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Abstract
The intrinsic non-stationarity of urban spatiotem-
poral (ST) streams, particularly unique distribution
shifts that evolve over time, poses substantial chal-
lenges for accurate urban ST forecasting. Existing
works often overlook these dynamic shifts, limit-
ing their ability to adapt to evolving trends effec-
tively. To address this challenge, we propose DOL,
a novel Distribution-aware Online Learning frame-
work designed to handle the unique shifts in ur-
ban ST streams. DOL introduces a streaming up-
date mechanism that leverages streaming memories
to strategically adapt to gradual distribution shifts.
By aligning network updates with these shifts,
DOL avoids unnecessary updates, reducing compu-
tational overhead while improving prediction accu-
racy. DOL also incorporates an adaptive spatiotem-
poral network with a location-specific learner, en-
abling it to handle diverse urban distribution shifts
across locations. Experimental results on four
real-world datasets confirm DOL’s superiority over
state-of-the-art models. The source code is avail-
able at https://github.com/cwang-nus/DOL.

1 Introduction
Urban spatiotemporal (ST) forecasting is a crucial task in
Intelligent Transportation Systems (ITS), enabling various
smart city solutions such as intelligent scheduling [Yao et
al., 2018; Lee and Ko, 2024], effective traffic manage-
ment [Zhang et al., 2021; Wang et al., 2023b], and optimal
trip planning [Li et al., 2018a; Han et al., 2024]. While
recent advances in ST forecasting models [Wu et al., 2019;
Liu et al., 2022] have greatly improved accuracy, their effec-
tiveness in urban ST streams is hindered by the oversight of
intrinsic distribution shifts arising from continuous data flow.

While distribution shifts in urban ST streams occur over
time, they evolve gradually because of the stable nature of
urban zoning and functionality [Qian and Ukkusuri, 2015;
Yu and Peng, 2019]. As illustrated in Figure 1, taxi demand
in Chicago exhibits significant variations over months (e.g.,

∗Work was partially done when the author interned at Comfort
Transportation Pte Ltd.

Figure 1: An illustration of Chicago’s taxi demand distribution shift,
estimated with Kernel Density Estimator (KDE). Left-hand side: es-
timated distributions for Region 23 (upper) and Region 64 (lower);
right-hand side: a visualization of Chicago’s community regions.

January to March) but remains stable over shorter intervals,
such as consecutive weeks (see substantially similar distri-
butions marked in red and yellow). However, most urban
ST forecasting methods [Wu et al., 2019; Jiang et al., 2023;
Lee and Ko, 2024] are conducted with static training sam-
ples and neglect such distribution shifts. Recent efforts to ad-
dress these shifts fall into offline and online adaptation mod-
els. Offline models rely on historical data to alleviate dis-
crepancies through learnable normalization [Kim et al., 2021;
Nie et al., 2023] or enable generalization with invariant cor-
relations [Xia et al., 2023; Zhou et al., 2023b], but struggle
with shifts during unforeseen events like COVID-19 [Cruz
and Sarmento, 2021]. Online adaptation models address this
issue by leveraging incoming data with batch updates, which
update the network annually [Chen et al., 2021; Wang et
al., 2023a; Miao et al., 2024], or immediate updates, which
fine-tune the network as new data arrives [Pham et al., 2023;
Wen et al., 2024]. However, batch updates are insufficient for
intra-year shifts, while immediate updates are computation-
ally expensive and risk overfitting due to frequent updates.

Beyond gradual distribution shifts, different urban loca-
tions also exhibit unique patterns shaped by location-specific
factors such as urban functionality [Yu and Peng, 2019]. As
illustrated in Figure 1, the estimated data distributions in Re-
gion 23 (residential area) and Region 64 (transportation hub)
differ significantly and vary considerably over extended peri-
ods (e.g., January to March 2020; see distributions marked in
yellow and green). Such shifts make prior adaptation strate-
gies [Chaudhry et al., 2019; Pham et al., 2023] ineffective
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for existing ST forecasting models, which lack mechanisms
for location-specific learning. Moreover, these strategies of-
ten require full network fine-tuning, which is computation-
ally expensive. Recent proposals, such as parameter-efficient
tuning [Houlsby et al., 2019; Hu et al., 2022], selectively
fine-tune specific components, providing a more efficient ap-
proach to network adaptation. However, they still fail to han-
dle the unique shifts at individual locations.

In this paper, we propose DOL, a distribution-aware online
learning framework that leverages the unique distributions of
urban ST streams for accurate forecasting. DOL provides a
novel online adaptation strategy aligned with the nature of
urban ST streams: it alternates the network update between
awake and hibernate phases, allowing the network to miti-
gate performance degradation caused by evolving distribu-
tion shifts while reducing unnecessary updates and compu-
tational costs for gradual shifts. To facilitate effective fore-
casting on incoming streams, it employs a Streaming Update
Mechanism (SUM) that fine-tunes specific network parame-
ters using an episodic memory of relevant samples, ensuring
efficient adaptation and preventing both overfitting and catas-
trophic forgetting. In addition, we introduce an adaptive ST
network, AST-Net, equipped with a plug-and-play compo-
nent named the Location-Specific Learner (LSL). LSL pre-
cisely learns new distribution patterns for each urban location
over time, customizing learners to effectively fine-tune the
network in response to location-specific distribution shifts.

Our main contributions are summarized as follows:

• We propose DOL, a novel distribution-aware online learn-
ing framework tailored for urban ST forecasting that fine-
tunes the network to align with gradual urban distribution
shifts over time, thus enabling network adaptation while
avoiding inefficient training.

• We introduce the Location-Specific Learner LSL, which
enables the network to adapt to diverse and evolving urban
distribution shifts across different locations.

• Extensive experimental results confirm DOL’s superiority
over state-of-the-art methods on four real-world datasets,
reducing forecast errors by 12.89% over 13 baselines.

2 Related Work
Urban Spatiotemporal (ST) Forecasting is a critical task in
smart city development, which supports various urban appli-
cations. Early methods relied on statistical models, such as
HA [Brockwell et al., 2016], ARIMA [Williams and Hoel,
2003], etc. Recent advances utilize deep models to cap-
ture ST correlations and thus significantly improve forecast-
ing. They typically employ graph neural networks [Wu et al.,
2019; Zheng et al., 2020] or attentions [Zhao et al., 2023;
Zhou et al., 2024; Wang et al., 2025] for dynamic spa-
tial modeling; RNNs [Hochreiter and Schmidhuber, 1997;
Gao and Glowacka, 2016], CNNs [Zhang et al., 2017;
Wang et al., 2022], or Transformers [Vaswani et al., 2017;
Liu et al., 2023] for temporal modeling; and normaliza-
tion [Deng et al., 2021] or identity embedding [Shao et al.,
2022; Liu et al., 2023] for ST feature learning. However,
these approaches often overlook temporal dynamics during

test time. Some studies address this out-of-distribution issue
in offline settings by applying learnable normalization [Kim
et al., 2021; Nie et al., 2023] or identifying invariant rela-
tionships [Zhou et al., 2023b; Wang et al., 2024]. Nonethe-
less, they still struggle with online streams, where invariant
relationships evolve over time, particularly during unforeseen
events [Cruz and Sarmento, 2021]. While some works adopt
continual learning to handle such shifts [Chen et al., 2021;
Miao et al., 2024], they divide the stream into tasks and delay
updates until substantial data accumulates, resulting in infre-
quent updates that limit their timely adaptation.

Online Learning focuses on adapting to shifts in data dis-
tribution and has proven highly effective in various tasks,
from image classification [Buzzega et al., 2020; Harun et
al., 2023; Gunasekara et al., 2023] to natural language pro-
cessing [Houlsby et al., 2019; Pfeiffer et al., 2020]. Recent
research has extended online learning to time series models
to address distribution shifts in data streams. For instance,
FSNet [Pham et al., 2023] utilizes memory mechanisms for
data adaptation, while OneNet [Wen et al., 2024] employs
reinforcement learning to adjust weights between two fore-
casters during the online phase. However, these models are
designed for unstable temporal patterns [Shao et al., 2025]
and employ full fine-tuning, which is unnecessary for gradual
distribution shifts and introduce high computation overhead.
Recently, adapter-based frameworks [Houlsby et al., 2019;
Zhou et al., 2023a; Zhang et al., 2024] have demonstrated
remarkable effectiveness and efficiency in handling unseen
tasks by fine-tuning selective network layers. Meanwhile,
SIESTA [Harun et al., 2023] demonstrates that a sleep mech-
anism can achieve efficient online image classification. Nev-
ertheless, these models lack effective ST modeling and thus
cannot be directly applied to urban ST forecasting.

3 Preliminaries
Definition 1 (Urban Spatiotemporal Data). In the urban
context, 𝑁 spatially distributed sensors (e.g., traffic sensors)
form a spatial graph G based on their geographical locations.
At each time 𝜏, urban conditions (e.g., taxi demand, traffic
speed) are represented as 𝑋𝜏 ∈ R𝑁×𝑑 , where 𝑑 is the feature
dimension. Urban spatiotemporal (ST) data over the interval
[𝜏, 𝜏 + 𝑇] is denoted as 𝑋𝜏:𝜏+𝑇 ∈ R𝑁×(𝑇+1)×𝑑 .
Definition 2 (External Factors). External factors such as
time of day and day of the week influence urban ST data
by reflecting daily routines and weekly cycles [Zhang et al.,
2017]. We denote the external factors at time 𝜏 as 𝐸𝜏 .
Online Urban ST Forecasting. In urban scenarios, data ar-
rives as a stream, denoted as 𝑋𝜏:∞. The goal is to process this
stream and forecast traffic conditions across urban locations
for the next 𝐻 time steps at each time 𝜏, given external factors
𝐸 and past observations from a look-back window 𝐿:

[𝑋𝜏−𝐿+1, 𝑋𝜏−𝐿+2, . . . , 𝑋𝜏︸                          ︷︷                          ︸
𝐿 observations

; 𝐸𝜏−𝐿+1:𝜏+𝐻 ,G]
𝑓 ( ·)
−−−→ [𝑋𝜏+1, 𝑋𝜏+2, . . . , 𝑋𝜏+𝐻︸                      ︷︷                      ︸

𝐻 predictions

] (1)

where 𝑓 (·) represents the learnable ST network. For simplic-
ity, we denote the 𝐿 observations as X𝜏 and the 𝐻 predictions
as Y𝜏 in the following sections.
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Figure 2: The overview of DOL, a distribution-aware online learning framework for spatiotemporal (ST) streams. DOL employs a Streaming
Update Mechanism (SUM) mechanism to alternate Adaptive ST Network (AST-Net) updates between Awake and Hibernate phases. The
ASTN includes a Location-Specific Learner (LSL) with sub-learners tailored to capture distribution shifts at specific urban locations. During
the Awake phase, the LSL is fine-tuned via SUM, while its parameters remain frozen in the Hibernate phase.

4 Methodology
In this section, we introduce DOL for urban ST forecasting,
as depicted in Figure 2. DOL comprises two key components:
the Streaming Update Mechanism (SUM), which manages
network fine-tuning to address gradual distribution shifts, and
the Adaptive ST Network (AST-Net), which enables the net-
work to adapt to location-specific shifts. To process online ST
streams, DOL consists of Warm-up and Online phases. Algo-
rithm 1 outlines DOL for online urban ST forecasting.

4.1 Phases for Online ST Forecasting
Conventional ST networks, trained on static datasets, often
struggle to adapt to distribution shifts over extended infer-
ence periods. To address this, DOL leverages online learning,
enabling its ST network AST-Net, to adapt to newly emerging
patterns during the Online phase (i.e., test time in an offline
setting). The phases for DOL consist of a Warm-up phase
for initial training and an Online phase for fine-tuning with
evolving patterns. Moreover, to accommodate gradual dis-
tribution shifts, DOL intermittently pauses fine-tuning during
the Online phase to prevent excessive updates.
Warm-up Phase. Warm-up Phase prepares the network
for online ST forecasting. During this phase, the AST-Net
of DOL is trained and validated, similar to offline ST net-
works [Wu et al., 2019; Jiang et al., 2023], before performing
the forecasting task. To mitigate potential distribution shifts
during validation, DOL selectively stores relevant samples in
a Streaming Memory Buffer (SMB) to support fine-tuning at
the beginning of the Online phase (details in Section 4.2).

Online Phase. Online Phase performs forecasting with
AST-Net at each time step. During this phase, DOL inter-
mittently fine-tunes AST-Net to adapt to gradual distribution
shifts, thus forming Awake and Hibernate phases. During
Awake phases, the network adapts to distribution shifts, while
during Hibernate phases, updates are paused to align with the
nature of urban ST streams. This strategy leverages the sta-
ble nature of data distributions over short periods, where the
discrepancy between consecutive short periods is negligible:

discrepancy(𝑃(D1), 𝑃(D2)) ≈ 0, (2)

where 𝑃(D1) and 𝑃(D2) denote the data distributions for
consecutive short periodsD1 andD2. Thus, the network fine-
tuned on D1 can generalize to D2 without further updates.

The transition between the Awake and Hibernate phases,
along with network updates in the Awake phase, is managed
by SUM (details in Section 4.2). During the Awake phase,
the Streaming Memory Buffer (SMB) within SUM is updated
with newly arriving samples, and the AST-Net is fine-tuned
to adapt to evolving patterns using the updated SMB. Con-
versely, during the Hibernate phase, only the SMB is up-
dated, while network fine-tuning is paused to conserve com-
putational resources, as short-term shifts remain stable.

4.2 Streaming Update Mechanism
The Streaming Update Mechanism (SUM), shown in Figure 2
(lower-left), manages phase transitions and fine-tunes the net-
work during the Awake phase. It comprises two components:
the Latest Sample Tracker (LST) and the Streaming Memory
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Algorithm 1: Online urban ST forecasting
Input: Network 𝑓 ( ·) learned during the warm-up phase, including

parameters 𝜃𝑡 for traditional modules and 𝜃𝑎 for the adapter; Validation
dataset D𝑣𝑎𝑙 ; The length of the look-back window 𝐿 and prediction
horizon 𝐻; The length of the awake and AH periods 𝐿𝑎 and 𝐿𝑎ℎ ; The
latest sample tracker 𝐿𝑆𝑇 ; Online data stream [𝑋𝜏 , 𝑋𝜏+1 , · · · , 𝑋∞ ].

1 M ← ∅ ; // Set the SMB to empty
2 𝑎𝑤𝑎𝑘𝑒← 𝑡𝑟𝑢𝑒 ; // Awake at the first step
// Update the SMB with validation data

3 foreach (X𝑣𝑎𝑙 , Y𝑣𝑎𝑙 ) ∈ D𝑣𝑎𝑙 do
4 M ← M ∪ {(X𝑣𝑎𝑙 , Y𝑣𝑎𝑙 ) } ; // Update SMB
// Online phase

5 foreach 𝜏 ∈ [0,∞) do
6 𝐿𝑆𝑇𝜏 ← 𝑋𝜏 ; // Update LST
7 if 𝜏 ≥ 𝐻 then
8 𝐿𝑆𝑇𝑥

𝜏 = 𝑋𝜏−𝐿−𝐻:𝜏−𝐻
9 𝐿𝑆𝑇

𝑦
𝜏 = 𝑋𝜏−𝐻+1:𝜏

10 M ← M ∪ {(𝐿𝑆𝑇𝑥
𝜏 , 𝐿𝑆𝑇

𝑦
𝜏 ) } ; // Update SMB

11 if 𝑎𝑤𝑎𝑘𝑒 then
// Fine-tune the network

12 Sample a smallM𝑒 fromM;
13 foreach 𝑋𝑒 ∈ M𝑒 do
14 Ŷ𝑒 = 𝑓 (X𝑒 );
15 𝜃𝑎 ← L(Ŷ𝑒 , Y𝑒 )
16 Ŷ𝜏 = X̂𝜏+1:𝜏+𝐻 = 𝑓 (X𝜏−𝐿:𝜏 ) ; // Forecasts

// Decide awake or hibernate for next
time step

17 if 𝜏 % 𝐿𝑎 == 0 and 𝑎𝑤𝑎𝑘𝑒 then
18 𝑎𝑤𝑎𝑘𝑒← 𝑓 𝑎𝑙𝑠𝑒

19 M ← ∅ ; // set SMB to empty
20 else if 𝜏 % 𝐿𝑎ℎ == 0 and 𝑛𝑜𝑡 𝑎𝑤𝑎𝑘𝑒 then
21 𝑎𝑤𝑎𝑘𝑒← 𝑡𝑟𝑢𝑒

Update Module (SMUM). These components enable SUM to
address two key challenges of continuous fine-tuning during
the Awake phase: (1) delayed ground truth, where at each
time step 𝑋𝜏 , the network receives only the current observa-
tion 𝑋𝜏 , while the ground truth 𝑋𝜏+1:𝜏+𝐻 remains unavail-
able, making immediate fine-tuning impractical; (2) catas-
trophic forgetting, where frequent updates cause the network
to forget earlier patterns [Lu et al., 2018], such as forgetting
Monday’s patterns by Sunday during a one-week update.

Latest Sample Tracker
The Latest Sample Tracker (LST) addresses delayed ground
truth by tracking the most recent samples. At each time step
𝜏, it maintains the latest observations 𝐿𝑆𝑇𝜏 = 𝑋𝜏−𝐿−𝐻+1:𝜏 ∈
R𝑁×(𝐿+𝐻 )×𝑑 by discarding the oldest data 𝑋𝜏−𝐿−𝐻 and in-
corporating the new data 𝑋𝜏 . Thus, it allows DOL to retain
the latest observations without revisiting the entire sequence.
The updated 𝐿𝑆𝑇𝜏 is then passed to the SMUM, enabling
AST-Net to efficiently adapt to recent trends while eliminat-
ing the need for the future sequence 𝑋𝜏+1:𝜏+𝐻 .

Streaming Memory Update Module
Recent studies [Chaudhry et al., 2019; Lopez-Paz and Ran-
zato, 2017] have proven that a tiny memory of previously
trained samples can mitigate catastrophic forgetting and thus
stabilize training during network updates. Inspired by them,
we propose a Streaming Memory Update Module (SMUM)
to address catastrophic forgetting for urban ST forecasting.
SMUM includes a Streaming Memory Buffer (SMB) to store

relevant trained samples, an Awake-Hibernate (AH) Decider
to determine the current phase, and an Episodic Memory
(EM) to select pertinent samples for network updates.

Streaming Memory Buffer (SMB). Unlike prior works
that store all past samples [Chaudhry et al., 2019; Lopez-Paz
and Ranzato, 2017], our SMB M is tailored for urban ST
streams by selectively retaining only the most relevant sam-
ples. Specifically, it prioritizes samples from the most recent
Awake-Hibernate (AH) phase because: (1) distant past data
can become irrelevant due to evolving patterns, and (2) recur-
rent patterns often emerge within a single AH cycle due to
gradual shifts and weekly periodicity [Wang et al., 2022].

The SMB M has 𝑀 slots to store observations from the
LST. At the start of each Hibernate phase,M is reset to en-
sure it retains only the latest AH cycle data. During the online
phase,M is updated at each time step 𝜏 with the current ob-
servation 𝐿𝑆𝑇𝜏 using reservoir sampling [Vitter, 1985]. Thus,
M at time 𝜏 can be represented as:

M𝜏 =

{
{(X,Y) ∈ (𝐿𝑆𝑇 𝑥

𝜏 , 𝐿𝑆𝑇
𝑦
𝜏 ) | sampled with 𝑝} if 𝜏 . 0 (mod 𝐿𝑎ℎ),

∅ otherwise
(3)

where 𝐿𝑆𝑇 𝑥
𝜏 = 𝑋𝜏−𝐿−𝐻+1:𝜏−𝐻 ∈ R𝑁×𝐿×𝑑 and 𝐿𝑆𝑇

𝑦
𝜏 =

𝑋𝜏−𝐻+1:𝜏 ∈ R𝑁×𝐻×𝑑 , 𝐿𝑎ℎ is the duration of an AH cycle,
and the probability of storing 𝐿𝑆𝑇𝜏 in the SMB is 𝑀/𝐿𝑎ℎ.

Awake-Hibernate (AH) Decider. The AH Decider deter-
mines whether a given time step 𝜏 falls into the Awake or Hi-
bernate phase by leveraging external factors, such as date and
time, to align the schedule with weekly patterns in urban ST
data [Shi and Li, 2018; Wang et al., 2022]. An AH cycle has
a total length of 𝐿𝑎ℎ = 𝐿𝑎 + 𝐿ℎ, where 𝐿𝑎 and 𝐿ℎ are the du-
rations of the Awake and Hibernate phases, respectively, and
𝐿ℎ = 𝜆𝐿𝑎 ∝ 𝐿𝑤 , with 𝐿𝑤 as the length of a week and 𝜆 as the
AH parameter. During the Awake phase, the AST-Net is fine-
tuned before generating forecasts, whereas in the Hibernate
phase, it generates forecasts without fine-tuning.

Episodic Memory (EM). Our EM randomly selects a sub-
set M𝑒 from M to update the network during the Awake
phase. The selectedM𝑒, with size 𝑀𝑒 ≪ 𝑀 , includes only
data from the most recent AH cycle up to time 𝜏, serving to:
(1) incorporate recent patterns to prevent catastrophic forget-
ting, and (2) introduce randomness to avoid overfitting. Note
that M𝑒 may not contain the very latest samples, such as
𝐿𝑆𝑇 𝑥

𝜏 and 𝐿𝑆𝑇
𝑦
𝜏 , as random sampling fromM is employed.

However, this is sufficient to capture recent patterns, as dis-
tribution shifts within an AH cycle are generally stable.

Optimization. Our SMUM optimizes the network for ur-
ban ST streams, differing from prior studies in four key as-
pects: (1) it updates the network only during Awake phases,
instead of immediately upon receiving new data [Douil-
lard et al., 2021; Cermelli et al., 2022]; (2) it selects EM
from the most relevant samples to preserve recent knowl-
edge, rather than randomly sampling from all past observa-
tions [Chaudhry et al., 2019; Miao et al., 2024], which of-
ten misses recent trends; (3) it does not explicitly incorpo-
rate the latest sample for network updates, unlike methods
that update based on the most recent data [Pham et al., 2023;
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Wen et al., 2024]; (4) it fine-tunes only a subset of network
parameters to reduce computational costs, instead of fine-
tuning all parameters [Chaudhry et al., 2019; Pham et al.,
2023]. The optimization function during the Awake phase is:

L𝑎𝑤𝑎𝑘𝑒 (𝜃𝑎) = 𝑀𝐴𝐸 (Ŷ𝑒,Y𝑒), (4)
where 𝜃𝑎 refers to the learnable parameters fine-tuned during
the Awake phase, specifically the parameters in the Location-
Specific Learner (LSL) in practice, 𝑀𝐴𝐸 denotes the Mean
Absolute Error, and Ŷ𝑒 and Y𝑒 ∈ R𝑀𝑒×𝑁×𝐻×𝑑 are the predic-
tions and ground truth based onM𝑒, where 𝑑 represents the
dimension for the target urban condition. Note that the opti-
mization function for DOL during the Warm-up phase follows
prior works [Wu et al., 2019; Jiang et al., 2023]:

L𝑡𝑟𝑎𝑖𝑛 (𝜃) = L𝑡𝑟𝑎𝑖𝑛 (𝜃𝑡 , 𝜃𝑎) = 𝑀𝐴𝐸 (Ŷ,Y), (5)
where 𝜃 represents the learnable parameters of AST-Net, 𝜃𝑡
denotes the subset of 𝜃 excluding 𝜃𝑎, and Ŷ and Y ∈ R𝑁×𝐻×𝑑

are the predictions and ground truth for the training samples.

4.3 Adaptive Spatiotemporal Network
Distribution shifts during the Online phase can vary widely
across urban locations. For example, school areas may ex-
perience drastic changes during holidays, while CBD regions
remain stable. Prior works [Wu et al., 2019; Wu et al., 2020]
have focused on improving ST correlation modeling but lack
location-specific learning, limiting their adaptability to such
shifts over time. To address this, DOL employs an Adaptive
Spatiotemporal Network (AST-Net), as shown in the lower
right of Figure 2. Alongside the standard modules of ST net-
works [Yu et al., 2018; Wu et al., 2019] like Input Embedding
(IE), ST Module, and Decoder, AST-Net inserts a Location-
Specific Learner (LSL) between the IE and ST Module to en-
able precise adaptation to location-specific shifts while pre-
venting interference from irrelevant shifts in other locations.
Location-Specific Learner (LSL). LSL is a plug-and-play
component, as shown on the right of AST-Net in Figure 2. It
takes input embeddings h ∈ R𝑁×𝐿×𝑑ℎ from the IE and gen-
erates adapted embeddings h̃ ∈ R𝑁×𝐿×𝑑ℎ . These adapted
embeddings are then passed to the ST Module for ST correla-
tions modeling and subsequently to the Decoder to generate
future urban ST conditions Ŷ. Specifically, LSL comprises 𝑁
sub-learners, each designed to handle distribution shifts for a
specific location 𝑛. For each location, the corresponding sub-
learner transforms the input embedding h(𝑛) ∈ R𝐿×𝑑ℎ into a
location-specific adapted embedding h̃(𝑛) ∈ R𝐿×𝑑ℎ . The final
output of LSL h̃ ∈ R𝑁×𝐿×𝑑ℎ is obtained by concatenating the
adapted embeddings h̃(𝑛) across all 𝑁 locations:

h̃(𝑛) = 𝑓𝑎 (h(𝑛) ;W(𝑛)
𝑎 ) + h(𝑛) = 𝜎

(
h(𝑛)W(𝑛)

𝑎1

)
W(𝑛)

𝑎2 + h(𝑛) ,

h̃ = concat(h̃(1) , h̃(2) , . . . , h̃(𝑁 ) ),
(6)

where 𝑓𝑎 is a non-linear transformation function (e.g., a
multi-layer perceptron), 𝜎 is the ReLU activation, W(𝑛)

𝑎 are
the learnable parameters for location 𝑛, with W(𝑛)

𝑎1 ∈ R𝑑ℎ×𝑑𝑚

and W(𝑛)
𝑎2 ∈ R𝑑𝑚×𝑑ℎ ; 𝑑ℎ is the input feature dimension,

concat denotes concatenation along the location dimension,
and 𝑑𝑚 ≪ 𝑑ℎ ensures manageable parameter usage.

By default, we adopt the IE, ST Module, and Decoder from
GWNet [Wu et al., 2019]. LSL is placed before the ST Mod-
ule because the latter aggregates both spatial and temporal
features, which impedes the learning of distribution shifts at
each specific location. During the Awake phases, DOL fine-
tunes only LSL, as the stable patterns and gradual shifts in
urban ST data reduce the need for frequent full fine-tuning.

5 Experiments
In this section, we evaluate the effectiveness of DOL with ex-
periments designed to answer the following questions: RQ1:
How does DOL perform in urban ST forecasting? RQ2: How
does integrating DOL ’s strategies enhance baselines? RQ3:
How effective are the online strategies in DOL? RQ4: How do
the key components of DOL contribute to the results? RQ5:
What are the effects of hyperparameters in DOL?

5.1 Experimental Settings
Datasets. We evaluate DOL on four real-world datasets:
Chicago-T1, Singapore-T2, METR-LA [Li et al., 2018b] and
PEMS-BAY [Li et al., 2018b]. Dataset statistics are described
in Table 1.
Baselines. We compare DOL against 13 widely used base-
lines, including the classical HA method [Brockwell et al.,
2016], six strong models specifically for urban ST fore-
casting (USTF): STGCN [Yu et al., 2018], GWNET [Wu et
al., 2019], AGCRN [Bai et al., 2020], MTGNN [Wu et al.,
2020], GMSDR [Liu et al., 2022], and PDFormer [Jiang et
al., 2023], and six state-of-the-art Long-term Time Series
Forecasting (LTSF) methods: REVIN [Kim et al., 2021],
PatchTST [Nie et al., 2023], Dlinear [Zeng et al., 2023],
OnlineTCN [Zinkevich, 2003], FSNet [Pham et al., 2023],
and OneNet [Wen et al., 2024]. Among them, REVIN and
PatchTST handle distribution shifts with learnable normal-
ization, while OnlineTCN, FSNet, and OneNet are de-
signed for online forecasting.
Experiment Setting. DOL is trained on an NVIDIA
GeForce RTX 3090 GPU using the AdamW optimizer with
a learning rate of 0.001. Early stopping is applied with a
patience of 10 and a maximum of 150 epochs. We set the
look-back window 𝐿 to 12, forecast horizon 𝐻 to 12, AH pa-
rameter 𝜆 to 1, SMB slot 𝑀 to 1000, and EM size 𝑀𝑒 to 8,
𝑑ℎ = 32 and 𝑑𝑚 = 4. 𝐿𝑎 is set to the total number of time
steps in one week: 672 for Chicago-T and Singapore-T, and

Dataset Chicago-T Singapore-T METR-LA PEMS-BAY
Data Type Taxi Demand Taxi Demand Traffic Speed Traffic Speed
Time Span 01/01/2020 - 06/02/2023 - 01/03/2012 - 01/01/2017 -
(dd/mm/yyyy) 31/12/2023 06/08/2023 27/06/2012 30/06/2017
Time Interval 15 minutes 15 minutes 5 minutes 5 minutes
Spatial Size 77 87 207 325

Table 1: Statistics of the datasets.

1https://data.cityofchicago.org/
2https://www.cdgtaxi.com.sg/
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Method Chicago-T Singapore-T METR-LA PEMS-BAY
MAE↓ RMSE↓ WMAPE ↓ MAE↓ RMSE↓ WMAPE ↓ MAE↓ RMSE↓ WMAPE ↓ MAE↓ RMSE↓ WMAPE ↓

HA 1.42 5.83 77.18% 12.91 29.67 71.22% 38.27 40.51 68.19% 41.82 42.50 66.33%
STGCN 0.88±0.01 2.84±0.04 45.04%±0.38% 8.23±0.08 15.50±0.23 46.17%±0.46% 4.52±0.02 8.41±0.08 8.34%±0.05% 1.93±0.02 3.54±0.03 3.07%±0.04%

GWNET 0.88±0.03 2.84±0.16 45.28%±1.41% 8.43±0.07 15.70±0.12 47.28%±0.37% 4.57±0.02 8.51±0.04 8.46%±0.04% 1.83±0.01 3.50±0.02 2.93%±0.01%

AGCRN 0.84±0.01 2.60±0.04 42.98%±0.33% 8.13±0.03 15.29±0.08 45.47%±0.15% 4.72±0.01 8.61±0.03 8.87%±0.02% 1.84±0.02 3.48±0.02 2.93%±0.03%

MTGNN 0.90±0.00 2.87±0.02 46.14%±0.24% 8.62±0.07 15.70±0.12 47.28%±0.38% 4.63±0.00 8.64±0.03 8.57%±0.01% 1.91±0.01 3.63±0.01 3.02%±0.06%

GMSDR 0.84±0.00 2.63±0.02 43.36%±0.14% 8.44±0.01 15.89±0.07 47.33%±0.07% 4.77±0.05 8.50±0.05 8.84%±0.09% 1.94±0.03 3.55±0.05 3.10%±0.05%

PDFormer 0.91±0.00 2.92±0.02 46.57%±0.23% 8.62±0.13 16.04±0.27 48.35%±0.71% 4.69±0.02 8.60±0.02 8.68%±0.04% 1.87±0.01 3.57±0.01 2.99%±0.01%

REVIN 1.04±0.01 3.42±0.04 53.19%±0.31% 9.96±0.13 17.43±0.20 55.84%±0.71% 7.24±0.05 11.83±0.04 13.41%±0.10% 3.13±0.02 5.87±0.03 5.00%±0.03%

PatchTST 0.95±0.02 3.06±0.09 48.60%±0.98% 9.22±0.08 17.07±0.15 51.71%±0.44% 5.51±0.13 9.50±0.11 10.20%±0.24% 2.14±0.02 4.08±0.02 3.58%±0.04%

Dlinear 0.90±0.00 2.81±0.01 46.10%±0.00% 9.78±0.00 17.88±0.00 54.85%±0.01% 4.97±0.00 9.04±0.21 9.20%±0.01% 2.13±0.00 4.11±0.00 3.40%±0.00%

OnlineTCN 0.90±0.00 2.82±0.01 46.35%±0.11% 10.09±0.02 18.20±0.03 56.59%±0.01% 4.78±0.03 8.70±0.04 9.03%±0.01% 2.08±0.01 3.84±0.01 3.32%±0.01%

FSNet 0.82±0.01 2.54±0.05 42.30%±0.57% 8.39±0.24 15.45±0.65 46.41%±1.98% 5.79±0.24 11.06±0.24 11.06%±0.44% 3.39±0.22 5.53±0.40 5.41%±0.35%

OneNet OOM OOM OOM 9.20±0.24 16.79±0.48 51.40%±1.33% 4.94±0.03 8.80±0.06 9.14%±0.06%% 2.00±0.01 3.66±0.01 3.18%±0.01%

DOL 0.72±0.00† 2.06±0.02† 36.80%±0.19%† 7.90±0.02† 14.78±0.02† 44.13%±0.12%† 4.38±0.02† 8.26±0.03‡ 8.11%±0.02%† 1.67±0.00† 3.25±0.01† 2.67%±0.01%†

Table 2: Performance comparisons. The best results are bolded, and the most competitive results are underlined. Symbol † and ‡ indicate
that DOL achieves significant improvements with p < 0.001 and p < 0.05 over the most competitive results, respectively. Experiments are
repeated five times with different seeds on a GTX 3090 GPU. OOM denotes out-of-memory issues.

2016 for METR-LA and PEMS-BAY. The data is divided into
warm-up and online phase in a 25:75 ratio, with warm-up fur-
ther split 4:1 for training and validation. Model performance
is evaluated using Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Weighted Mean Absolute Per-
centage Error (WMAPE).

5.2 Performance Comparison (RQ1)
Table 2 presents the prediction results of baselines and DOL
across four datasets. The results indicate that: (1) Online
methods such as FSNet and DOL outperform offline ones
under extended test time (e.g., Chicago-T). Notably, offline
methods, including REVIN and PatchTST, which address
out-of-distribution issues, still struggle to perform well. As
unforeseeable events during the test phase can lead to un-
expected data shifts, these models rely on fixed training
samples and cannot adapt to such unseen changes. Con-
versely, FSNet outperforms USTF methods by leveraging
newly arriving data for online adaptation, despite lacking
complex ST modeling. This confirms the necessity of on-
line learning in urban ST streams. (2) USTF methods out-
perform LTSF methods on datasets like Singapore-T, METR-
LA, and PEMS-BAY. This superior performance stems from
the shorter testing periods and moderate distribution shifts
in these datasets, which make it possible for advanced ST
networks to capture complex ST correlations [Shao et al.,
2025]. This underscores the necessity of advanced ST net-
works in urban ST forecasting. (3) DOL, tailored for urban
ST forecasting, significantly outperforms all baselines across
datasets. By integrating AST-Net and SUM, it enables ad-
vanced ST networks to capture complex ST correlations and
handle unique distribution shifts, achieving superior results
in both short and long testing scenarios. On average, DOL re-
duces MAE by 12.89% compared to baseline models across
datasets. T-test results across all datasets confirm DOL’s con-
sistent superiority over leading baselines.

5.3 Effectiveness of Strategies in DOL (RQ2)
DOL’s two key strategies, SUM and AST-Net, can be seam-
lessly integrated with various offline methods. Table 3
demonstrates their effectiveness on various baselines, includ-
ing STGCN, MTGNN, and GWNET.

Method # Params MAE↓ RMSE↓ WMAPE↓
STGCN 148K 8.23±0.08 15.50±0.23 46.17%±0.46%

STGCN* 223K 8.13±0.01 15.27±0.13 45.58%±0.28%

STGCN+ 223K 8.06±0.04 15.12±0.10 45.19%±0.27%

MTGNN 233K 8.62±0.07 15.70±0.12 47.28%±0.38%

MTGNN* 259K 8.13±0.03 15.26±0.08 45.56%±0.19%

MTGNN+ 259K 8.03±0.03 15.05±0.05 45.05%±0.15%

GWNET 307K 8.43±0.07 15.70±0.12 47.28%±0.37%

GWNET* 332K 7.99±0.02 14.93±0.07 44.83%±0.14%

GWNET+ 332K 7.90±0.02 14.78±0.02 44.13%±0.12%

Table 3: Baseline models with our proposed strategies on the
Singapore-T dataset. The * denotes models with the AST-Net, while
+ indicates models with both SUM and AST-Net.

The results indicate that: (1) Models enhanced with
AST-Net, i.e., STGCN*, MTGNN*, and GWNET*, consistently
outperform their originals, as the LSL module effectively cap-
tures unique behaviors across diverse urban locations. Al-
though LSL introduces additional parameters, setting 𝑑𝑚 = 4
results in a modest increase while delivering a significant
performance boost, reducing the average MAE by 4.04%.
This also confirms the benefits of location-specific model-
ing, even in offline settings. (2) Integrating the SUM into
STGCN*, MTGNN*, and GWNET* further enhances forecast-
ing performance by enabling the models to address distribu-
tion shifts at each urban location over time. This underscores
the importance of online learning in urban ST forecasting,
even for short-span datasets with fewer distribution shifts like
Singapore-T. (3) Models integrating both strategies show sub-
stantial improvements over their base models. These strate-
gies are plug-and-play options for various ST models, making
the framework suitable for diverse urban scenarios. Note that
SUM should work alongside AST-Net, as network updates
are applied exclusively to the LSL within AST-Net.

5.4 Study on Streaming Update Mechanism (RQ3)
Table 4 further evaluates SUM’s effectiveness by presenting
prediction results and total inference time across different on-
line strategies: w/o H omits Hibernate phases, updating the
model at every time step; w ER adopts the learning strategy
from ER [Chaudhry et al., 2019], utilizing a memory buffer
and current observations; w ERH extends w ER by including
Hibernate phases; w Rec adds most recent samples to the
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Method MAE↓ RMSE↓ WMAPE↓ Time (s)
w/o H 1.69±0.01 3.28±0.01 2.70%±0.01% 14377.68
w ER 1.70±0.01 3.30±0.01 2.71%±0.01% 22002.96
w ERH 1.68±0.01 3.26±0.01 2.68%±0.01% 9436.99
w Rec 1.66±0.00 3.23±0.01 2.65%±0.01% 9215.48
Full 1.66±0.00 3.23±0.01 2.65%±0.01% 9015.64
DOL 1.67±0.00 3.25±0.01 2.67%±0.01% 8131.00

Table 4: Streaming update mechanism study on PEMS-BAY.

episodic memory; Full fine-tunes all network parameters.
The results indicate that: (1) Models with Hibernate

phases, e.g. DOL and w ERH, outperform those without
them, e.g. w/o H and w ER, and achieve speedups of 1.77×
and 2.33×. This confirms that during gradual distribution
shifts, intermittently pausing network updates is necessary,
as it not only reduces excessive computation but also miti-
gates performance degradation caused by frequent updates.
(2) DOL performs comparably to w Rec, indicating that ran-
dom EM selection is adequate given the relatively stable
shifts within each AH cycle. It is also 1.13× more efficient
by avoiding the concatenation of recent samples to the EM.
(3) Full increases inference time due to more parameter
updates and higher computational demands, while updating
only LSL achieves comparable performance with a 1.11×
speedup. Thus, we opt to update only the LSL during online
phases. More studies on SUM are provided in Section 5.5.

5.5 Ablation Study (RQ4)
Figure 3 illustrates the effectiveness of each component in
DOL. w/o A omits Awake phases; w/o Reset omits the
SMB reset at the start of each Hibernate phase; w On re-
places SUM with the online strategy from prior work [Pham
et al., 2023], which updates the model with the latest observa-
tions; w/o LSL excludes LSL, updating the default ST net-
work using SUM; w/o AHL excludes both SUM and LSL,
using only the default ST network; w LRL replaces LSL with
shared vanilla MLP layers across all locations.

The results indicate that: (1) w/o A underperforms meth-
ods with online strategies, e.g., w/o Reset, w On, and
w/o LSL, highlighting the significance of the online set-
ting in urban ST forecasting. (2) The inferior results of w/o
Reset confirm our presumption that outdated samples are
not relevant to current forecasting. (3) DOL outperforms w
On, demonstrating that our SUM surpasses existing strategies
by leveraging historical knowledge to mitigate catastrophic
forgetting and introducing randomness to avoid overfitting.
(4) w/o LSL and w/o AHL validate the effectiveness of
our strategies for online urban ST forecasting. Notably, the
degraded performance of w/o LSL shows that directly ap-

(a) MAE
1.60

1.65

1.70

1.75

1.80

1.85

M
AE

(b) RMSE
3.20

3.30

3.40

3.50

RM
SE

(c) WMAPE
2.60

2.70

2.80

2.90

W
M

AP
E 

(%
)

w/o A w/o Reset w ON w/o LSL w/o AHL w LRL DOL

Figure 3: Ablation study of DOST on PEMS-BAY dataset.
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Figure 4: Effects of hyperparameters on PEMS-BAY dataset.

plying online strategies to traditional ST networks is inade-
quate, as they fail to adapt to location-specific shifts. (5) DOL
achieves a 5.65% reduction in MAE compared to w LRL,
confirming that updating the network without considering
location-specific distributions is insufficient. By adapting to
each location individually, DOL effectively handles location-
specific shifts. (6) Removing each component significantly
degrades performance (𝑝 < 0.001), with MAE increasing by
1.80–9.58%, validating the necessity of all components.

5.6 Effects of Hyperparameters (RQ5)
In Figure 4, we study the effects of hyperparameters in DOL.
The results indicate that: (1) Increasing 𝑑𝑚 from 4 to 16
lowers MAE and RMSE by enhancing network capability,
whereas 𝑑𝑚 = 0, which ignores location-specific shifts,
significantly degrades performance, underscoring the impor-
tance of location-specific modeling. As DOL performs well
with 𝑑𝑚 = 4, we select it as our default setting. (2) DOL
performs best at 𝜆 = 1, with performance dropping as 𝜆 in-
creases. Removing Awake phases (𝜆 = 0) significantly de-
grades performance, indicating that distribution shifts over
time and requires online updates. Eliminating the Hibernate
phases (𝜆 = ∅) also hurts performance, confirming the bene-
fit of intermittent updates under gradual shifts. Surprisingly,
even with an extended Hibernate phase (𝜆 = 2), DOL out-
performs its no-Hibernate variant, implying overly frequent
updates can lead to overfitting.

6 Conclusion
In this paper, we investigate the gradual and location-specific
distribution shifts in urban ST streams and introduce DOL, a
novel distribution-aware online learning framework for urban
ST forecasting. DOL addresses gradual distribution shifts us-
ing a streaming update mechanism that intermittently pauses
network updates, enabling adaptation with lower computa-
tional overhead. It handles location-specific shifts through an
adaptive ST network with a location-specific learner, enabling
adaptation to varying shifts across urban locations. These
components can be seamlessly integrated into existing offline
ST networks to enhance performance. Extensive experiments
on four real-world datasets validate the effectiveness of DOL.
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