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Abstract

Financial fraud detection is critical for market
transparency and regulatory compliance. Existing
methods often ignore the temporal patterns in fi-
nancial data, which are essential for understanding
dynamic financial behaviors and detecting fraud.
Moreover, they also treat companies as indepen-
dent entities, overlooking the valuable interrela-
tionships. To address these issues, we propose
ACRF-RNN, a Recurrent Neural Network (RNN)
with Attention-based Conditional Random Field
(CRF) for fraud detection. Specifically, we use
an RNN with a sliding window to capture tem-
poral dependencies from historical data, and an
attention-based CRF feature transformer to model
inter-company relationships. This transforms raw
financial data into optimized features, fed into a
multi-layer perceptron for classification. Besides,
we also use the focal loss to alleviate the class im-
balance problem caused by rare fraudulent cases.
This work presents a real-world dataset to eval-
uate the performance of ACRF-RNN. Extensive
experiments show that ACRF-RNN outperforms
the state-of-the-art methods by 15.28% in KS and
4.04% in Recall,,. Data and code are available at:
https://github.com/XNetLab/ACRF-RNN.git.

1 Introduction

Deceptions in financial statements such as inflating profits
and understating liabilities can misguide investors and cause
severe losses [Zhu er al., 2021]. Thus, regulators mandate au-
dits and public disclosure of annual financial statements. Fi-
nancial statements comprise numerous accounting items that
can be viewed as high-dimensional features. In such data, de-
tecting financial statement fraud year by year is challenging
because of the concealed nature of such fraud and the lack of
labeled data. Recently, financial statement fraud detection has
attracted much attention from both academics and industries.
However, existing methods still face two drawbacks.

*Corresponding author.

Drawback 1: Temporal correlations in financial data have
long been neglected for fraud detection. Most existing
methods rely on the financial statements in a single year to
detect potential fraud. They overlook the strong temporal cor-
relation inherent in financial data. The financial condition of
a company tends to exhibit continuity and correlation in short
periods, and many fraud cases have shown that ongoing finan-
cial distress often leads to financial fraud behaviors spanning
multiple consecutive years [Bao er al., 2020]. For instance,
LeEco [Mao et al., 2022a] committed consecutive fraud from
2016 to 2017, Luckin Coffee [Mao et al., 2022b] from 2019
to 2020, and Enron [Bao et al., 2020] from 1997 to 2001.
Therefore, capturing temporal correlations in financial data
aids in improving fraud detection.

Drawback 2: There is a lack of effective methods to cap-
ture behavioral homogeneity of fraudulent companies.
Most existing methods treat companies as independent en-
tities. Although a few studies have demonstrated that ex-
plicit relationships (e.g., related-party transactions and invest-
ments) can aid in financial fraud detection [Wang et al., 2024;
Wang et al., 2025], the effect of implicit relationships on
fraud detection remains under-explored. In practice, com-
panies often exhibit behavioral homogeneity. For instance,
fraudulent activities frequently involve similar deceptive tac-
tics, resulting in similar behaviors. LeEco, Kangmei Phar-
maceutical, and Luckin Coffee committed financial fraud by
fabricating profits recorded in financial statements, while Hu-
nan Chinasun Pharmaceutical Machinery, Hirisun and Xintai
Electric artificially diminished their accounts receivable [Mao
et al., 2022a]. Tmplicit relationships can effectively model
such behavioral homogeneity for fraud detection enhance-
ment. Unfortunately, accurately and automatically capturing
implicit relationships among companies presents a significant
challenge. Furthermore, these real-world fraud cases also re-
veal diverse strategies, indicating that behavioral homogene-
ity varies across patterns. Consequently, relying on a single
implicit relationship may fail to capture homogeneity under
diverse patterns, underscoring the necessity of modeling mul-
tiple implicit relationships among companies.

To address these issues, this paper presents ACRF-RNN, a
Recurrent Neural Network with Attention-based Conditional
Random Field for financial fraud detection. To capture tem-
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poral patterns, ACRF-RNN treats a company’s annual finan-
cial statements as multivariate time series data, and uses a
recurrent neural network (RNN) to learn temporal correla-
tions across years. It utilizes a sliding time window to extract
short sub-sequences. The representation learned from each
sub-sequence is then used as the temporal embedding for the
most recent year within the window. Our model well captures
the temporal correlations of financial statements.

To address the second drawback, we propose a novel
multi-head attention-based Conditional Random Field (CRF)
to capture complex implicit relationships among companies
within a single year. Our method takes temporal embeddings
from different years as input and employs the multi-head at-
tention mechanism to capture implicit relationships under dif-
ferent patterns. The obtained similarity coefficients quantify
the strength of these relationships. Subsequently, the CRF
model recursively updates the company representations based
on the learned similarity coefficients to ensure that compa-
nies with similar behaviors are embedded closer in the latent
space. Finally, the company representations learned from all
attention heads are aggregated through a pooling operation
to produce the final representation, which is then fed into a
multi-layer perceptron for classification.

Since fraudulent companies are far fewer than benign ones
in practice, the model tends to predict test samples as benign,
making it difficult to accurately identify fraud samples [Liu et
al., 2023]. To address this issue, we use the Focal Loss [Lin et
al., 2017] to optimize the model by assigning higher weights
to fraudulent samples. The main contributions are as follows:

* We propose a novel Recurrent Neural Network with
Attention-based Conditional Random Field to capture
both temporal information and implicit relationships
among companies for financial fraud detection.

* We propose a multi-head attention-based Conditional
Random Field to model implicit relationships among
companies, which captures various common patterns of
fraudulent behaviors.

* We conduct extensive experiments based on a real-world
financial statement dataset to verify the effectiveness of
the proposed method. Experimental results demonstrate
that our model outperforms state-of-the-art methods by
more than 15.28% in KS.

2 Related Work
2.1 Financial Fraud Detection

Existing studies often adopt classic machine learning algo-
rithms, such as Logistic Regression [Lin et al., 2015], Sup-
port Vector Machine [Papik and Papikovd, 2022], Random
Forest [Yao er al., 2018], Decision Tree [Hajek and Hen-
riques, 2017], XGBoost [Aftabi er al., 2023], and Multi-
Layer Perceptron [Wang er al., 2021], to detect fraud behav-
iors. Craja et al. [Craja et al., 2020] utilized a hierarchical
attention network to extract text features from the Manage-
ment Discussion and Analysis section of annual reports. Be-
sides, companies’ true financial conditions often show con-
tinuity, with many fraud cases revealing that ongoing finan-
cial distress can lead to fraud spanning multiple consecutive

years [Bao et al., 2020]. Chen er al. [Zhang et al., 2021] de-
tected corporate financial fraud through a two-stage mapping
process within the combined temporal and financial feature
domains. Besides, there are rich explicit relationships be-
tween companies, such as related-party transactions and in-
vestment relationships, which can aid in detecting financial
fraud. Mao et al. [Mao et al., 2022c] construct a related-party
transaction knowledge graph and extract topological features
to improve fraud detection performance. Unlike previous
methods, we use an RNN model to effectively capture tempo-
ral correlations in financial statements. Moreover, our model
captures richer implicit relationships among listed companies
through a attention-based CRF.

2.2 Conditional Random Field

Traditional CRF models are often used as offline post-
processing layers for label refinement, capturing dependency
relationships between a reference sample and its context.
They are widely utilized in image segmentation [Chen er al.,
2018b] and named entity recognition [Chen et al., 2018al. In
recent years, researchers have combined CRF models with
graph convolutional networks to ensure that similar nodes
have similar representations [Gao et al., 2019; Xu er al.,
2021]. Such similarity constraints are often established us-
ing similarity calculated using Gaussian functions [Gao et
al., 2019] or shared labels [Xu et al., 2021]. Unlike previous
works, this paper proposes a novel multi-head attention-based
CRF to capture implicit relationships among companies un-
der various fraudulent patterns.

3 Preliminaries

This paper formulates the financial fraud detection as a
binary classification task. Consider a set of N compa-

nies. For a given company c;, its multivariate time se-
ries financial data are denoted as z; = [x},x?,--- ,x]],

where x! € R? is a d-dimensional feature vector extracted
from its financial statement for the ¢-th year, and T is the
length of the time series. Moreover, y; = [I},12,--- ,I]]
is the label sequence of z;, where [! is the label of x..
I! = 1 if company ¢; engages in fraud at time ¢, and
I! = 0 if otherwise. To effectively capture temporal cor-
relations from x;, we set a sliding window with a fixed

width w and slide it in z; to extract T-w+1 sub-sequences,
i'e.’ {xll—m;’x?—mﬁl7 e )sz-w+1—>T}’ where $§_7U+1_>t _
[xte*1,... xt] and w < t < T. For simplicity, we de-

i ) y Xi
note x1“*17% ag zt. And then the sub-sequence embedding
s! is learned from z!. Through learning the implicit relation-
ships across the N companies from S* = {si,--- s/}, the
final embeddings H' = {h!,---  h%,} are produced for clas-
sification. A classifier C is trained on {H',--- /H'"1} to

predict the labels of HY.

4 Methodology

4.1 Overview

Figure 1 shows the framework of ACRF-RNN. It consists
of three components: a Temporal Feature Extractor (TFE),
an Attention-based CRF Feature Transformer (ACRF), and a
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Figure 1: The framework of ACRF-RNN.

Classifier. TFE takes the multivariate time series x} as in-
put and produces a sub-sequence embedding s’ by learning
temporal information from financial statements. Next, ACRF
takes the sub-sequence embedding s as input and produces
the final embedding h! for company ¢; by learning implicit
relationships among behavior-similar companies. Finally, the
final embedding h! is fed into the Classifier for classification.

4.2 Temporal Feature Extractor

Financial condition of a company often exhibits continu-
ity and correlation in a short period. Capturing such cor-
relations is vital for fraud detection. Various enhanced
RNN-based networks, such as LSTM and GRU, have been
used to capture temporal information [Cheng and Li, 2021;
Cheng et al., 2020]. This paper utilizes a two-layer GRU
model [Cho et al., 2014] to capture temporal information due
to the advantages of fewer parameters, faster convergence,
and les[s ?Verfltting. The GRU model takes the sub-sequence
t __ Xi_w t

T; = g ,xi] of company ¢; as input to learn the

sub-sequence embedding s! = GRU (z!) as follows:

rt = O'(W.’crxff + Wsrsg_l + bl‘)’ ey

z' = U(szxg + Wszsg_l + bz)a ()

nt = tanh (Wmnxf -+ rtQWsnSE_l N bn)a (3)
st=z'0s;'+(1-z")on', )

where W = {W,,,, W,,, W_,} and b = {b,,b,,,b.} are
learnable weights and biases, respectively, © is the Hadamard
product, rf, z!, n? are the reset gate, update gate and can-
didate hidden state, respectively. The reset gate determines
whether the network ignores the previous hidden state infor-
mation, while the update gate determines whether the net-
work remembers the previous hidden state information. The
GRU produces s! € R? by aggregating temporal information
from the sub-sequence x%, where d is the dimension. s’ ™! is
derived from the sub-sequence a:f»_l, and so on.

i

4.3 Attention-based CRF Feature Transformer

This module comprises two sub-modules: a Multi-head At-
tention component and a Conditional Random Field (CRF)

model. The former aims to effectively learn inter-company
implicit relationships, and the corresponding similarity coef-
ficients indicate the strength of these relationships. The multi-
ple attention heads are used to capture various behavioral pat-
terns. The learned similarity coefficients are fed into the CRF
model to optimize the sub-sequence embeddings under each
attention head. The optimized sub-sequence embeddings are
aggregated to produce the final embedding for each company.

Multi-head Attention Mechanism

In practice, fraudulent companies often exhibit various fraud
patterns, such as inflating profits or understating liabilities.
A notable example is LeEco [Mao et al., 2022al. Besides,
the implicit relationships may vary under different patterns.
Therefore, we introduce a multi-head attention mechanism
to capture implicit relationships under different patterns, en-
abling more nuanced fraud detection. Specifically, the multi-
head attention mechanism consists of a shared feed-forward
network with m LeakyReLU gates [Maas er al., 2013]. First,
we define R! to measure the m-th implicit relationship

©,J,m
between company c; and c; as follows:

Rt .. = LeakyReLU,,(W,[s! & st]), (5)

1,7,
where LeakyReLU , (-) is the m-th gate to prevent informa-
tion loss, & denotes concatenating operation, W, € Rd'*2d
is the trainable weight matrix of the feed-forward network,
shared with all attention heads, and s} and s are sub-
sequence embeddings of company c¢; and c;, respectively.
To ensure all R! ., s are in the same magnitude and com-
parable, we perff)fm the softmax normalization operation to
R} ; ,, to obtain the similarity coefficient f; ;.
exp(R7 ; )
= 7 . (6)
Doken, ki PR )

The larger the value of ff, jm» the stronger the implicit rela-
tionship between company ¢; and company c; under the m-th
pattern.

Conditional Random Field Model
Based on the learned similarity coefficients, the CRF model
further optimizes the sub-sequence embeddings by perceiving

t
,J,m
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the homogeneity among companies [Krihenbiihl and Koltun,
2011]:

1
P(s) = e (CEM) )
where Z(-) denotes the normalization operation, h! denotes
the optimized sub-sequence embedding, and P (h!|s!) de-
notes the conditional probability of producing h! given s.
For simplicity, the subscript m of the similarity coefficients is
temporarily omitted. The goal is to maximize the conditional
probability P (h!|s!), which is equivalent to minimizing the
energy function F (h!|s!) [Gao et al., 2019]:

min £ (h]s}) =a [bf=s],+53_ fis [bi=hS],  ®
JEN
where ||hf—s!||,, named the unary potential, measures the

. 2
transformation loss from s} to hf, >~y fi ; ||hf — h}|[]

named the binary potential, perceives the homogeneity be-
tween company c¢; and those measured by their weighted dis-
tances, a and (3 are learnable parameters adjusting their im-
portance, respectively. The sub-sequence embedding main-
tains a certain degree of similarity before and after optimiza-
tion by minimizing ||h{ — s||,. Moreover, when f ; is large,

h! and h! are highly similar, and f; ; ||h! — h! Hz approaches
0. Conversely, when f ; is small, h} and hf are discrimina-

tive and f; ; ||h! — h H; also approaches 0. That is, ff; is
a supervisory signal promoting the optimized sub-sequence
embeddings of companies sharing similar fraud patterns to
be more similar. Equation (8) aims to achieve a balance be-
tween unary and binary potentials, striving to enhance the
discriminative power of the optimized sub-sequence embed-
dings while preserving the information from the original sub-
sequence embeddings.

The prerequisite for learning the optimized sub-sequence
embedding h! is to determine the true distribution of the
conditional probability P (hf|sf). Thus, we first formu-
late P (h!|s) ~ P (H!|S"), denoting the distribution func-
tion of the conditional probability. However, the time com-
plexity of computing exact P (H!|S?) will cause the whole
model to barely work. Therefore, we learn the sample
distribution Q (H?) and make it approximate the true dis-
tribution P (H!|S*), based on the mean-field approxima-
tion method [Gao er al, 2019]. This sample distribu-
tion Q (H') can be represented as a product of indepen-
dent marginal distributions through variational inference, ex-
pressed as Q (H') = [ h!. We minimize the KL diver-
gence distance between Q (H') and P (H!|S!) to obtain the
optimal sample distribution Q* (H). For company c;, ac-
cording to Equations (7), it can be deduced that:

Qi (hy) ~ exp(—E (hils})), ©)
where Q7 (h!) is a multi-dimensional Gaussian function with
the kernel F (h!|s!). Therefore, h! can be updated by calcu-
lating the expectation of @} (h!):

k
(ht)kH B as} +f ng]v fit,j(hg)
' at+ B en fi;

k=1,...,K, (10)

where K is a hyper-parameter indicating the epochs of iter-

. C . 0 ..
ations, initially, (h:) = sf. Based on the learned similar-

ity coefficient ff,j, the optimized sub-sequence embedding
h! can be learned recursively. It should be emphasized that
there are m learned similarity coefficients with m attention
heads. Therefore, we learn the m-th optimized sub-sequence
embedding h!, under m-th attention heads through Equa-
tion (10) for company ¢;. And then we use a SUM pooling
operation to obtain the final embedding:

M

hi=) b, (11)

where M is the total number of attention heads. Experimental
results verify that summation pooling is the best aggregation
in our fraud detection task.

4.4 Model Training

The optimized sub-sequence embedding h! is then fed into a
multi-layer perceptron (MLP) for classification:

p; = o(MLP (hj)) (12)

where p! denotes the probability that company c; is predicted
to be fraudulent at time ¢, o (-) denotes the activation function.
We employ the Focal Loss [Lin et al., 2017] to optimize the
model, which can alleviate the class imbalance problem by
assigning higher weights to fraud companies:

1 N t t
FL = _ﬁ . [_abalance(l - pl) log(pz)] (13)
=1
where apgiance 1S @ hyperparameter balancing the weight of
benign and fraud companies.

5 Experiments

5.1 Datasets

We collect a real-world dataset containing multivariate time
series financial data from 491 Chinese listed companies from
2010-2020. In each year, each listed company has 208-
dimensional features derived from its financial statement. To
extract more comprehensive features for accurate fraud de-
tection, we refer to the fraud triangle theory to select the
following three types of features: i) 91-dimensional finan-
cial features such as profits, ownership interest and cash flow,
ii) 7-dimensional basic features such as industry and listed
time, and iii) 110-dimensional fraud features aligned with Sk-
ousen’s framework [Skousen er al., 2009]. Companies pe-
nalized by China Securities Regulatory Commission due to
the violation of the accounting standards are labeled as fraud
companies, and others are defined benign ones. All data are
collected from the China Securities Regulatory Commission'.

5.2 Baseline Methods

We compare eight baseline methods with our method, in-
cluding two classical machine learning methods (Logis-
tic Regression (LR) [Cucchiara, 2012] and Decision Tree
(DT) [SONG and LU, 2015]), two ensemble learning meth-
ods (LightGBM [Ke et al., 2017] and XGBoost [Chen and

"http://www.csrc.gov.cn/
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Training set Testing set

Partitions (# Fraud / # Benign) (# Fraud / # Benign)

Validation 2010-2016 (874/2653) 2017 (122/369)
Test 1 2010-2017 (996/2932) 2018 (127/364)
Test 2 2010-2018 (1123/3296) 2019 (110/381)
Test 3 2010-2019 (1233/3677) 2020 (86/405)

Table 1: Training, validation and testing data split by year.

Guestrin, 2016]), three GNN-based methods (GCN [Kipf and
Welling, 20171, GAT [Veli¢kovié er al., 2018] and Graph-
SAGE [Hamilton et al., 2017]), and one state-of-the-art fraud
detection model ADGAT [Cheng and Li, 2021]. For a fair
comparison between ACRF-RNN and GNN-based methods,
we construct a static audit-sharing graph, where the nodes
represent the company-year pair, and the edges connect nodes
audited by the same audit institution.

5.3 Evaluation Metrics

Four widely adopted metrics are used to measure the perfor-
mance of different methods. Accuracy calculates the percent-
age of all correctly classified samples to assess classification
performance. Recall,, [Grandini et al., 2020] averages recall
across all classes. G-mean [Sun et al., 2006] is defined as
the geometric mean of the recalls over all classes. A low G-
mean indicates poor identification ability of a model for at
least one class. As a popular metric to assess the discrimina-
tion ability between fraud and benign samples, KS [Massey
and Frank, 1951] measures the maximal difference between
True Positive Rate and False Positive Rate as the classifica-
tion threshold shifts from O to 1.

5.4 Experimental Settings

In real business scenarios, financial fraud detection is con-
ducted once a year, using models trained on historical data
to detect fraud companies for the current year. Therefore,
we split the real-world dataset by year. Specifically, we use
the data from 2010 to 2016 for training and use the data
from 2017 as validation to adjust hyperparameters. Next,
with fixed hyperparameters, we train the model on data from
2010 to T, and test it on data at the (T'+1)-th year, where
T € {2017,2018,2019}. Table 1 details the partitions.

We implement ACRF-RNN based on PyTorch 1.12.1 with
Python 3.8, and all the experiments are run on a Ubuntu 16.04
LTS server. Grid search is employed to select the optimal
hyper-parameters based on the validation set. All parameters
are initialized using the Kaiming initialization and are trained
using the Adam optimizer with an initial learning rate of 0.01.
The optimal time window size w is 5, the iteration of CRF K
is set to 5, the sub-sequence embedding dimension d is set to
64. The attention layer consists of M = 3 attention heads and
its hidden size d’ is set to 32. And the penalty coefficient of
fraud sample apgiance 1S set to 0.15.

5.5 Results and Analysis

Table 2 shows the experimental results. ACRF-RNN sig-
nificantly outperforms all baselines in all experimental set-
tings. Among all the test results, ACRF-RNN achieves the

highest accuracy score, indicating the best overall classifica-
tion performance. Compared to all baselines, the improve-
ment in KS is 15.28-25.34%, indicating that ACRF-RNN ex-
cels more in distinguishing between fraud and benign sam-
ples. Besides, KS exceed 40% over three consecutive testing
years, demonstrating its powerful generalization and robust-
ness. The improvement of ACRF-RNN in Recall,, scores is
4.04-6.58%, indicating the best identification ability. How-
ever, such higher Recall,, scores may also be due to excessive
focus on fraud samples, which can lead to more benign sam-
ples being misclassified. Therefore, we use G-mean for aux-
iliary evaluation. ACRF-RNN achieves a high G-mean score
of around 70% in all test results and outperforms all base-
lines. This finding indicates that our model steadily achieves
high performance at different years.

Machine learning methods demonstrate suboptimal perfor-
mance, indicating that the extracted rich raw features are ef-
fective in detecting financial fraud. Ensemble learning meth-
ods perform better than machine learning methods because of
their stronger robustness and generalization ability. However,
these methods have lower performance than ACRF-RNN be-
cause they fail to capture temporal information and implicit
relationships.

GCN, GAT, and GraphSAGE have relatively poor perfor-
mance, indicating that explicit relationships, such as audit-
sharing, may not be suitable for the financial fraud detection
task. This finding also demonstrates the importance of select-
ing proper explicit relationships, which are labor-intensive.
On the contrary, our method can automatically explore vari-
ous implicit relationships among companies for latent feature
optimization and achieves optimal performance.

ADGAT achieves the second-best performance, trailing
only ACRF-RNN. The key difference lies in how it model
inter-company implicit correlations. ADGAT concatenates
high-attention neighbor node vectors, whereas ACRF-RNN
optimizes feature vectors by minimizing energy loss. Be-
sides, ACRF-RNN employs an inductive feature transforma-
tion, enhancing generalization without relying on specific
prior knowledge.

5.6 Ablation Study

We design three variants of ACRF-RNN to validate the effec-
tiveness of three key components. ACRF-RNN (w/o TFE)
removes TFE, utilizes a linear layer to transform the raw fea-
tures of a single annual financial statement instead of sub-
sequences, and feeds the output of the linear layer into ACRF.
ACRF-RNN (w/o FT) excludes ACREF, feeding TFE outputs
directly to the classifier. ACRF-RNN (w/o FL) replaces Focal
Loss with cross-entropy to assess class imbalance handling.
Table 3 shows the average experimental results of all vari-
ants on three test sets. The full ACRF-RNN outperforms all
variants, demonstrating the effectiveness of all components.
ACRF-RNN (w/o TFE) shows the worst performance on all
metrics scores, demonstrating the effectiveness of learning
temporal information. Compared to ACRF-RNN (w/o FL),
the full model significantly boosts Recall,,, G-mean, and KS
scores. This finding indicates that Focal Loss effectively en-
hances the model’s ability to identify fraud samples but may
misclassify benign samples.
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\ Test 1 (2018) Test 2 (2019) Test 3 (2020)
Methods | Acc  Recall, KS G-mean | Acc  Recall,, KS G-mean | Acc  Recall,, KS G-mean
LR 61.71 60.33 20.67 60.27 55.40 60.27 20.53 59.62 53.16 57.87 15.73 57.41
DT 57.43 60.01 20.02 59.77 55.19 56.90 13.81 56.82 60.08 58.40 16.80 58.34
LightGBM 63.14 65.65 31.31 65.45 62.32 64.08 28.17 64.00 63.54 65.99 31.99 65.89
XGBoost 61.71 61.87 23.74 61.87 62.12 61.36 22.73 61.35 66.40 66.35 32.70 66.35
GCN 54.18 57.56 15.12 57.13 56.42 55.75 11.50 55.74 52.55 57.50 14.99 56.99
GAT 61.91 57.39 14.79 56.63 49.69 56.92 13.83 55.39 65.38 56.57 13.15 54.93
GraphSAGE | 47.05 47.37 5.27 47.36 63.34 50.51 1.03 44.85 68.02 53.14 6.28 47.95
ADGAT 76.17 68.04 36.07 65.91 79.23 72.07 44.13 70.89 77.39 67.52 35.04 65.79
ACRF-RNN | 77.60 70.79 41.58 69.37 80.45 75.44 50.88 74.89 79.43 71.96 43.92 71.04
Impr. 1.88%  4.04% 15.28% 5.25% 1.54%  4.68% 15.30% 5.64% 2.64% 6.58% 25.34% 7.07%
Table 2: Comparison results (%) of ACRF-RNN with eight baseline methods.
Methods Acc  Recall,, KS G-mean standing of the overall temporal correlation. The optimal
ACRF-RNN (w/o TFE) 5675  48.65 4.37 46.42 performance is achieved when w = 5. However, further in-
ACRF-RNN (w/o FT) 7895 7028 4135  69.05 creasing w leads to a decline in performance because long-
ACRF-RNN (w/oFL) 79.63 7095 4191 69.25 term correlation may harm the learning of recent character-
ACRF-RNN 7916 7273 4546 7177 istics. Figure 3(b) shows the effect of apgiance. KS initially

Table 3: Performance (%) of different variants of ACRF-RNN.
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Figure 2: Performance of ACRF, GCRF and NCRF.

To further verify the effectiveness of the multi-head atten-
tion mechanism in capturing implicit relationships, we im-
plement the CRF-Gaussian and CRF-NN layers proposed
by [Gao et al., 2019] in our model, creating two variants
named GCRF-RNN and NCRF-RNN. Specifically, GCRF-
RNN computes ff’ ; by a Gaussian function, and NCRF-RNN

computes ff ; by a flexible neural network. Figure 2 shows
their performance on three test sets. ACRF-RNN outperforms
NCRF and GCRF on all metrics, indicating the effective-
ness of the multi-head attention mechanism in learning sim-
ilarity coefficients for capturing multiple similar behaviors
among companies. The Gaussian function is highly sensi-
tive to outliers, resulting in imprecise similarity assessments.
Neural networks, albeit more adaptable than Gaussian func-
tions, capture only a general sense of similarity. The multi-
head attention mechanism is adept at discerning implicit re-
lationships in different subspaces and thus achieves higher
performance.

5.7 Sensitivity Analysis

Figure 3(a) illustrates the effect of the width of the time win-
dow w. As w increases, all metrics first decrease and then
increase. A small w makes the model only observe a small
part of the whole sequence, leading to insufficient under-

rises and then decrease as apqiqnce iNCreases, reaching a peak
at apglance = 0.15. A larger value of apqignce directs the
model’s attention towards fraud samples, aiding in improv-
ing the recognition capability for the fraud class. However,
as Gpalance CcONtinues to increase, the model might overly em-
phasize fraud samples, neglecting crucial information from
benign samples. This could lead to a decrease in overall per-
formance. Figure 3(c) demonstrates the model’s performance
as the number of iterations K varies. As K gradually in-
creases, the model’s effectiveness experiences slight fluctua-
tions. As K continues to rise, the model’s performance be-
gins to deteriorate, potentially due to the overfitting caused
by excessive iterations. Figure 3(d) demonstrates the effect
of the number of attention heads. When M is small, the
model may fail to fully capture the complexity of various pat-
terns, leading to insufficient representational capability. Con-
versely, too many heads might cause overfitting.

5.8 Further Research

To further explore the role of the multi-head attention mech-
anism in capturing fraud pattern diversity, we visualize the
learned similarity coefficients from different attention heads
in experiment Test 2 (2019), as shown in Figure 4. The
heatmaps illustrate the attention coefficients from three dis-
tinct attention heads. The lightness of color in these heatmaps
corresponds to the attention weights, with lighter hues in-
dicating stronger connections between companies. Each
heatmap reveals unique attention patterns, signifying that
each head specializes in a distinct feature subspace to infer
similarity relationships among companies. Such diversity en-
ables the model to capture broader information from the train-
ing data.

Additionally, within the same attention head, we randomly
select 50 benign companies and 50 fraud companies to visual-
ize their similarity coefficients, as shown in Figure 5. Fraudu-
lent companies tend to have relatively higher similarity, sug-
gesting that they share more common behavioral character-
istics, such as overstatement of revenue, cost manipulation,
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and inflation of reported financial outcomes. A comparison
of Figure 5(a) and 5(b) reveals that benign companies exhibit
more diverse behavioral patterns than fraudulent ones.
Moreover, we conduct experiments using the
LIME [Ribeiro et al, 2016] interpretability framework
to identify key features aiding in detecting fraud companies.
Figure 6 shows results for a randomly selected fraudulent
case. “Financial Expenses” and “Income Tax Expenses”
are identified as the top two features contributing to the
classification of this sample as fraudulent. Both of them
directly impact a company’s cash flow. Fraudulent activities
might aim to misrepresent the company’s cash flow situation
by manipulating these expenses. For instance, understating
income tax expenses can temporarily inflate earnings,
presenting an unrealistically positive financial performance.
In order to verify the performance of ACRF-RNN, the raw
features and the learned final embeddings of companies are
visualized by t-SNE [Rauber er al., 2016; Lv et al., 2025]
in Figure 7. The shade of the color and the change in the
size of the points together represent the density distribution
of the data points, with darker and larger points having higher
density. The distribution of raw features is more uniform,
while the learned final embeddings are more discriminative

Financial Expenses

Income Tax Expenses

Operating Profit

Employee Compensation Payable

Feature

Total Operating Revenue
Total Liabilities

Institutional Investor Ownership
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Figure 6: Explainability analysis.
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Figure 7: Distribution differences of learned embeddings.

and exhibit obvious cluster characteristics. It indicates that
ACRF-RNN learns critical information during the training,
improving the distinction between fraud and benign samples.

6 Conclusion

This paper presents ACRF-RNN, a novel recurrent neural
network (RNN) with an attention-based conditional random
field (CRF) for financial fraud detection. The RNN cap-
tures critical temporal patterns in multivariate financial time
series for each company, producing the sub-sequence em-
beddings. Besides, the attention-based CRF models inter-
company implicit relationships to refine these sub-sequence
embeddings for improved classification. Experiments on
real-world datasets show that ACRF-RNN outperforms state-
of-the-art methods, achieving average gains of 2.02% in ac-
curacy, 5.1% in Recall,, and 18.64% in KS. Future work will
focus on the effect of implicit relationships between different
companies across adjacent years on financial fraud detection.
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