice 1,000 60 2
svmguide3 1,243 21 2

Table 2: Summary of the real streaming datasets in the experiments.

et al., 2017], and ARCUS [Yoon et al., 2022]. We imple-
ment all the competing algorithms in Matlab. For a fair com-
parison, the same experimental setup is applied to all algo-
rithms. After the preliminary studies, we set the parameters
by L = 50, λ = 10, and η = 1. All the other parameter
values are determined based on [Lee et al., 2012; Huang and
Kasiviswanathan, 2015; Tan et al., 2011; Bifet et al., 2017;
Yoon et al., 2022]. Twenty independent runs are performed
and the average results of each method are reported.
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Figure 3: The sensitivity analysis of parameters λ and η of SAD on
the “PCMAC” dataset.

Figure 4: Dynamic learning curves (online average error rates) of all
competing online algorithms on a real world dataset KDDCUP.

4.3 Overall Comparison
Table 1 presents the overall performance including aver-
age detection errors (±standard deviation) of all compet-
ing algorithms. Overall, SAD achieves the lowest classifi-
cation errors in all the nine streaming datasets. The quan-
titative reductions (on average over the nine datasets) us-
ing the proposed SAD method and competing algorithms os-
PCA, sketch-OAD, VFDT, HATT, and ARCUS are 10.00%,
22.67%, 14.44%, 14.16%, and 9.04%, respectively.

4.4 Dynamic Error Rate Comparison
As shown in Figure 2, we investigate the dynamic error rate
of all algorithms with the progression of a data stream. The
online average error rate curves of SAD dominate the corre-
sponding curves of all other algorithms (without much vari-
ation) on seven datasets except “german” and “ijcnn1”. The
superiority of SAD over others is evident on “codrna”, “PC-
MAC”, and “spambase” datasets. These results validate the
efficiency of SAD compared to other competing algorithms.

4.5 Sensitivity Studies
To execute SAD, the regularization parameters λ and η need
to be specified. We examine their impact on performance

via grid search, using the large-scale “PCMAC” dataset with
λ ∈ [10−2, 10−1, 100, 101, 2×101, 5×101, 102] and η ∈
[10−3, 10−2, 10−1, 100, 101, 102, 103]. As shown in Figure 3,
which compares dynamic average detection error rates across
parameter values, SAD exhibits stable performance for η ∈
[10−2, 102] but fluctuates significantly with λ. When η is
fixed, error rates increase sharply as λ decreases from 102

to 10−2: smaller λ values promote higher sparsity but simul-
taneously degrade detection accuracy. Overall, SAD demon-
strates robustness to η yet sensitivity to λ.

4.6 Empirical Studies on the Real-world Dataset
We evaluate our proposed approach using the KDDCUP in-
trusion detection dataset1, comprising 494,020 records across
34 dimensions with an anomaly rate of 1.77% (8,752 anoma-
lies vs. 485,268 normal instances). All features are normal-
ized via RobustScaler [Lusito et al., 2023], chosen for its
outlier robustness. Figure 4 demonstrates the dynamic per-
formance of competing algorithms under incremental data
streaming. Both osPCA and our SAD method significantly
outperform four baseline methods in detection error. No-
tably, SAD achieves superior performance with 3.38% av-
erage detection error compared to osPCA’s 4.25%, confirm-
ing its enhanced scalability and competitive efficacy for real-
world large-scale streaming data applications.

5 Conclusion
To address the challenge of consistently and accurately de-
tecting unexpected anomalies in large-scale streaming set-
tings without compromising computational and memory
efficiency, this paper introduces an innovative Streaming
Anomaly Detection (SAD) method rooted in sparse active on-
line learning. Our primary contribution is the seamless inte-
gration of ℓ1,2-norm based sparse online learning with CUR
decomposition based online active learning, which facilitates
effective residual analysis for anomaly detection. This dual
approach enables SAD to not only provide real-time feature
interpretations through the ℓ1,2-norm penalty but also to au-
tomatically identify anomalies in streaming data. Crucially,
this method eliminates the need for manually setting thresh-
olds and does not rely on assumptions about data distribution.
Our extensive evaluation across multiple streaming datasets
underscores the efficacy of SAD, demonstrating significant
performance enhancements over existing OAD competitors.

As part of future work, we plan to expand the applicability
of our SAD method to more complex data streams encoun-
tered in open environments, including those involving feature
evolution and weak supervision.
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