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Abstract
Federated Temporal Difference (FTD) learning has
emerged as a promising framework for collabo-
ratively evaluating policies without sharing raw
data. Despite its potential, existing approaches of-
ten yield biased convergence results due to the in-
herent challenges of federated reinforcement learn-
ing, such as multiple local updates and environ-
ment heterogeneity. In response, we investigate
federated temporal difference (TD) learning, focus-
ing on collaborative policy evaluation with linear
function approximation among agents operating in
heterogeneous environments. We devise a hetero-
geneous federated temporal difference (HFTD) al-
gorithm which iteratively aggregates agents’ local
stochastic gradients for TD learning. The HFTD al-
gorithm involves two major novel contributions: 1)
it aims to find the optimal value function model for
the mixture environment which is the environment
randomly drawn from agents’ heterogeneous envi-
ronments, using the local gradients of agents’ mean
squared Bellman errors (MSBEs) for their respec-
tive environments; 2) it allows agents to perform
different numbers of local iterations for TD learn-
ing based on their heterogeneous computational ca-
pabilities. We analyze the finite-time convergence
of the HFTD algorithm for the scenarios of IID
sampling and Markovian sampling respectively. By
characterizing bounds on the convergence error, we
show that the HFTD algorithm can exactly con-
verge to the optimal model and also achieves linear
speedups as the number of agents increases.

1 Introduction
Federated Reinforcement Learning (FRL) has been proposed
as a compelling approach, exploiting substantial computa-
tion capabilities of ubiquitous smart devices. As federated
supervised learning which has been widely studied, FRL
meets similar challenges, including data (environment) het-
erogeneity and system (computation and communication)
heterogeneity. Moreover, there are some unique challenges
in FRL due to its salient features. In particular, FRL in-
volves optimizing value functions or policies that depend on

environment-specific dynamics. This introduces additional
complexity due to the recursive nature of the Bellman equa-
tions and the potential inconsistency of learning objectives
across agents.

In contrast to the performance guarantees established in
parallel reinforcement learning, where agents independently
interact with identical environments, [Khodadadian et al.,
2022; Liu and Olshevsky, 2023; Fan et al., 2021], stud-
ies on FRL with heterogeneous environments are quite lim-
ited due to the challenges mentioned above. While FRL
across heterogeneous environments has been explored in sev-
eral recent studies [Jin et al., 2022; Wang et al., 2023;
Zhang et al., 2024], none have established asymptotically
vanishing convergence bounds for their algorithms (i.e., be
made arbitrarily small by appropriately tuning hyperparam-
eters such as the number of communication rounds and the
step size). Moreover, existing works on FRL typically as-
sume that all agents perform the same number of local up-
dates in each communication round. However, in practice,
agents often have heterogeneous computational capabilities,
and the presence of stragglers can significantly impede over-
all training efficiency. In contrast, our work establishes the
first asymptotically vanishing convergence bounds while ex-
plicitly accounting for such heterogeneity in computational
capabilities across agents.

To tackle these challenges, we focus on federated tempo-
ral difference (TD) learning for policy evaluation with linear
function approximation, where agents interact with heteroge-
neous environments modeled as Markov Decision Processes
(MDPs) and collaboratively learn the value function for a
given policy. These MDPs share identical state and action
spaces but differ in their transition probability kernels and re-
ward functions. We further allow each agent to perform a
variable number of local updates per communication round,
capturing both environmental and computational heterogene-
ity. Given this setting, we aim to address the following funda-
mental questions: (1) Is it possible to design a federated TD
algorithm that asymptotically converges to the optimal value
function? (2) If so, what is the sample complexity of such an
algorithm?

We highlight the main contributions of this paper as fol-
lows.

• We study federated TD learning with linear function ap-
proximation, where multiple agents collaboratively per-
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References
Heterogeneous Target Markovian Heterogeneous Vanishing Linear

Environments Environment1 Sampling Local Iteration Convergence speedupNumbers Error
[Liu and Olshevsky, 2023] × Individual × ×

√ √

[Khodadadian et al., 2022] × Individual
√

×
√ √

[Wang et al., 2023]
√

Virtual
√

× ×
√

[Mangold et al., 2024]
√

Mixture
√

×
√ √

This paper
√

Mixture
√ √ √ √

Table 1: Comparison of settings and results for federated temporal difference learning

form policy evaluation via TD learning while interact-
ing with heterogeneous environments and operating un-
der heterogeneous computation configurations. We pro-
pose a Heterogeneous Federated Temporal Difference
(HFTD) learning algorithm, which iteratively aggregates
agents’ local stochastic gradients for TD learning. Com-
pared to existing FRL work, HFTD incorporates two key
innovations: 1) The algorithm targets the optimal value
function model for an environment randomly drawn
from the distribution of agents’ heterogeneous environ-
ments. To this end, it minimizes the average of agents’
mean squared Bellman errors (MSBEs) using stochas-
tic gradients specific to their individual environments.
2) The algorithm allows each agent to perform a differ-
ent number of local TD updates in each communication
round.

• We derive the finite-time convergence error bounds of
the HFTD algorithm under both i.i.d. and Markovian
sampling. Our results show that HFTD can asymptoti-
cally generate the optimal value function model as the
number of communication rounds tends to infinity, un-
der appropriate step size conditions. To our best knowl-
edge, this is the first result in existing works on feder-
ated RL with heterogeneous environments that the con-
vergence error can diminish to zero asymptotically. In
particular, a key property of the global gradient of the av-
erage MSBE allows us to remove a non-vanishing bias
in the convergence analysis, so that only vanishing er-
ror terms are left. We also show that the HFTD al-
gorithm achieves a sample complexity of O

(
1
Nϵ

)
and

linear convergence speedup, which match the results of
existing TD learning algorithms [Bhandari et al., 2018;
Khodadadian et al., 2022].

2 Related Work
Temporal Difference Learning. Most existing works on
TD learning have focused on the case of a single agent.
For TD learning under IID sampling, the asymptotic con-
vergence has been well studied in [Borkar and Meyn, 2000;
Borkar, 2009], and the non-asymptotic convergence (i.e.,
finite-time analysis) has been studied in [Kamal, 2010; Dalal
et al., 2018]. For TD learning under Markovian sampling, the
asymptotic convergence has been studied in [Tsitsiklis and
Van Roy, 1996], and the non-asymptotic analysis has been
studied in [Bhandari et al., 2018; Srikant and Ying, 2019;
Xu et al., 2020b].

Distributed Reinforcement Learning. Distributed rein-
forcement learning (DRL) considers multiple agents operat-
ing in a distributed fashion. As a major class of DRL, par-
allel RL uses multiple learners to solve a large-scale single-
agent RL task [Mnih et al., 2016; Li and Schuurmans, 2011;
Nair et al., 2015], where the learners aim to learn a common
policy for different instances of the same environment. An-
other major class of DRL is multi-agent reinforcement learn-
ing (MARL), where a group of agents operate in a common
environment; all agents’ actions influence the global state
transition and MARL aims at seeking the optimal policy com-
bining all local policies in a collaborative manner [Zeng et al.,
2022; Zhang et al., 2018], or find local optimal policies in a
non-collaborative manner [Zhang et al., 2021]. These prior
works of DRL are different from FRL, since 1) agents in FRL
can mainly interact with heterogeneous environments and
collaboratively learn a common policy in different environ-
ments; 2) FRL involves some unique features of FL [McMa-
han and Ramage, 2017; Bonawitz et al., 2019; Stich, 2019;
Li et al., 2020; Wang and Ji, 2022; Guo et al., 2022;
Huang et al., 2022; Karimireddy et al., 2020], including
multiple local iterations of agents, heterogeneous and time-
varying computation capabilities of agents.
Federated Reinforcement Learning. The settings of FRL
have significant differences from those of federated super-
vised learning, due to the salient features of RL, including
online data sampling (especially Markovian sampling), and
dynamic state transition.

Some recent works have studied FRL with heterogeneous
environments [Jin et al., 2022; Wang et al., 2023; Zhu and
Gong, 2023]. However, none of the algorithms in these works
have convergence guarantee with vanishing errors. In this pa-
per, we show that the proposed HFTD algorithm can asymp-
totically converge to the optimal value function model. The
most relevant related work [Mangold et al., 2024] analyzes
the linear convergence of the mean squared error in hetero-
geneous environments, which we refer to as mixture environ-
ments. The key difference lies in our discovery: there exists
an environment where the mean squared error equals the av-
eraged mean squared error across all environments, whereas
[Mangold et al., 2024] employs control variates to address
client drift. Furthermore, this paper allows agents to perform
heterogeneous numbers of local iterations. We have detailed
the technical distinctions in the convergence analysis of the
HFTD algorithm in Section 5.3.

1See the definition of the target environment in Section 4.
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3 Preliminaries
Policy Evaluation in a Single-Node Setting. We consider an
infinite horizon Markov Decision Process with a finite state
space S , a finite action space A, a transition kernel P , a re-
ward function R, and a discount factor γ. We consider the
problem of evaluating the value function Vµ of a given pol-
icy µ. Then for a initial state s, Pµ(s

′ |s ) shows the prob-
ability of transitioning form s to state s′ under policy µ and
Rµ(s) =

∑
s Pµ(s

′ |s )R(s, s′) is the expected instantaneous
reward. For policy µ, the expected cumulative rewards can be
represented as a function of initial state s:

Vµ(s) = E

[ ∞∑
t=0

γtRµ(st) |s0 = s

]
,

where {st} is the sequence of states generated by the tran-
sition kernel Pµ. The value function satisfies the Bellman
equation TµVµ = Vµ, where for any V ∈ R|S|,

(TµV )(s) = Rµ(s) + γ
∑
s′

Pµ(s, s
′)V (s′). (1)

TD Learning with Linear Function Approximation. To
mitigate the effect of intractable computation in face of large
state spaces in policy evaluation, a common and tractable ap-
proach is to utilize linear function approximator for a rep-
resentation of value functions. Let {Φk}dk=1 be a set of d
linearly independent basis vectors in Rn, then the true value
function Vµ is approximated as Vµ(s) ≈ Vθ(s) = ϕ(s)Tθ,
where ϕ(s) ∈ Rd is a fixed feature vector for state s and
θ ∈ Rd is the unknown model to be learned. For an observed
tuple Ot = (st, rt, st+1) at time t, the negative gradient of the
Bellman error evaluated at the current parameter θt [Bhandari
et al., 2018] can be expressed as

gt(θt) = (rt + γϕ(st+1)
Tθt − ϕ(st)

Tθt)ϕ(st). (2)

Then the estimated model at time t + 1 can be updated by
the gradient descent method [Bhandari et al., 2018] with step
size α ∈ (0, 1) as

θt+1 = θt + αgt(θt). (3)

When state st sampled in tuple Ot follows the stationary dis-
tribution of the MDP, the expected negative gradient at θ is

ḡt(θ) =
∑

st,st+1

π(st)P (st+1 | st)
(
R(st, st+1)

+ γϕ(st+1)
⊤θ − ϕ(st)

⊤θ
)
ϕ(st) (4)

where π(·) is the stationary distribution of the associated
Markov chain which is assumed to be irreducible and ape-
riodic. Let D denote the diagonal matrix whose elements
consist of the entries of π(·). In the convergence analysis
of TD(0), [Tsitsiklis and Van Roy, 1996] has proved the limit
point θ∗ is the unique solution to the projected Bellman equa-
tion Φθ = ΠDTµΦθ with ḡ(θ∗) = 0, where ΠD(·) is the
projection operator defined on the subspace {Φx

∣∣x ∈ Rd }.
Although the gradient steps gt(θ) do not correspond to

minimizing any fixed objective, it has been studied in the

light of the stability of a dynamical system described by
an ordinary difference equation (ODE). First we rewrite the
stochastic gradient as gt(θ) = A(Ot)θ + b(Ot), where
A(Ot) = ϕ(s)(γϕ(s′)T − ϕ(s)T), b(Ot) = r(s)ϕ(s). We
define Ā = Eπ[A(Ot)] and b̄ = Eπ[b(Ot)], then the expected
negative gradient (4) can be established as ḡ(θ) = Āθ + b̄,
corresponding to the following ODE:

θ̇ = ḡ(θ) = Āθ + b̄ (5)

Under mild technical assumptions, it was shown in [Tsitsiklis
and Van Roy, 1996] and [Sun et al., 2020] that ODE as (5)
admits a globally, asymptotically stable equilibrium point θ∗
where θ∗ = −Ā−1b̄ when the matrix Ā is non-singular.

4 Heterogeneous Federated Temporal
Difference Learning with Linear Function
Approximation

In this section, we first describe the problem statement about
the federated policy evaluation in heterogeneous environ-
ments where agents collectively seek to find a global model
to approximate the value function under a given policy µ. As
we discussed above, in the process of policy evaluation for a
single agent i, the local loss function Fi is usually defined
as expected Bellman error squared [Bhandari et al., 2018;
Srikant and Ying, 2019]. Accordingly, the optimization prob-
lem for federated value evaluation can be formulated as

min
θ∈Rd

[
F (θ) =

1

N

N∑
i=1

Fi(θ)

]
(6)

where Fi(θ) = EOt∼di

[
1
2 (rt + γVθ(st+1)− Vθ(st))

2
]

is
the local objective function of i-th agent, i.e., the expected
squared Bellman error with respect to the model parameter
θ. Here, di is the stationary distribution of the state transition
Markov chain in i-th environment, and Oi

t = (sit, r
i
t, s

i
t+1)

represents a data sample from the environment i. We assume
that each agent collects samples by interacting with its own
environment independently. The MDP of agent i can be ex-
pressed by: Mi

∆
= {S,A,Pi,Ri, γ}. We assume that all

agents have the same state space and action space while the
reward functions and transition probability functions may dif-
fer across various agents.
Comparisons with Virtual Environment. Prior works on
FRL with heterogeneous environments [Jin et al., 2022;
Wang et al., 2023] considered the objective of optimizing the
value function model for a single virtual environment. That is
to say, agents cooperate to build a model measured by a vir-
tual environment (as a target environment). This virtual envi-
ronment is constructed as an MDP M̄ ∆

= {S,A, P̄, R̄, γ} by
directly averaging the transition kernels and reward functions
of each agent’s environment, given by P̄ = (1/N)

∑N
i=1 Pi

and R̄ = (1/N)
∑N

i=1Ri. However, such an ”averaged” en-
vironment may not coincide with any agent’s individual en-
vironment. Intuitively, from the perspective of an individual
agent, the objective function may not encourage more agents
to participate in the federation. Motivated by this observation,
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in this paper, we consider a mixture environment defined as
the environment randomly drawn from agents’ heterogeneous
environments. Note that this mixture environment is differ-
ent from the virtual environment defined in [Jin et al., 2022;
Wang et al., 2023]. Thus our goal is to find the optimal value
function model for this mixture environment of agents. This
goal is similar in spirit to that of federated supervised learn-
ing, since the latter aims to find the optimal model that min-
imizes the average training loss for all data samples of all
clients.

Towards this goal, the global objective function of our fed-
erated TD learning problem is the average MSBE of all agents
for their respective environments, as the MSBE quantifies the
error of a value function model for an environment. To min-
imize the average MSBE, we devise the HFTD algorithm
which updates the value function model via federated TD
learning. The algorithm aims to iteratively estimate the gradi-
ent of the global objective function (i.e., the average MSBE),
given by

ḡ(θ) =
1

N

N∑
i=1

ḡi(θ) (7)

where ḡi(θ) is the gradient of agent i’s local objective func-
tion (i.e., the MSBE for agent i’s environment). Note that
the condition (7) is substantially different from the estima-
tion in [Wang et al., 2023] (7) does not hold in [Wang et al.,
2023]), and is also a key property that allow us to show that
our HFTD algorithm can asymptotically converge to the op-
timal model θ∗ (rather than to a neighborhood of θ∗ where
the radius of the convergence error is determined by some
non-vanishing bias error as in [Wang et al., 2023], see Sec-
tion 5.3 for detailed discussions of the technical differences).
The optimal value function model θ∗ that minimizes the av-
erage MSBE of agents satisfies ḡ(θ∗) = 0. Note that the
gradient in TD learning is different from that of the standard
gradient descent, as ḡi(θ) or ḡ(θ) is not the gradient of any
fixed objective function. To estimate the gradient g(θ), the
HFTD algorithm computes a stochastic gradient g(θt) given

by g(θt) =
1
N

N∑
i=1

gi(θt), where gi(θt) is the stochastic gradi-

ent of gi(θ). Note that gi(θ) is the expectation of stochastic
gradient gi(θt) following the stationary distribution of envi-
ronment i.
Details of HFTD The detailed design of the HFTD algorithm
is described as below (as summarized in Algorithm 1). In
each round t ∈ {1, . . . , T}, the central server first broad-
casts the global model θ̄t to all agents and each agent i ∈
{1, . . . , N} independently performs Ki

t local iterations start-
ing from the current global model θt,0i to optimize its local ob-
jective. Ki

t may vary across agents since agents have hetero-
geneous computation capabilities. Following the same policy
µ, agent i observes the tuple Oi

t,k = (sit,k, r
i
t,k, s

i
t,k+1) at

each local iteration k of the round t which is generated by
its own MDP characterized by {S,A,Pi,Ri, γ}. Using the
observation Oi

t,k, agent i can compute the stochastic gradient
by (2) and update its local model. At the end of each round,
agents send the gradients directly to the server. The server

then aggregates the gradients, updates the global model and
starts round t+1 of federation. Note that no exchange of raw
samples is required, hence the privacy of local environments
can be well protected. The update rule can be expressed as

θt+1 = Π2,H

(
θt + α

(
1

N

N∑
i=1

Ki
t

)
· 1
N

N∑
i=1

dit

)
(8)

where dit is the normalized stochastic gradient in the t-th

round at agent i as dti = 1
Ki

t

Ki
t−1∑

k=0

gi(θ
i
t,k); K

i
t is the num-

ber of local updates in round t at agent i. Here we consider
agents have heterogeneous number of local updates while the
number of local updates are identical and fixed in [Khodada-
dian et al., 2022; Wang et al., 2023; Jin et al., 2022]. Note
that cumulative local gradients are normalized when averag-
ing, and this is a necessary technique when dealing with het-
erogeneous number of local updates in analysis [refer to Sec-
tion 5.3 for details]. Besides, we use Π2,H (·) to denote the
standard Euclidean projection on to a convex compact sub-
set H ⊂ Rd that is assumed to contain θ∗. Such a projec-
tion step is commonly adopted in RL [Bhandari et al., 2018;
Doan et al., 2019] which ensures that the global models do
not blow up. Note that the subset does not need to contain
each θ∗i .

Algorithm 1 Heterogeneous Federated TD (HFTD) Learning

1: Input: number of rounds T , step size α, initial model θ0
2: for t = 1 to T do
3: θit,0 ← θt for all agents i
4: for each agent i = 1, 2, ..., N do
5: for k = 0 to Ki

t − 1 do
6: Observe a tuple Oi

t,k = (sit,k, r
i
t,k, s

i
t,k+1) and

calculate the gradient by (2)
7: Update the local model by (3)
8: end for
9: end for

10: Agents send the normalized gradient dit =
θi

t,Ki
t−1

−θi
t,0

Ki
t

to the server
11: Server computes the global model by (8)
12: end for
13: Output: {θt}Tt=1

5 Theoretical Analysis of HFTD
5.1 IID Sampling
First, we start from the scenario where the random tuples
are independently and identically sampled from the stationary
distribution πi of the Markov reward process for each agent i.
That is to say, samples for updating the local model are inde-
pendently drawn across iterations and rounds for each agent.
We make the following assumptions, which are commonly
imposed in federated reinforcement learning [Khodadadian
et al., 2022; Wang et al., 2023; Fan et al., 2021].
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Assumption 1. (Bounded Gradient Variance) For each agent
i, there is a constant σ such that E ∥gi(θ)− ḡi(θ)∥ ≤ σ2 for
all θ ∈ Rd.

Assumption 2. (Exploration) For each agent i, the matrix Āi

defined in (5) is negative definite and its maximum eigenvalue
can be bounded by −λ.

Assumption 2 is commonly employed in analyzing TD
learning with linear function approximation.

Assumption 3. (Bounded Gradient Heterogeneity) For any
set of weights satisfying convex combination, i.e., {pi ≥
0}Ni=1 and

∑N
i=1 pi = 1, there exist constants β2 ≥ 1, κ2 ≥ 0

such that
∑

i pi ∥ḡi(θ)∥
2
2 ≤ β2 ∥

∑
i piḡi(θ)∥

2
2+κ2. If agents

execute in identical environments, then β2 = 1, κ2 = 0.

Assumption 3 is commonly used in the federated learn-
ing literature to capture the dissimilarities of local objectives
[Wang et al., 2020; Yang et al., 2024]. In this work, it is nec-
essary for getting rid of θ∗i ∈ H [Wang et al., 2023]. We
use Assumption 3 to measure the heterogeneity of environ-
ments instead of the heterogeneity of Pi and Ri used in [Jin
et al., 2022; Wang et al., 2023; Zhang et al., 2024]. Due to
Lemma 2, we can establish an unbiased model. Now we are
ready to present the convergence guarantees using the HFTD
algorithm:

Theorem 1. (HFTD with IID Sampling) Under Assump-
tions 1, 2 and 3, let KM = max

i,t
{Ki

t}, Kmax = max
t
{Kt}

and Kmin = min
t
{Kt}. If α ≤ min

t
{αt}, Then output of

Algorithm 1 can be represented as

E ∥θt − θ∗∥22 ≤ e−
λαKminT

8 ∥θ0 − θ∗∥22 +
16αK2

maxσ
2K̂max

NλKmin

+
256α2Kmax

(
σ2(Kmax − 1) + 2κ2KM (KM − 1)

)
λ2Kmin

,

(9)

where K̂−1
t = 1

N

N∑
i=1

1
Ki

t
and K̂−1

max = max
t
{K̂−1

t }.

Remark 1. Theorem 1 provides a bound on the convergence
error of the HFTD algorithm when agents operates in hetero-
geneous environments using heterogeneous local iterations.
The error bound consists of three terms. As α > 0, the 1st
term converges to zero as T increases. Moreover, it achieves
an exponential decay rate which matches the results of exist-
ing RL algorithms [Bhandari et al., 2018; Xu et al., 2020a;
Kumar et al., 2023]. The last two terms are all caused by the
variances of stochastic gradients.

Remark 2. We note that the 2rd term shrinks at rate 1
N as

N increases. Also note that the 3rd term becomes zero when
each agent’s local iteration number Ki

t is 1 (i.e., perfect syn-
chronization for all agents). Moreover, if agents interact with
the same environments (κ2 = 0), the second part of the 3rd
term of the convergence bound vanishes.

Corollary 1. Suppose a constant local update number K for
each agent, the convergence rate of HFTD with IID sampling

is:

E
∥∥θ̄T − θ∗

∥∥2
2
≤ e−

λαKT
8

∥∥θ̄0 − θ∗
∥∥2
2
+

16σ2α

Nλ

+
256α2

(
σ2(K − 1) + 2κ2K(K − 1)

)
λ2

(10)

Remark 3. When the communication rounds T is suffi-
ciently large, then the convergence of HFTD will be dom-
inated by the second term. Then we can conclude that the
total complexity which can achieve an ϵ-accurate optimal so-
lution E ∥θt − θ∗∥22 ≤ ϵ is KT = O

(
1
Nϵ

)
. When K = 1

and N = 1, the sample complexity will match the results in
Theorem 2(b) in [Bhandari et al., 2018].

5.2 Markovian Sampling
The case of IID sampling for RL can be hard to achieve in
practical scenario. A more realistic setting is Markovian sam-
pling, where the observed tuples used by TD are gathered
from a single trajectory of the Markov chain. Different from
the setting of IID sampling, Markovian sampling brings more
challenges since samples are highly correlated. Specifically,
in IID case, E[g(θ)−ḡ(θ)] = 0 since g(θ) is the unbiased esti-
mate of ḡ(θ). However, in the Markovian setting, the samples
for calculating g(θ) are not sampled from the stationary dis-
tribution. To put it another way, θ and the sample observed at
time t, Ot, are not independent. Hence, E[g(θ) − ḡ(θ)] ̸= 0,
indicating bias exists in the gradient evaluation for the analy-
sis of a single agent. Federated temporal learning introduces
more intricate time correlations, which complicate theoretical
analysis.

In the following analysis, we first introduce the geomet-
ric mixing property of finite-state, aperiodic and irreducible
Markov chains as follows.

sup ∥Pi(xk ∈ · |x0 )− πi(·)∥TV ≤ ηiρ
k
i (11)

where πi(·) is the stationary distribution of the MDP i; ηi > 0
and ρi ∈ [0, 1] for all i ∈ [N ].

Assumption 4. (Irreducibility and Aperiodicity) For each
i ∈ [N ], the Markov chain induced by policy µ, correspond-
ing to the state transition matrix Pi, is aperiodic and irre-
ducible.

Theorem 2. (HFTD with Markovian Sampling) Under As-
sumptions 2, 3, and 4, if we choose α ≤ min

t
{αt}, then the

output of Algorithm 1 satisfies

E ∥θT − θ∗∥22 ≤ e−
λαKminT

4 E
∥∥θ̄0 − θ∗

∥∥2
2
+ C1α

3 + C2α
2

+ C3
α

N
+ C4α (12)

where λ, C1, C2, C3, and C4 are positive, problem-dependent
constants, with their detailed definitions provided in the sup-
plementary material. Note that when Ki

t = 1 for all i and
t, C1 and C2 will be zero. Only C4 depends on the level of
heterogeneity.

Remark 4. Theorem 2 characterizes the convergence of
the HFTD algorithm where each agent’s sampling follows a
Markov chain. As in the setting of IID sampling, we can make
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similar observations here on the sampling complexity and the
impacts of various system parameters on the convergence er-
ror. Specifically, the last four terms are quadratically or lin-
early amplified by K. This requires a sufficiently small α
to mitigate the variance between two communication rounds.
Different from IID setting, we note that the fourth term comes
from the variance reduction in the Markovian setting. If t is
sufficiently large, it will diminish to zero. This is because the
Markov chain geometrically converges to its stationary distri-
bution as t evolves.
Corollary 2. If N = 1 and K = 1, then we have:

E ∥θt − θ∗∥22 ≤ e−
λαT

4

∥∥θ̄0 − θ∗
∥∥2
2

+ 2αλ−1
(
2c′H2 + q′H + 4β2τ2cH2 + 4

(
3 + 2τ2

)
[q′]

2
)

Then we will clarify the differences of Markovian sam-
pling and IID sampling in results and make comparisons with
prior works in FRL.
Results: Markovian Vs. IID Sampling. Although IID sam-
pling is a special case of Markovian sampling in single-agent
reinforcement learning, in FRL, theoretical results under the
Markovian sampling setting do not necessarily generalize
to those under IID sampling due to differences in assump-
tions and convergence analyses [Khodadadian et al., 2022;
Wang et al., 2023].
Comparison with Prior Works in FRL. Our proposed
method, HFTD, improves upon existing results in federated
reinforcement learning (FRL) with heterogeneous environ-
ments in terms of convergence. Specifically, Theorem 2
in [Wang et al., 2023] only guarantees inexact convergence
to a suboptimal solution, with the accuracy depending on
the level of heterogeneity among the N agents. In con-
trast, HFTD provably converges to the exact optimal solu-
tion of the target problem. In addition, prior works such
as [Khodadadian et al., 2022; Liu and Olshevsky, 2023;
Wang et al., 2023] focus exclusively on homogeneous envi-
ronments and homogeneous local iteration numbers, and thus
do not address the challenges arising from heterogeneity.

5.3 Technical Differences of Convergence Analysis
In this subsection, we will highlight the key technical differ-
ences in the convergence analysis of HFTD (i.e., the proofs
of Theorems 1 and 2), compared to prior works.

Similar to the convergence analysis of federated temporal
difference learning [Khodadadian et al., 2022; Wang et al.,
2023; Zhang et al., 2024], the contraction property of the
Bellman equation is utilized to produce a descent direction
for the critic error. The informal decomposition can be ex-
pressed as:

E ∥θt+1 − θ∗∥ ≤ recursion + descent direction
+client drift + gradient variance + gradient norm.

In the convergence analysis of this paper, in order to bound
E ∥θt+1 − θ∗∥, we need to bound an inner product term,
which can be decomposed into three terms. As the objective
of the HFTD algorithm is to minimize the average MSBE,
the term B can be canceled (after the double summation be-
fore the inner product) due to the condition (7). In contrast,

in [Wang et al., 2023], this term B cannot be cancelled and
becomes a non-vanishing bias in the convergence error.

1

N

N∑
i=1

1

Ki
t

Ki
t−1∑

k=0

E
〈
ḡi(θ

i
t,k), θt − θ∗

〉

=
1

N

N∑
i=1

1

Ki
t

Ki
t−1∑

k=0

E
〈
θt − θ,

ḡi(θ
i
t,k)− ḡi(θt) + ḡi(θt)− ḡ(θt)︸ ︷︷ ︸

B

+ ḡ(θt)︸ ︷︷ ︸
Lemma 2

〉
(13)

Similarly, in the convergence analysis of the Markovian
setting, when dealing with such an inner product term, the
term B can also be canceled.

In the convergence analysis, we also need to bound
the error between the total accumulated local gradients
1
N

∑
i

1
Ki

t

∑Ki
t−1

k=0 ḡi(θ
i
t,k) and the global gradient

∑
i ḡi(θt)

(as in (14)). By normalizing each agent’s accumulated local
gradients with the agent’s local iteration number Ki

t , we are
allowed to decompose the error into the sum of multiple error
terms

∥∥∥ḡi(θit,k)− ḡi(θt)
∥∥∥, each involving only one agent’s lo-

cal gradients. Then each of these error terms can be further
bounded using the the smoothness condition of the local gra-
dient as

E
∥∥∥ 1

N

N∑
i=1

1

Ki
t

Ki
t−1∑

k=0

(
ḡi(θ

i
t,k)− ḡi(θt)

)∥∥∥2
2

≤ 1

N

N∑
i=1

E
∥∥∥ 1

Ki
t

Ki
t−1∑

k=0

(
ḡi(θ

i
t,k)− ḡi(θt)

)∥∥∥2
2

≤ 1

N

N∑
i=1

1

Ki
t

Ki
t−1∑

k=0

E
∥∥∥ḡi(θit,k)− ḡi(θt)

∥∥∥2
2
. (14)

6 Simulations
In this section, we present comprehensive experimental eval-
uations of HFTD on the RL task Gridword. We compare our
proposed algorithm with the following baseline methods:

• Federated On-policy Temporal Difference (FOTD) [Kho-
dadadian et al., 2022], an FRL algorithm that combines
FedAvg with TD;

• Federated Temporal Difference (FTD) [Wang et al.,
2023], an FRL algorithm conducting in heterogeneous
environments;

• Distributed Temporal Difference (DTD) [Liu and Ol-
shevsky, 2023], a distributed TD algorithm with almost
no communication.

The experiments aim to demonstrate the efficacy of HFTD
We provide numerical results under IID sampling setting and
Markovian sampling setting on the platform. We first verify
our theoretical results in a small-scale problem; see examples
in [Sutton et al., 1999]. Each experiment is conducted 10
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(a) Comparisons with baselines (b) Results on heterogeneity level (c) Impact of number of agents

Figure 1: Training performance of HFTD with different settings

times. We plot the mean and standard deviation across the 10
runs.

In the simulations, the agent is initially placed in one corner
of the maze and selects an action to move to the next cell with
a certain probability. In the policy evaluation process, in order
to avoid low learning efficiencies due to sparse rewards, the
agent will receive a reward 0 if it reaches the desired goal and
− 1

2

[
νi(x− 3)

2
+ δi(y − 3)

2
]

otherwise where (x, y) is the
position of the agent and it is also the current state. Here the
state space size is 16 and the action can be selected from up,
down, left, right directions. The goal of the agents is to learn
a common model to approximate the value function under the
given policy.

Empirical results in Figure 1 reveal that the system param-
eters affect HFTD in different ways. Training performance
refers to the running error between current model and opti-
mal model. Generalization performance refers to the aver-
aged performance in N environments with newly generated
state-transitions [Jin et al., 2022]. Fig. 1(a) shows that FTD
and HFTD outperform the other two algorithms when facing
heterogeneous environments.

To check the impact of environment heterogeneity on
HFTD, we construct tasks of HFAC with various h, which
controls how different the state transitions are. A higher h
represents a larger heterogeneity level. Fig. 1(b) shows that,
when we keep increasing h, the performance decreases. This
result validates the theoretical results.

To verify the advantages due to the federation, we conduct
the experiments on the impact of the number of agents of
HFTD. As shown in Fig. 1(c), with a certain level of envi-
ronment heterogeneity, increasing the number of participated
agents accelerate the training. However, due to environmen-
tal heterogeneity, a gap to the optimal solution persists unless
a smaller step size is used. This aligns with our theoretical
insights and highlights the practical performance benefits of
involving more agents.

Additionally, we conduct experiments to analyze how step
sizes and the number of local iterations affect the convergence
of HFTD. Due to space limitations in the main text, we pro-
vide brief explanations here, with detailed results presented
in the supplementary material. From the experiments, we ob-
serve that increasing the number of local updates accelerates

convergence. Moreover, while a larger step size results in
faster convergence, it may cause fluctuations near the opti-
mal solution. Consistent with Theorem 1, a smaller step size
ensures that the convergence error approaches zero.

Compared with the simulation results of IID sampling, the
learning process under Markovian sampling shows more in-
stability, shown in the supplementary material. This is be-
cause in Markovian sampling, the next state depends only on
the current state under a fixed policy so that some states are
not visited enough. Hence, it is difficult to approximate the
value function well for the entire state space.

7 Conclusion and Future Work
In this paper, we have developed a HFTD algorithm for fed-
erated TD learning with linear function approximation un-
der environment heterogeneity and computation heterogene-
ity. We have shown that aggregated model using the HFTD
algorithm can asymptotically converge to the optimal value
function model, which is the first such result in existing works
on FRL with heterogeneous environments. The HFTD algo-
rithm also achieves sampling complexity of O

(
1
Nϵ

)
and lin-

ear speedup that match the results of existing RL algorithms.
For future work, we will explore FRL algorithms that in-

volve both policy evaluation and policy improvement, such
as the actor-critic algorithms. Also, the assumptions used in
this paper are common in existing theoretical studies on RL
(including FRL). Indeed, some of these assumptions would
not hold in practice for real-world applications. For example,
linear function approximation (also a common assumption in
many existing works) assumes that the true value function can
be well approximated by a linear function, using a fixed fea-
ture vector ϕ(s) for state s. However, in real-world settings, it
is hard to find a good approximate feature matrix for all states.
Besides, we assume that each agent participates in FRL in
each round in a synchronous manner. In real-world settings,
it can be more efficient for agents to participate in some but
not all rounds of FRL in an asynchronous manner. In future,
we will also explore the problem of this paper in more gen-
eral settings by relaxing some of the assumptions used in this
paper, such as using non-linear function approximation, and
considering partial and asynchronous participation of agents.
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