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Abstract

Machine learning has advanced in predictive tasks,
but practitioners often need to proactively avoid un-
desired outcomes rather than just predicting them.
To this end, a framework called rehearsal has been
introduced, which tackles the avoiding undesired
future (AUF) problem by modeling how variables
influence each other and searching for a decision
that leads to desired results. In this paper, we pro-
pose a novel rehearsal approach for addressing the
AUF problem by making a sequence of decisions,
where each decision is dynamically informed by
the latest observations via retrospective inference.
Theoretically, we show that sequential decisions in
our approach tend to achieve a higher success rate
in avoiding undesired outcomes by more reliably
inferring the outcome of actions compared with ex-
isting solutions. Perhaps surprisingly, our approach
remains advantageous even under imprecise mod-
eling of relations between variables, and we pro-
vide a sufficient condition under which the advan-
tage holds. Finally, experimental results confirm
the practical effectiveness of the proposed approach
in both simulated and real-world tasks.

1 Introduction

“It is difficult to predict, especially the future,” the renowned
physicist Niels Bohr once remarked. Decades later, develop-
ments in machine learning (ML) have significantly improved
our ability to make accurate predictions [Scarpino and Petri,
2019; Brown et al., 2020; Bi et al., 2023]. However, predic-
tions alone are not satisfactory, if the predicted results are un-
favarable for us. It remains challenging to suggest proactive
decisions to avoid the undesired results [Zhou, 2022b].
Machine learning techniques often fall short in addressing
the problem of avoiding undesired futures (AUF), as they pri-
marily focus on capturing statistical dependencies in obser-
vational data without understanding underlying mechanisms.
For the AUF problem, modern methods leveraging causal re-
lations [Pearl, 2009; Peters et al., 2017] would be helpful.
However, identifying causal relations is inherently difficult
and not always a necessary prerequisite for decision-making.
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Figure 1: Relationship among correlation, causation, and influence.

After all, we humans make decisions everyday without entail-
ing a complete understanding of the world around us. More-
over, even when identifiable, causal factors are useless for
decision-making if unactionable, and factors influencing the
future do not necessarily manifest causations. To this end,
a new framework known as rehearsal has been developed
[Zhou, 2022b], building on the concept of influence [Zhou,
2023], which was called rehearsal relation in Zhou [2022b]
but then renamed to avoid confusion of the relation and the
process. As illustrated in Fig. 1, influence serves as an inter-
mediate concept between correlation and causation. Based on
this, the AUF problem has been formulated as the search for
a decision from hypothesized “rehearsals” of possible actions
that leads to desired outcomes [Qin et al., 2023].

It is noteworthy that many real-world tasks cannot be ac-
complished in one stroke, and thus searching for a single de-
cision may not fully solve the AUF problem. For example,
consider an online retailer who has decided to advertise a
new product to avoid poor sales. Despite receiving a lot of
clicks on the advertisement, not many people made a reser-
vation. These observations allow us to retrospectively infer
that the high click-through rate indicated customer interest,
but the low reservation rate reflected that customers found
the product too expensive. Subsequently, the retailer chose to
offer a discount, which improved customer retention and ul-
timately led to the product reaching the desired sales level.
This example highlights the need to make multiple deci-
sions that sequentially adjust distinct variables based on avail-
able observations in order to fully address the AUF problem.
While recent studies on rehearsal have proposed methods for
handling multiple variables simultaneously [Du et al., 2024;
Qin et al., 2025], these methods remain confined to compos-
ing a single decision. They cannot leverage past observations
adaptively, thus leaving the more general and practically im-
portant case of sequential decision making untouched.

In this paper, we propose the first rehearsal approach for
suggesting a sequence of decisions to avoid undesired out-
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comes. A crucial ingredient of the proposed approach is its
ability to integrate, at each decision stage, available observa-
tions into the structural rehearsal models [Qin et al., 2023]
through retrospective inference, i.e., inferring potential fac-
tors from present information. Hence, each decision in the
sequence is informed by preceding actions and their conse-
quences, constituting a collaborative effort to influence the
outcomes. Theoretically, we show that the sequential deci-
sions in our approach can lead to a higher success rate in
avoiding undesired outcomes compared with existing solu-
tions by more reliably inferring the outcome of actions. No-
tably, our approach maintains this advantage even under im-
precise modeling of relations between variables, a common
challenge in open and dynamic environments [Zhou, 2022a]
where these relations might be changeable. A sufficient con-
dition is established to ensure the superiority. Our main con-
tributions are summarized as follows.

* We present a multi-stage formulation of the AUF prob-
lem, enabling a sequence of decisions to collaboratively
prevent undesired outcomes.

* We propose the first rehearsal approach to make sequen-
tial decisions, where each decision is informed by the
latest observations via retrospective inference.

* We provide a sufficient condition under which sequential
decisions in our approach outperform single decisions,
even when the modeling is imprecise in a linear setting.

* We corroborate the superiority of the proposed approach
over existing solutions throughout the learning process
for both simulated and real-world tasks.

2 Background

In this section, we present a brief overview of structural re-
hearsal models (SRMs) accommodating structural interac-
tions between variables and the AUF problem.

2.1 Structural Rehearsal Models

An SRM is comprised of a set of potentially time-varying
rehearsal graphs and structural equations [Qin er al., 2023].

A rehearsal graph G consists of a set of vertices V, repre-
senting variables of interest, and a set of edges E connecting
these variables. These edges can be either directional or bi-
directional. B — C indicates that B causes C, while B <+ C
denotes that B and C can affect each other.

For example, the graph in Fig. 2a illustrates a typical sales
scenario for a store during a sales season. In this scenario,
the number of salespersons B and the number of customers
C mutually influence each other, collectively determining the
level of discounts D, which in turn affects sales F'. The re-
hearsal graph can change over time: in the next seasons, new
marketing strategies can be implemented by the store man-
ager. For example, the number of customers alone is used
to determine the discount level in Fig. 2b, and a cashback (a
form of discount) is offered based on the number of customers
and the sales in Fig. 2c.

When sales are predicted to fall outside the desired range,
the store manager can take actions, such as offering a 50%
discount, to influence sales. This type of operation, which
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Figure 2: Illustration of rehearsal graphs.
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Figure 3: Illustration of alterations on rehearsal graphs.

alters variable A to a fixed value a, is called an alteration and
denoted by Rh(A = a). It indicates a rehearsal of altering A
to a in realistic or hypothetical means. When an alteration is
applied to a graph G, the incoming arrows of A are removed,
resulting in an altered rehearsal graph G*. For example, the
action of altering D, B, or C' in the rehearsal graph G1, Go,
or (G5 as shown in Fig. 2, results in the altered graph G{D s Gf s
or G¢ in Fig. 3, respectively.

For a rehearsal graph G over variables {V;}Z_,, the corre-
sponding structural equations are defined as

Vi = fi(pas, €;), 9]

where f; determines the value of V; by taking as argument
pa; = {V | V = V; in G}, the parents of V;, and ¢;, a noise
term according to the probability distribution p(ey, ..., €4),
abbreviated as p(e). We use f to denote the set of structural
functions {f1, ..., f4} for a rehearsal graph G.

Together, the rehearsal graph G, the corresponding struc-
tural equations, and noises p(e) constitute an SRM M =
(G, f,p(€)). In this paper, the rehearsal graph, which en-
codes the structural connections among variables, is supposed
to be provided based on background knowledge, while the
structural equations are learned from data.

2.2 The AUF Problem

The AUF problem is formulated in a specific period of time,
which we refer to as a season. During a season, an agent can
observe variables X, and the observation may lead to unde-
sired predictions from a model. The agent can also perform
alterations on actionable variables A, aiming to ensure that
outcome variables Y fall within a desired region S. Formally,
the success of the outcome y falling into S is indicated by

1(yes), (2)

where the actual outcome y depends on the observation x and
the alteration Rh(A = a), in which A is one of the actionable
variables in A and « is in the set of feasible values A(A).
Unfortunately, it is infeasible to directly optimize Eq. (2)
since the actual outcome y cannot be altered after it has been
observed. After all, no one can change what has already hap-
pened. One approach to addressing the AUF problem is to
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predict the outcome in advance and minimize the probability
of Y falling out of S:

gﬂelgagg&)P(Y ¢S|X=x,Rh(A=aqa)), O
where the uncertainty is characterized by the noise terms of
the structural equations in Eq. (1). It is noteworthy that while
the decision by Eq. (3) involves a single actionable variable,
the formulation can be easily adapted to utilize multiple ac-
tionable variables within a single decision.

A weakness of the approach of Eq. (3) is that all observ-
able variables X must be available before choosing the ac-
tionable variables A. This requirement may not be realis-
tic in practice; e.g., the observation of the click-through rate
occurs after the advertisement action has been taken, as dis-
cussed in Section 1. The limitation persists in subsequent
studies on the AUF problem [Du et al., 2024; Qin et al., 2025;
Du et al., 2025], so it is imperative to resolve this issue.

3 The Proposed Approach

In this section, we propose addressing the AUF problem with
multi-stage decisions and introduce the first rehearsal ap-
proach that tackles AUF by suggesting a sequence of alter-
ations, each informed by past alterations and observations.

3.1 Multi-Stage AUF

We treat AUF as a multi-stage decision-making problem. At
the m-th stage, an agent might make an observation o{™ on
currently observable variables O™ and could perform an al-
teration Rh(A(™ = a{™)) on actionable variables in A{™).
After M stages, a season ends, and the outcome y is revealed.
The whole decision-making process is illustrated in Fig. 4.
Formally, the objective is to minimize

1 (y ¢S | 0<1>7Rh(a<1>)7 . o(M>,Rh(a(M>)) , @

where Rh(a{™) is an abbreviation of Rh(A™ = a{™), by
finding a sequence of alterations Rh(a‘'),..., Rh(aM?).
Comgared with the variables Eq. (3), we have Of{m) C X and
A{m) C A for all m. In addition, the sets O™ and A (™)
can be empty for some m. When only O(Y) and AV are
non-empty, Eq. (4) is degraded to the probability in Eq. (3).

Minimizing Eq. (4) is challenging for several reasons.
First, outcomes y are not known until the end of a sea-
son, similar to the case of Eq. (2). Second, the variables
O{™+1) are not observable at the m-th stage because they
have not yet occurred. At this stage, the available information
of oV, ..., 0™ and Rh(a'"),..., Rh(a‘™) can be lever-
aged, but we still need to anticipate the variables that have not
been observed or altered. Third, some variables in X may re-
main unavailable even after they have occurred. For example,
in the online retailer scenario, while the click-through rate
and reservation rate can be obtained in real time, the price
most customers are willing to pay may not be immediately
observable. Gathering this information through a specialized
customer survey is often costly and time-consuming, making
it challenging for immediate decision-making use.

The above challenges are pervasive in multi-stage AUF. In
Qin, Wang, and Zhou (2023), they focus solely on a single
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Figure 4: Illustration of multiple-stage AUF in a rehearsal graph. At
each stage m, the variables O™ in X{™) are observed, and some
variables in A (™ are altered to avoid undesired outcomes.

decision stage, so variables that are not observable before the
decision stage are not represented and do not influence the
decision. However, in multi-stage decision-making, the vari-
ables that are not immediately accessible at each stage are
naturally modeled and can play an important role in inferring
the outcome of alterations. In the next subsection, we attempt
to address these challenges by proposing a novel multi-stage
rehearsal approach, which minimizes the probability of fail-
ure computed based on the structural rehearsal models and
integrates the observations at each stage into the structural
rehearsal models through retrospective inference.

3.2 Multi-Stage Rehearsal

The multi-stage rehearsal (MSR) approach comprises three
key components: probability estimation, alteration selection,
and information integration. The primary component, alter-
ation selection, is supported by the other two components.
MSR operates by iteratively repeating the phases of observa-
tions and alterations at each stage, systematically integrating
the information from both observations and alterations into
the rehearsal model. The outline of MSR is shown in Algo-
rithm 1. In what follows, we will first describe the compo-
nents of probability estimation and alteration selection based
on an informed rehearsal model, and then elaborate on the
component of information integration, for which we employ
retrospective inference to leverage available observations.

Probability Estimation. Estimating the probability of fail-
ure is straightforward by following Qin et al. [2023], pro-
vided that the information from existing observations and
alterations have been incorporated into the rehearsal model.
First, we sample N i.i.d. noises {€;}}, from the distribution
p(€). Each noise €; is then input into the structural equations
f to determine the outcome y; as specified in Eq. (1), ver-
tex by vertex following the topological order of the graph G.
Finally, the probability of failure is estimated as the propor-
tion of outcome variables falling out of the desired region S,

ie., Zfil 1(y; ¢ S)/N. This estimation procedure will be
utilized in the component of alteration selection.

Alteration Selection. As shown in Line 7 of Algorithm 1,
the goal here is to search for an alteration that minimizes
the probability of failure given the current rehearsal model
(G, f,p(e)). Formally, we have the following objective

min  min P (Y ¢S (GA7fA,p(e)>) , 5)

AcA{m) a€A(A)
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Algorithm 1: Multi-Stage Rehearsal

Input: Number of stages M
Output: Sequence of alterations .4
1 Initialize the sequence of alterations A = [ ].
2 form <~ 1to M do
3 Acquire rehearsal model M <« QG, f.p(e)).
4 Make a new observation o on O/,
5 Obtain the updated noise p°(€) by incorporating o
into p(e) through retrospective inference.
6 Update rehearsal model M « (G, f,p°(€)).
7 Select an alteration Rh(A = a) from A (™ by
minimizing the probability of failure.
8 Obtain the altered graph G from G by removing
the incoming arrows of A in G.
9 Obtain the altered equations f¢ from f by setting
the equation of A to A = a.
10 Update rehearsal model M < (G4, £, p°(e)).
11 Append the selected alteration Rh(A = a) to the
sequence of alterations A.

12 end

where G4 and f4 are obtained as in Lines 8 and 9 of Al-
gorithm 1, respectively. While the set of actionable variables
A (™) is finite, the feasible values A(A) can be continuous.
In such cases, a direct method is to perform a grid search to
determine its value, and a more advanced method is Bayesian
optimization [Shahriari ef al., 2015], as adopted in Qin et al.
[2023]. Besides, unlike those in Egs. (3) and (4), the condi-
tional probability employed here to derive the optimal solu-
tion are conditioned solely on the rehearsal model. We note
that this is computationally sound, as information from both
the given observations and alterations can be integrated into
the rehearsal model, as detailed below.

Information Integration. Information integration is a key
component of MSR, responsible for incorporating all avail-
able observations and alterations into the rehearsal model—a
basic step for the other two components. When an alteration
is applied, both the structure of the rehearsal graph and the
corresponding structural equations are updated accordingly.
Specifically, the rehearsal graph is modified by removing the
incoming arrows of the altered variable, and the structural
equations are updated by setting the equation of the altered
variable to its new value. In contrast, observations are in-
corporated into the model by updating the noise distribution
to ensure that the sampled variables during probability esti-
mation align with the observed variables. While integrating
alterations into the rehearsal model is straightforward, the in-
tegration of observations requires more effort and discussion.

If an observed variable O has no parents in the rehearsal
graph, simply setting the variable to the observed value dur-
ing probability estimation is enough. However, when O has
parents, and the values of parent variables are not currently
available, fixing the observed variable alone during probabil-
ity estimation is inadequate. This is because the parent vari-
ables, which may affect future variables, also need to be con-
sistent with the evidence provided by the observed variables.
One straightforward method to align the parent variables with

the observed values is rejection sampling, which involves dis-
carding samples that do not match the observed data during
the probability estimation phase. However, this approach is
notoriously inefficient. For example, when a standard nor-
mal random variable is observed, regardless of the observed
value, its measure is always zero, making it nearly impossible
to sample it by coincidence. In the next subsection, we ad-
dress this issue by employing retrospective inference, which
aims to efficiently integrate the information of any observa-
tions into the the noise distribution of rehearsal models.

3.3 Retrospective Inference

We start by illustrating the procedure of retrospective infer-
ence with a simple example. Consider we have a rehearsal
model defined by the structural equations:

E:Q+P+€ev Q:€q7 Pzﬁpv (6)
where the noise terms ¢, and ¢, are independent and follow
the normal distribution A/(0, 1). This example represents an
online retailer scenario in which the reservation rate E is af-
fected by the click-through rate ) and the acceptable price of
customers P, as depicted in Fig. 4.

Suppose that the reservation rate F and the click-through
rate () are observed to be e and ¢, respectively. To integrate
these observations into the model, we would infer the noise
posteriors, which ensures that the variables determined by
the sampled noises during the probability estimation proce-
dure are consistent with the observations. Concretely, given
observations of £ = —1 (indicating a low reservation rate)
and Q = 1 (indicating a high click-through rate), we obtain
—1 = 1+¢,+¢€., from which the posterior of ¢, is inferred as
N(—1,0.5). This suggests that the acceptable price of cus-
tomers P = ¢, is likely to be low, indicating that customers
perceive the product too expensive. Consequently, the retailer
should increase discounts rather than investing in additional
advertisements to prevent poor sales.

The integration procedure described above is known as rez-
rospective inference, as it updates the agent’s beliefs by ret-
rospectively incorporating present information (e.g., ¢ and e)
with relevant past factors (e.g., €,,). This ability emerges early
in human development [Kirdly et al., 2018], suggesting its
potential to facilitate machine decision-making. Thus, we in-
corporate this capability into the component of information
integration. In scenarios where the posterior distribution is
not analytically tractable, existing approximation techniques
such as variational inference [Bishop, 2006] can be directly
employed. Below, we present complete formulas for updating
the noise distribution within a linear rehearsal model, accom-
modating arbitrary alterations and observations.

Formally, the model has structural equations of the form

v=Av+e, @)
where v = [V4,..., Vy] is a vector containing variables in a
rehearsal graph G, A is a matrix containing the coefficients
of the model with A;; = 0 when there is no directional edge
from V; to V; in G, and € = [e1, . . ., ¢4] is a vector of normal
noise terms with mean 7 and covariance 2. The mean and
covariance of v are given by

Hv = (I - A)_1777

8
Yov=T—=NT1QUI-A)"". ®)
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Before updating the noise distribution with current obser-
vations, we need to modify the coefficient matrix according

to preceding alterations A = {Rh(A™)},,. Specifically, A
is updated to a new matrix A = [A;;] defined by:

0 if Rh(V;) in A
A%ew if Rh(V;)in Aand V; < V;in G (9)
A;;  otherwise

Aij =

where A7'?" is the coefficient of a new parental relation ac-
tivated by the alteration of one of the interrelated variables.
The mean p,, and covariance X , of the variables V under

alterations A is thus updated to
iy = (I —A)"!
pe=(I=4) R (10)
Yev=UI—-AN)"QUI—-A)"

Then, we can obtain the conditional mean and covariance of
'V under the observations o [Bishop, 2006]:

7v+ivoig}) o — 70 9
i 0%, (1_ Ho) an
Yv,020.020,v-

uv\o
2v wvio = Zv v

Finally, the distribution of € under alterations and observa-
tions is updated from N (n, 2) to N (7¢jo, Qe o). Where

( 7110)7

leto =0+ (I~ M)y 0555
Nefo =N+ (I = A) ol W
oZanSon(I—A)T.

Qeclo=0— (I —AN)Zy,

4 Theoretical Analysis

In this section, we theoretically justify our approach by guar-
anteeing computational efficiency through structural informa-
tion and demonstrating the advantage of sequential decisions
over single decisions even with imprecise variable relations.

Efficiency Analysis. Let [V be the number of samples used
in probability estimation for alteration selection, and let C be
the number of feasible values in Eq. (5). The complexity of
the proposed approach is provided as follows.

Theorem 1. Suppose that the structural equations in the re-
hearsal model are linear Gaussian. Then, the computational
complexity of Algorithm 1 is O(MNCd + Md*).

Theorem 1 states that the efficiency of MSR is governed
by a polynomial term with respect to the number of vari-
ables d by leveraging the linearity of structural equations
in SRMs. Note that the number of feasible values C' nat-
urally exists for discrete variables, and for continuous vari-
ables, it can be easily determined based on the granular-
ity of grid search or Bayesian optimization, so our analy-
sis is general and applicable across various scenarios. One
feature of the modeling with SRMs is that it enables the
utilization of structural information to facilitate both theo-
retical analysis and algorithmic design, such as the use of
linear Gaussian equations considered in [Qin ef al., 2023;
Du et al., 2024]. Unlike previous studies that focus on single
decisions, here we highlights the benifit of structural infor-
mation in the context of sequential decision making.
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Figure 5: Illustration of the consequences of the alteration Rh(B)
on the rehearsal graphs in Fig. 2.

Effectiveness Analysis. In the following, we unveil the ad-
vantage of sequential decisions over a single decision. Specif-
ically, we show how the outcome of alterations becomes more
reliable after incorporating new observations even with im-
precise variable relations. To this end, we provide a sufficient
condition under which the inference of the outcome of future
outcomes under alterations can be improved by new observa-
tions, even when the structural modeling is imprecise, a com-
mon case in practice when relations may change over time.

Consider the model given in Eq. (7) with coefficients up-
dated according to a set of alterations .A. In sequential
decitions, some alterations A(~1) C A are supposed to
be made before observing new variable O, while other al-
terations A{™M) C A would be made after the observation.
This means that the alterations A{"M) can be dynamically
selected in a sequential manner by utilizing the latest obser-
vations, while single decisions select all alterations at once
without the capability of incorporating new observations.

Formally, the distribution of an outcome variable under
alterations is p(Y|A) = N (i, X,,,), where fi, and ¥, ,
are derived from Eq. (10). Given the observation of vari-
able O, the distribution of the future outcome is refined to
p(Y[A,O) = N(fiyjo, Xy y|o), Where [iy|, and X, |, are de-
rived from Eq. (11). Evidently, when the rehearsal model in
Eq. (7) is correct, the uncertainty of outcome Y will be re-
duced after observing O, i.e., H(Y|A,0) < H(Y|A). This
indicates that p(Y|.A, O) is more reliable at predicting the
outcome of alterations. Based on this, sequential decisions
produced in our approach by incorporating the latest obser-
vations can more reliably select alterations than single deci-
sions for addressing the AUF problem. While this narrative
requires that structural equations correctly reflect the under-
lying mechanisms, we will demonstrate the advantage of our
rehearsal approach with incorrect structural equations.

Suppose that we are given an incorrect model v = A’'v +e,
where the coefficients A’ are not consistent with the correct
ones A, and the coefficients under alterations A’ are similarly
different from the correct ones under alterations A. The cor-
responding outcome inferred using the incorrect model under
alterations is denoted by p(Y”’|.A). After observing O, the in-
ferred distribution becomes p(Y’|.A, O). The following the-
orem shows that p(Y”’|.A, O) is more accurate than p(Y”'|.A)
when ||A” — A2 is bounded.

Theorem 2. Consider any set of alterations A and two mod-
els: the true but unknown model v.= Av + € and the in-
correct but known model v .= A'v + €. For any outcome
variable Y, given any new observation of variable O, denote
by p(Y|A,O) and p(Y'|A, O) the distributions of Y inferred

using the two models under alterations, respectively. Then,
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p(Y'|A, O) is closer to p(Y | A, O) than p(Y'|.A) in the sense
that both mean and covariance are closer, provided the fol-
lowing norm condition holds for arbitrary 0 < p < 1:

_ _ 50 s7
A — Al < min< ps - -
| | { STl el &

where s is the smallest singular value of I — ', and b; and c;
are constants uniquely determined by p, the values of O and
A, and the parameters of the known model.

Theorem 2 indicates that it is plausible to more accurately
infer the consequence of alterations based on new observa-
tions, even with an imprecise model. With a more accurate
inference of future outcomes, we can make more reliable es-
timates for the probability of failure, thereby facilitating bet-
ter decisions in the phase of alteration selection. Besides, the
bound in Theorem 2 is related to the smallest singular value
of I — A’. The larger the value of s, the broader the bound.

We conclude this section by illustrating the significance of
the norm condition in Theorem 2 with an example. Consider
the rehearsal graph over four variables v = [B,C, D, F] as
shown in Fig. 2a. Suppose that the corresponding structural
equations are given by v. = A’v + €, where the mean of €
is a zero vector, and its covariance is a diagonal matrix with
elements equal to one. After the alteration Rh(B = 1), the
rehearsal graph is changed to that shown in Fig. Sa, and the
corresponding coefficient matrix is modified to

0O 0 0 0
01 0 0 0

0002 01 0 o0 (13)
0 1 0001 0

AN =

Then, given an observation C' = 1, we obtain the norm con-
dition ||A” — Al|2 < 0.005 by applying Theorem 2. An in-
triguing implication is that the norm bound is large enough to
cover variations in the graph structure. Specifically, by shift-
ing A% 4 from —0.002 to 0, the edge B — D in Fig. 5a is
removed, and the graph transforms to Fig. 5b. Moreover, by
further shifting Aﬁh3 from 0.001 to —0.001, the edge D — F
in Fig. 5a is reversed, and the graph evolves to Fig. 5c. All
these structural variations comply with the norm condition.
As long as the underlying coefficients A are within the 2-
norm ball around the given coefficients A’, the observation
on C will be helpful in inferring the impact of alterations
on future outcomes, thereby facilitating subsequent decision-
making. This result supports the applicability of the proposed
approach in dynamic decision environments.

S Experiments

In this section, we present experiments to validate the su-
periority of the proposed approach over existing solutions
throughout the learning process of rehearsal models.

Tasks. We simulate a ride-hailing task by following Qin et
al. [2023], where an SRM is abstracted for supporting a ride-
hailing app in making decisions to improve user rating (RAT).
The desired region of RAT is set to [0.8, 1]. Aside from RAT,
this task involves six variables: three observable, two ac-
tionable, and one that is inaccessible at the time of decision.

For the Bermuda data [Aglietti et al., 2020], which includes
eleven variables, the goal is to maintain the net coral ecosys-
tem calcification (NEC) within the desired range of [0.5, 2].
We consider four variables to be observable and five variables
to be actionable, with a maximum of two variables being al-
terable per season. More detailed experimental settings are
provided in the appendix.

Baselines. We compare multi-stage rehearsal (MSR) with
the single-stage rehearsal (SSR) method. Specifically, MSR
makes sequential decisions, where each alteration in the se-
quence is informed by the latest observations, while SSR
makes a single decision, suggesting alterations without us-
ing retrospective inference to incorporate new observations.
For a fair comparison, both MSR and SSR are allowed to al-
ter the same number of variables. In addition, we consider a
simple baseline named single-action decision (SAD), which
can only alter one variable. These methods are provided with
an SRM learned through Bayesian ridge regression over 100
seasons, as in Qin et al. [2023]. These experiments are re-
peated over 100 seasons 100 times. Furthermore, we compare
our rehearsal approach with standard reinforcement learning
(RL) methods, including DDPG [Lillicrap et al., 2016], PPO
[Schulman et al., 2017], and SAC [Haarnoja et al., 2018].

Comparison with Single-Stage Methods. Fig. 6 and Fig. 7
show the results for comparing with rehearsal approaches.
Firstly, MSR consistently outperforms SSR and SAD in terms
of the number of successful seasons and the probability of
success across both tasks as the number of seasons increases.
This demonstrates the superiority of the proposed MSR ap-
proach in making sequential decisions based on the latest ob-
servations. Secondly, the probability of success is observed
to increase with the number of seasons as the SRM becomes
more precise. Thirdly, MSR performs better than SSR even
in early seasons when the SRM has not yet been well learned.
This finding validates the advantage of sequential decisions
over single decisions, even under imprecise modeling of rela-
tions between variables. We note that MSR shows a slightly
higher standard deviation when the number of seasons is
small in the Bermuda task. This is because its performance
improves consistently with more seasons, while other meth-
ods that converge earlier; the deviation of MSR tends to de-
crease as its performance converges. Finally, the results of
the last two columns, which report the number of successful
seasons and the probability of success versus the length of
the feasible alteration range for actionable variables, clearly
demonstrate the superiority of our rehearsal approach when
faced with a limited alteration range.

Comparison with Reinforcement Learning. The perfor-
mance of rehearsal approaches is compared with standard
reinforcement learning methods in Table 1. Rehearsal ap-
proaches consistently outperform DDPG, PPO, and SAC
across both tasks. Notably, MSR achieves over 80 successes
and 90 successes for the two tasks in 100 seasons, while the
existing methods fail to do these with only 100 seasons. Al-
though increasing the number of seasons may improve the
performance of standard reinforcement learning, the number
required to achieve the same level of performance as MSR is
significantly higher. In the ride-hailing task, DDPG requires
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Figure 6: Results on the ride-hailing task. The bands depict standard deviations.
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TASK ‘ DDPG ‘ PPO ‘ SAC ‘ SAD ‘ SSR ‘ MSR

RIDE-HAILING 11.99 + 3.85 13.25 £ 4.77 10.31 £3.18 55.22 +6.23 69.96 + 7.23 91.14 + 3.20
BERMUDA 19.35 £4.33 18.60 4+ 4.01 16.79 4+ 3.82 31.93 £4.76 42.86 + 4.98 81.67 +5.95

Table 1: Number of successes on the ride-hailing task and Bermuda task using six different methods.

over 1,000 seasons to achieve an average of 200 success-
ful seasons, whereas MSR achieves this in just 218 seasons,
highlighting the efficiency of rehearsal for AUF.

6 Related Work

Existing decision-making methods in RL [Sutton and Barto,
2018] are not effective for the AUF problem, primarily be-
cause of essential differences in the acquired information.
Traditional RL methods typically rely on numerous cost-free
interactions with consistent outcomes, such as a robot con-
stantly hitting a wall during navigation regardless of whether
it happens today or a week later. In real-world AUF scenar-
ios, however, the acquired information is markedly different.
Numerous interactions are not available due to the high cost,
and more critically, acquiring “true” interaction results may
be impossible, since real circumstances can vary over time,
e.g., the result of an interaction today may differ from that
of the same interaction a week later. These differences limit
the applicability of existing RL methods to AUF tasks. It is
important to note that gauging influence is the objective in
solving the AUF problem, while RL is a ool that might be
helpful to this objective with right adaptations in the future.
Much effort has also been invested in applying causal
structures to decision-making problems [Bareinboim et al.,
2015; Lattimore et al., 2016; Lee and Bareinboim, 2018;
Zhang and Bareinboim, 2020; Majzoubi et al., 2020; Lee
et al., 2021; Tsirtsis et al.,, 2021; Aglietti et al., 2021;
Sussex et al., 2023; Wang et al., 2023a; Wang et al., 2023b;
Varici et al., 2023; Joshi et al., 2024; Sussex et al., 2024].
Much of the existing research has assumed access to the true
and static causal structure, and recent studies have tried to

relax this assumption [Pensar er al., 2020; Toth et al., 2022;
Malek et al., 2023; Branchini et al., 2023]. Nevertheless, as
discussed before, current causal modeling approaches could
be too demanding and restrictive, making them unsuitable for
the AUF problem. This has motivated the introduction of the
concept of influence [Zhou, 2022b; Zhou, 2023]. Based on
this concept, Qin et al. [2023] have developed structural re-
hearsal models, which capture structural interactions among
variables and handle the challenges of open and dynamic
environments [Zhou, 2022a]. In this paper, we build upon
the rehearsal framework to enable sequential alterations dy-
namically informed by the latest observations through retro-
spective inference, demonstrating its advantages without re-
quiring precise modeling—an essential capability for human-
level decision-making [Zhou, 2022b].

7 Conclusion

In this paper, we propose the first rehearsal approach that en-
ables a sequence of decisions to address the AUF problem.
The proposed approach leverages retrospective inference to
dynamically integrate new observations into the structural re-
hearsal models in the decision-making process. Thus, each
decision in the sequence is made based on the latest obser-
vations, leading to more reliable alterations and better deci-
sions. Theoretically, we show that the sequential decisions
in our approach can lead to a higher success rate of avoiding
undesired outcomes compared with existing solutions. Both
theoretical and experimental results demonstrate the advan-
tage of sequential decisions over single decisions even with
imprecise modeling of relations between variables.
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