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Abstract

Facing the growing diversity of multi-view data,
multi-view graph-based models have made encour-
aging progress in handling multi-view data mod-
eled as graphs. Graph Contrastive Learning (GCL)
naturally fits multi-view graph data by treating their
inherent views as augmentations. However, the de-
velopment of GCL on multi-view graph data is still
in the infant stage. Challenges remain in designing
strategies that coordinate preprocessing and con-
trastive learning, and in developing model architec-
tures that automatically meet the needs of diverse
views. To tackle these, we propose a framework
named CAMEL, which refines consistency learn-
ing by introducing a tailored contrastive paradigm
for multi-view graphs. Initially, we theoretically
analyze the positive effect of edge-dropping pre-
processing on the consistency and quantify the fac-
tors that influence it. Paired with a learnable model
architecture, the proposed adaptive edge-dropping
preprocessing strategy is guided by dynamic topol-
ogy, making the heterogeneity of views more con-
trollable and better aligned with contrastive learn-
ing. Finally, we design a neighborhood con-
sistency multi-view contrastive objective that en-
hances consistency information interaction by ex-
tending positive samples. Extensive experiments
on downstream tasks, including node classification
and clustering, validate the superiority of our pro-
posed model.

1 Introduction

Advancements in multimedia technologies have enabled di-
verse data collection ways, capturing rich and multi-faceted
information. For instance, in multimedia analysis, comple-
mentary information can be captured via images, audio, and
textual descriptions of the same content. Such data deriv-
ing from different sources can be modeled as multi-view
data [Wan et al., 2024b; Xu et al., 2025a; Zhuang et al.,
2024]. Numerous traditional multi-view learning methods
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have been proposed, aiming to integrate these complemen-
tary views into cohesive representations [Zhang et al., 2025;
Fu et al., 2023]. However, they struggle to model the complex
intrinsic relationships among samples, particularly when such
relationships extend beyond the feature space. In real-world
scenarios, samples often exhibit interdependencies and intri-
cate semantic relationships, making graph data a universal
way to model these complex connections [Wu et al., 2023b;
Tu et al., 2025]. By structuring multi-view data into graphs,
latent relationships can be effectively captured and utilized.

Graph Contrastive Learning (GCL), as an unsupervised
paradigm for graph-structured data analysis, leverages unla-
beled samples to provide rich information [Li er al., 2023;
Zhuang et al., 2025]. Notably, multi-view graph data, with
its inherent multiple views as augmentations, is naturally
well-suited for GCL. However, the development of GCL
for multi-view data is still in its early stages [Liu er al.,
2023a; Wang et al., 2023]. Contrastive learning follows the
“augmentation-contrast” paradigm, where augmentations and
contrastive strategies are interdependent. Typically, augmen-
tations are handcrafted to align with the contrastive objective.
For instance, the contrastive objective in GRACE [Zhu et
al., 2020] aims to maximize the mutual information between
identical nodes across two augmented views. To achieve this,
it employs perturbation strategies like edge dropout and fea-
ture masking to generate two lightly corrupted views for con-
trastive learning. Similarly, the contrastive objective in DGI
[Velickovic et al., 2019] is to maximize the mutual informa-
tion between patch-summary pairs, using stochastic corrup-
tion techniques, such as feature shuffling, to introduce nega-
tive samples.

However, directly applying the GCL paradigm to multi-
view graphs is suboptimal, as traditional GCL methods fail
to account for the intricate heterogeneity inherent in multi-
view scenarios. Specifically, in contrastive learning, multi-
ple views are typically generated through manually defined
perturbations, often utilizing simple, controllable transforma-
tions where the relationships between views are explicit and
relatively straightforward to model. In contrast, the views in-
herent to multi-view data exhibit complex consistency and
complementarity relationships that are difficult to capture
[Sun er al., 2024; Wang et al., 2021]. These relationships en-
compass view-shared, view-specific task-relevant, and view-
specific task-irrelevant information, which defy traditional
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Figure 1: Overview of CAMEL. Within the learnable GNN architecture, edge-dropping preprocessing is applied to each view, guided by the
reweighting factor. Then a neighborhood consistency multi-view contrastive objective is employed to obtain consistent representations.

quantification and modeling paradigms. Directly treating
these multiple views as augmentations neglects potential dis-
tributional discrepancies and alignment issues, which may re-
sult in the shared GNN encoder failing to learn the desired
representations across heterogeneous views. Thus, prepro-
cessing strategies tailored for multi-view data are essential to
make the discrepancies and interdependencies between views
more manageable. Moreover, the contrastive objective and
model architecture in GCL also lack consideration of the
complexities of multi-view data and graph-specific proper-
ties, resulting in incomplete or potentially erroneous infor-
mation interactions.

Based on the above analysis, we aim to design a novel con-
trastive learning paradigm tailored for multi-view graph data.
Two key challenges remain for contrastive learning in the
multi-view context: (1) Strategically, how to design a prepro-
cessing strategy that better aligns multiple views with GCL
and a contrastive strategy that captures richer information?
(2) Structurally, how to design a model architecture that is
well-suited for multi-view graphs?

To tackle these challenges, we propose a novel multi-
view learning framework, termed Consistency-Aware Multi-
view graph contrastivE Learning (CAMEL), which integrates
meticulously designed strategies and architecture specifically
tailored for multi-view graph data. Through rigorous math-
ematical analysis, we first reveal that the edge-dropping pre-
processing promotes the consistency of multi-view represen-
tations. Moreover, we quantify the relationship between the
impact of edge-dropping operations and the reweighting fac-
tor. To better learn consistency information and adapt to the
heterogeneity across various views, we develop a learnable
model architecture that enables each view to autonomously
assimilate information and select the most suitable structure.
Naturally, an adaptive edge-dropping preprocessing strategy
is designed, where edge-dropping operations are steered by
adaptive topology to ensure compatibility across different
views. Finally, we introduce a neighborhood consistency

multi-view contrastive strategy that redefines the construction
of positive and negative pairs by considering graph properties.
Specifically, the first-order neighbors of the anchor node, both
within the same view and across views, are expanded as posi-
tive samples, facilitating the flow of consistency information.
The flowchart of CAMEL is shown in Figure 1. Our contri-
butions are summarized as

* We conduct a theoretical analysis that confirms edge
dropping preprocessing promotes consistency learning
and quantifies the factors influencing consistency.

* We propose a novel contrastive paradigm focused on
multi-view graph data, termed CAMEL, which inte-
grates a learnable model architecture with an adaptive
edge-dropping preprocessing strategy and a neighbor-
hood consistency multi-view contrastive objective.

 Extensive experiments on three types of datasets demon-
strate the superiority of the proposed framework com-
pared to state-of-the-art multi-view GNNs.

2 Related Work

2.1 Graph Contrastive Learning

Graph Contrastive Learning (GCL) has emerged as a piv-
otal research direction in graph data learning, focusing on
maximizing mutual information between positive pairs while
minimizing it for negative pairs. The core research focus of
GCL lies in designing graph augmentation strategies, with
edge deletion and attribute masking as the most prevalent
techniques [Zhu et al., 2020; Liu et al., 2024b; Bu et al.,
2024]. Besides, some methods employ contrastive losses
commonly used in computer vision, such as InfoNCE and
Triplet loss [Wu et al., 2022; Koromilas ef al., 2024], to ex-
tract the shared core information across different augmented
views, following the InfoMax principle. Despite the signifi-
cant advancements in GCL, the standard paradigm still faces
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some limitations, particularly with regard to graph augmenta-
tions and contrastive objectives. Thus, other novel graph en-
hancement paradigms have also been proposed to expand the
range of augmentation techniques. For instance, [Shen er al.,
2023] adopts a multi-head graph attention mechanism to learn
graph augmentations. Other notable approaches include mo-
tif centrality-based adaptive augmentations [Li et al., 2023]
and similarity-preserving adversarial augmentations [In ez al.,
2023]. Nonetheless, the utilization of GCL for multi-view
data is notably limited, primarily due to a critical shortage
of augmentation and contrastive strategies that are tailored
specifically for such datasets.

2.2 Multi-view Learning

Multi-view learning aims to integrate and encode informa-
tion from multiple sources to derive a low-dimensional repre-
sentation that captures both the consistency and complemen-
tarity across different views. Graph-based multi-view learn-
ing [Wan et al., 2024a; Lu et al., 2024; Wu et al., 2024], with
its superior capability to model complex relationships, has
become a widely adopted learning paradigm. For instance,
[Liang et al., 2022] defines a min-max formulation for robust
learning that addresses issues of local optima. [Huang et al.,
2023] enhances the graph-based multi-view model by utiliz-
ing an attention allocation approach and a sample-weighting
strategy. Recent methodologies have also introduced con-
trastive techniques into multi-view learning to harness and
contrast the unique features from each view. For instance,
[Shen et al., 2023] introduces a contrastive multi-view kernel
that implicitly embeds the views into a joint semantic space,
while [Su et al., 2024] builds on this to address the issue of
false negatives. Despite the notable strides of these GCL-
incorporated approaches in capturing graph-specific charac-
teristics, their reliance on empirically derived heuristics and
lack of theoretical rigor may limit generalization across di-
verse tasks and datasets.

3 Proposed Method

3.1 Preliminaries and Notations

Let G = {G" le denote a multi-view graph, where V" is the
number of views and GV is the v-th view data. The feature
matrix X € R™™ ™ contains the node information, with each
node having an m-dimensional feature vector. For the v-th
view G¥ = (V, £Y), where V is the node set with |V| = n and
EY C V x V is the edge set. The adjacency matrix of v-th
view is defined as A € {0,1}"*" with the degree matrix
D?, where dj = >, Aj; and A}, = 1iff (v;,v;) € £V
GCL aims to maximize the agreement of representations
across views, which naturally fits the processing of multi-
view data. Unlike conventional CL, Graph contrastive multi-
view learning treats multi-view data as a natural augmenta-
tion of samples. Specifically, pair construction is generated
by categorizing the instances from identical samples as posi-
tive pairs and the others as negative [Liu ef al., 2023b]. Typ-
ically, each view graph is first encoded by a shared GNN en-
coder to obtain normalized data representations, denoted as
Z¥ = fo(A?,X). Following InfoNCE [Oord et al., 2018],

the loss for the i-th data sample between the v-th and v'-th
view can be defined as

lro(2) =
0=z /T

Og ! 7 3
0(z2,zY)/T Z 0(z7,2Y) /7 Z 0(z2,zv)r (1)
e + e J + e i
N————
positive pairs JFi j#i

negtive pairs

where 6 is a similarity measure defined over node representa-
tions and 7 is a temperature parameter. The encoder fg can
be substituted into any GNN model. Typically, the i-th node
representation in the v-th view can be generalized using a ba-
sic form of message passing in single-layer GNN encoders:

=Y Wz )
JE{N;Ui}
where ~;; is the weight for message passing trough the edge

(vs,v5), termed reweighting factor, and is exemplified in
vanilla GCN as ~;; =

d;d;°

3.2 Consistency Analyses on Preprocessing

Based on the previous analysis, directly treating the views in-
herent in multi-view data as augmentations is unreasonable.
Here, inspired by [Xu et al., 2025b], a theoretical analysis is
conducted to explore the impact of view preprocessing on the
consistency information within multi-view graphs. Initially,
the Disruptive Index in each view can be evaluated by track-
ing the propagation of information through non-consensual
edges, as defined by the following:

Definition 1 (Disruptive Index). Given a multi-view graph
GY = (V, &), the Disruptive Index (DI) quantifies the extent
to which each view hinders consistent decision-making across
views, defined as

~NU

Diev Zje/\f;m“ Yij
= =, 3)
Ziev Eje/\/i Vij
where N; denotes the neighbor set of node i, N*™ C N is
the subset of neighbors connected by edges that hinder con-
sensus learning, i.e., non-consensual edges. Conversely, the
consensual edge set are defined as the edges in N \ N*°",
which positively contribute to multi-view learning.

After DI is defined for each view based on the ratio of non-
consensual information, the effective preprocessing strategy
seeks a smaller DI. Here, we focus on commonly used edge
perturbation techniques, analyzing their impact on enhanc-
ing representation consistency across views and mitigating
the negative influence of non-consensual edges. Specifically,
we examine the effect of dropping or adding an arbitrary edge
(a,b) € £Y on DI. Let 3V denote the DI of the modified view
with the corresponding reweighting factor 7}, the change of
DI can be further represented as

A=73" -7V 4)

Assume s = 3.0y Zje./\fi %Uj anc? § = Diev 2 jen; Tij
we deduce the following quantification operator w as

w=25-8§"A, 5)
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which satisfies w o< A, effectively reflecting the change in
non-consensual information within the view. To further ex-
plore the changes of DI, we precisely quantify w:

Lemma 1. Assuming each node v; in the view receives non-
consensual information at a ratio m relative to total informa-
tion, it can be derived that:

w=2(m— 1, p1e6v)
w=2(L{gpjesr — M)

. %?’j, if an edge is dropped,
“ij, ifan edge is added,

W

(6

where &Y € EV is the set of non-consensual edges.

The full derivation of Eq. (5) and Lemma 1 can be found
in Appendix B. Overall, combining (5) and (6), the following
theorem can be deduced:

Theorem 1. When any edge (a,b) € EV is dropped or added
from a graph G, it results in:

A= 72(7”71[{; beev) Vi;»  if an edge is dropped 7
A= ﬂ{“b}%mm) Yij,  if an edge is added
For edge-dropping, the following holds:
{ A= 2(7,;_1) : ’}/’ij? if (a,b) € & (8)
_ 2m v H v
A*T'%ja if (a,b) ¢ &
For edge-adding, the following holds:
{ A = 20-m) ’Y”, if (a,b) € & ©
A - 72m %J’ lf(avb) ¢ é{”u

Assuming that the DI for the views in multi-view data is
below 0.5, i.e., m < 0.5, which is typical in most cases, we
observe the following effects of edge perturbation: For edge-
dropping, If the dropped edge is non-consensual, A < 0, in-
dicating an improvement in consistency with a greater consis-
tency gain; If the dropped edge is consensual, A > 0, result-
ing in disruption in consistency, but with less significant dam-
age. Edge dropping results in a larger consistency gain than
loss, while the trend is reversed for the edge adding opera-
tion. Thus, Theorem 1 confirms that edge dropping promotes
consistency learning more effectively than edge adding.

3.3 Adaptive Edge-dropping GNN Architecture

Following the theoretical analysis indicating that edge-
dropping promotes multi-view consistency learning, thus we
adopt edge-dropping as a preprocessing step for each view.
As per Theorem 1, the change in DI satisfies A oc 7%,
motivating the use of Vi jto control edge-dropping. Previ-
ous GCL models employing GNN encoders indiscriminately
smooth all node representations within a neighborhood, of-
ten struggling to accommodate the heterogeneity of multi-
view data. Therefore, we propose a more general and flexible
model architecture suitable for multi-view contexts, adopting
an adaptive reweighting factor ~;; = n;; /+/did;, where n?; f
ranges between 0 and 1. It enables nodes to selectively as-
similate information during message passing across diverse
views. Specifically, we employ a gating mechanism to learn
BT

nij = softmax(a(W " (27 1125])), (10)

where o (-) is the activation function, W € R2F" is a trainable
weight matrix with the hidden uints F’. Combining reweight-
ing factors with Theorem 1, the probability of an edge (v;, v;)
being dropped is guided by the reweighting factor as follows:

7;; — min(v")
mean(y?)

p;)j = Inin( ,) ' aap‘r)a (11)

— min(y*
where « is a hyper-parameter used to control the drop prob-
ability, and p, is a cutoff probability that does not exceed
1. Based on the edge-dropping probability p}., a masking
variable s7; can be sampled whose value is drawn from a
Bernoulli distribution: sf; ~ B(pw) The reweighting factor
can be computed as y;; = (1 5” i if sy, =1landv); =0
otherwise, with the probability of s =1 djetermined by pj}.

For each v-th view, a single- layer learnable GNN encoder
fo(+) learns the embedding of each node by aggregating the
embeddings of its neighbors with adaptive structure summa-
rized as:

2P = o(Wl x;), (12)
i = softmax(o (WT] EXIEH) /m7 (13)
Yo = (1 —s8;) iy, st.osi; €{0,1} (14)
) Z Vi 2] + Bz, (15)
JEN;
where (1 — ) is added for the trade-off between self feature

and message from neighbors. The advantages of the proposed
adaptive edge-dropping architecture method can be summa-
rized as follows: (1) The edge-dropping preprocessing pro-
motes multi-view consistency, ensuring that the discrepancies
between views are controllable, in accordance with the theo-
retical analysis. (2) Unlike fixed structures, the shared learn-
able model architecture enables each view to autonomously
adapt and discover an optimal structure tailored to its spe-
cific needs, without relying on prior knowledge. (3) The
edge-dropping operation is highly related to the dynamically
learned topology, enabling compatibility with each individual
view.

3.4 Neighborhood Consistency Multi-View
Contrastive Objective

Multi-view data modeled as graphs inherently exhibit graph
properties like homogeneity, where connected nodes often
share the same label. However, the pairing strategy in Eq.
(1), which designates instances from the same sample as pos-
itive pairs while treating all others as negatives, risks separat-
ing nodes linked by consensual edges. To address this issue,
we propose a neighborhood consistency contrastive objective
tailored for multi-view graph data, redefining the construc-
tion of positive and negative pairs. Specifically, we expand
positive samples by incorporating the first-order neighbors of
anchors within the same view and across different views. The
loss of the i-th data sample between the v-th and v’-th view
as defined in Eq. (1) can also be represented as:

POSyq (2y)

- . (16)
POS g (2v) + negfe(zz,)

gf(—) (Z;)) = —log
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Datasets ACM DBLP IMDB YELP

# Nodes 3,025 4,057 4,780 2,614

Metrics Macro F1  Micro F1 Macro F1 ~ Micro F1 Macro F1 ~ Micro F1 Macro F1 ~ Micro F1
GCN 76.7 (5.2) 78.0(4.5) 90.7 (0.6) 91.4(0.5) 23.6 (0.1) 54.6(0.0) 55.5(0.9) 74.00.4)
SGC 67.5(1.1) 70.2 (0.8) 66.3 (0.5) 81.5(0.6) 27.0(1.4) 54.8(0.7) 51.9(0.7) 67.4(1.5)
HAN 87.9(04) 88.0(0.4) 89.3(0.2) 90.4 (0.2) 24.0(1.2) 55.9(1.2) 55.3(4.5) 68.0(5.0)
DMGI 66.7 (1.8) 70.4 (1.1) 75.4(1.3) 81.2(0.7) 38.3(3.1) 57.0(0.4) 52.7(2.3) 69.5(0.7)
IGNN 82.9 (0.0) 82.7(0.0) 86.8 (0.0) 87.5(0.0) 45.3 (0.0) 54.8(0.0) 714 (0.0) 75.0(0.0)
MRGCN 87.6(0.2) 87.5(0.2) 89.5(1.6) 90.5(1.2) 452 (2.3) 47.72.3) 54.4(0.4) 73.7(0.5)
SSDCM 84.3(3.5) 85229 87.7 (.7 88.8(3.9) 353(3.5) 50.8(2.7) 55.9(3.0) 68.9(5.6)
MHGCN 88.8 (1.6) 89.1(0.7) 92.5(0.3) 93.0(0.2) 51.2(1.3) 61.2(1.3) 60.9 (1.0) 73.3(0.2)
AMOGCN 91.4 (0.5) 90.0 (0.6) 92.3(0.4) 92.8(0.4) 49.1 (0.8) 61.0(1.3) 71.8 (2.1) 77.4(0.4)
CAMEL 93.1(0.1) 92.2(0.3) 93.1 (0.1) 93.6 (0.1) 50.2 (0.4) 61.3(0.0) 91.3 (0.5) 90.1 (0.6)

Table 1: Macro F1 and Micro F1 scores of all methods on multi-relational datasets, where the best results are highlighted in orange and the

second-best results are highlighted in blue.

In the proposed contrastive objective, the positive pairs and
the negative pairs are reconstructed based on the first-order
neighborhood:

posy (a1) = 3 g S S

JENY je{NY Ui}

Intra-view positive pairs inter-view positive pairs

negy, (z)= Y. LEEVTL ST

JE{NY Ui} JE{NY Ui}

(7)
e@(zf,z;’l)/-r’

intra-view negative pairs inter-view negative pairs
(18)
’ . .. .

where NV, NV are the neighbor sets of node ¢ in view v

and v’. Specifically, with 27 as the anchor, positive pairs are
not only derived from the instance z; " in a different view v’
but also incorporate neighbors from both the same and across
views, ie., {2}|j € N} and {z}’/ |j € N?'} respectively.
Naturally, all non-neighbors of sample ¢ across view v and v’
serve as intra-view and inter-view negatives. Expanding pos-
itive samples through neighborhood structures harnesses the
full topological information, especially the consensual edges,
to capture the consistency and complementarity both within
and across views.

Since any data view can be considered a semantic augmen-
tation of another, we randomly choose one view as the pivot
view, termed zP. The rationale behind constructing the loss
in this manner is detailed in Appendix C. The overall loss is
then implemented as the sum of the losses between the pivot
view and the other views, as follows:

v
1 v
L=y > lo(z,2D), (19)
v=1,v#p
1 N
€f(_)(z;-’,zf) = ﬁZ(gfe(zf),ffe(zf))' (20)

i

The algorithm procedure of CAMEL is given in Appendix A.

4 Experiments
4.1 Experimental Settings

Dataset. To assess the performance of CAMEL, we con-
duct experiments on three types of datasets, including four
multi-relational datasets (ACM, DBLP, IMDB, YELP), two
multi-attribute datasets (COIL20, NoisyMNIST), and two
multi-modality datasets (Iaprtc12, NUS-Wide).

Compared Methods. We compare CAMEL with twenty-
one representative methods, categorized as follows: (1) Base-
line methods: GCN [Kipf and Welling, 2017] and SGC [Wu
et al., 2019]; (2) Heterogeneous methods: HAN [Wang et
al., 2019], DMGI [Park et al., 2020], IGNN [Gu et al.,
2020], MRGCN [Huang ef al., 2020], SSDCM [Mitra et al.,
2021], MHGCN [Yu et al., 2022], and AMOGCN [Chen
et al., 20241, (3) Multi-view classification methods: ERL-
MVSC [Huang et al., 2021], Dynamics [Han et al., 2022],
PDMF [Xu et al., 2023], IMvGCN [Wu et al., 2023al,
LGCN-FF [Chen et al., 2023al, and RCML [Xu et al., 2024];
(4) Multi-view clustering methods: OMSC [Chen er al.,
2022], SDSNE [Liu et al., 2022], DSMVC [Tang and Liu,
2022], FSMSC [Chen et al., 2023b], RCAGL [Liu et al.,
2024al, and SMVAGC [Wang et al., 2024].

Experimental Settings. The implementation details and
parameter settings are introduced in Appendix D.

4.2 Node Classification Performance

In this section, we explore semi-supervised classification
tasks, evaluating the efficacy of CAMEL in processing com-
plex data across three types of multi-view graphs: (1) Multi-
relational Graphs. Classification results for four multi-
relational graphs, with a training ratio of 20%, are detailed
in Table 1. From these results, we can see that CAMEL sur-
passes most methods designed for multi-relational data, af-
firming its effectiveness. Furthermore, CAMEL considerably
outperforms baseline models like GCN and SGC, illustrating
that static architectures are ill-equipped to manage the het-
erogeneity inherent in complex datasets. (2) Multi-attribute
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Datasets COIL20 NoisyMNIST laprtc12 NUS-Wide
#Nodes 1440 15000 7855 20000

Task Node Classification

Metrics Macro F1  Micro F1 Macro F1 Micro F1 Macro F1 ~ Micro F1 Macro F1 ~ Micro F1
ERL-MVSC 87.1(1.5) 87.4(1.4) 89.4 (0.0) 89.3 (0.0) 59.8 (0.8) 60.1(1.2) 51.2(0.2) 51.3(0.1)
Dynamics 70.7 (0.1) 71.6(0.1) 70.4 (0.6) 72.8 (0.4) 50.1 (0.5) 50.8 (0.3) 60.5 (0.1) 62.7(0.1)
PDMF 63.6 (1.7) 649 (1.7) 66.6 (1.9) 69.7 (1.3) 47.6 (2.6) 46.22.2) 37.1(1.5) 40.5(1.3)
IMvGCN 71.3(0.3) 70.9(0.4) 86.3 (0.6) 86.0 (0.8) 52.9(1.0) 53.6(0.7) 51.9(1.5) 53.2(1.2)
LGCN-FF 89.7 (0.4) 89.4(0.3) 89.6 (0.5) 89.8 (0.5) 59.3(1.4) 57.8(1.3) oM OM
RCML 64.0 (0.3) 66.3 (0.3) 84.5(0.1) 85.2 (0.1) 39.4(0.2) 40.7 (0.2) 54.2 (0.7) 56.8 (0.4)
CAMEL 92.5(0.3) 92.4(0.3) 91.9 (1.7) 92.2 (1.6) 61.6 (0.5) 60.7 (0.3) 69.2 (0.6) 69.6 (0.2)
Task Node Clustering

Metrics ACC NMI ACC NMI ACC NMI ACC NMI
OMSC 52.02.1) 71.4Q2.4) 49.6 (0.9) 44.3 (1.7) 449 (1.4) 22.9(0.6) 36.3(1.1) 21.6(1.4)
SDSNE 64.2 (3.0) 77.8(2.3) 40.0 (11.7) 51.1 (16.7) 36.3(29) 194 (3.7 259(59) 19.0(6.9)
DSMVC 66.7 (3.9) 79.3(1.5) 33.5(3.2) 26.6 (3.3) 35.1(19) 14314 29.7(1.9) 139(1.4)
FSMSC 74.7 (1.4) 82.8 (0.7) 55.5 (0.7) 51.3 (1.1) 44.6 (0.8) 22.2(0.6) 37.3(0.2) 21.7(0.1)
RCAGL 66.8 (0.9) 81.2(0.5) 55.2(1.4) 49.8 (1.7) 43.6 (0.6) 24.7 (0.5) 40.2 (0.7) 23.5(0.4)
SMVAGC 65.04.2) 79.1(1.7) 53.9 (2.4) 46.2 (1.1) 39.2(0.8) 17.7(0.4) 36.1(2.3) 22.9(0.9)
CAMEL 78.7 (0.3) 86.2 (0.2) 84.8 (1.4) 81.7 (2.5) 453 (1.3) 254(1.1) 42.4 (0.6) 26.1(1.2)

Table 2: Macro F1 and Micro F1 scores for the node classification task, along with ACC and NMI for the node clustering task on multi-
attribute and multi-modality datasets, where the best results are highlighted in orange and the second-best results are highlighted in blue.
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Figure 2: t-SNE visualization of the learned representations in ACM and DBLP dataset. Each node is colored according to its label.

and multi-modality Graphs. We run six multi-view classi-
fication methods with a training rate of 10%, and the results
are presented in Table 2. It can be observed that graph-based
methods dominate the performance landscape, underscoring
the pivotal role of leveraging relational information between
multi-view samples for performance improvement. Among
these, CAMEL achieves superior results through its adept
adaptation to the heterogeneity of multi-view data, supported
by the advanced contrastive strategy and model architecture.

4.3 Node Clustering Performance

In this section, we assessed node clustering performance
on multi-attribute datasets COIL20 and NoisyMNIST, along
with multi-modality datasets Iaprtc12 and NUS-wide. Table 2
indicates that CAMEL substantially exceeds the performance

of state-of-the-art clustering methods on both ACC and NMI
metrics, confirming the efficacy of the proposed contrastive
paradigm in producing distinguishable representations. The
superior clustering outcomes stem primarily from CAMEL
enhancing connectivity density among node pairs distanced
from estimated decision boundaries, facilitating the forma-
tion of compact, well-defined clusters.

4.4 Visualization

Beyond quantitative analysis, we also visualize the rep-
resentations derived by the competitive baseline algorithm
AMOGCN and the proposed method CAMEL in Figures 2 on
the ACM and DBLP datasets using t-SNE [Van der Maaten L,
2008]. Contour lines within colored shaded areas indicate the
density levels of different classes. Moreover, the histograms
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Figure 3: Parameter sensitivity across all multi-relational datasets.
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Figure 4: Ablation study (mean% and standard deviation%) .

positioned at the top and right sides of each plot illustrate
the distribution of t-SNE-transformed data along the X and
Y axes, respectively. From the visualizations, it is observed
that the embeddings generated by CAMEL show distinctly
clearer class boundaries and tighter intra-class cohesion than
those by AMOGCN. This distinction is observable in the den-
sity plots, where CAMEL’s embeddings show reduced class
overlap and more distinct peaks within each class’s distribu-
tion. The histograms complement these findings by present-
ing a more noticeable separation along both axes. These re-
sults show that CAMEL excels in learning high-quality node
representations, as evidenced by its ability to produce repre-
sentations with well-defined and separate class clusters.

4.5 Hyperparameter Analysis

In this subsection, we conduct parameter sensitivity to ex-
plore the impact of o in Eq. (11) and 8 in Eq. (15) on
model performance. Specifically, & modulates the adaptive
edge-dropping probability, while  regulates the balance be-
tween self-features and neighbor messages in the learnable
GNN encoder. Generally, o shows peak performance at mid-
range values across the datasets, indicating that moderate
edge-dropping efficiently captures critical semantic informa-
tion and promotes consistent learning in multi-view data. As
« and [ values vary, the performance exhibits stable fluc-
tuations across most datasets, reflecting the CAMEL frame-
work’s insensitivity to parameter changes. Notably, both «
and S yield suboptimal performance when set to zero, espe-
cially in the IMDB, highlighting the pivotal role of the adap-
tive edge-dropping architecture in optimizing model efficacy.

4.6 Ablation Study

To evaluate the importance of each component in CAMEL,
we conducted ablation experiments by removing key ele-

ments: edge-dropping (denoted as E), the adaptive edge-
dropping architecture (denoted as AE), and the neighborhood
consistency multi-view contrastive objective (denoted as N).
Specifically, to evaluate the adaptive edge-dropping architec-
ture, we replaced the encoder with a vanilla GCN. For the
contrastive objective evaluation, we used the contrastive loss
from the classic GCL method GRACE [Zhu et al., 2020]. The
results of these experiments are shown in Figure 4. Notably,
removing the adaptive edge-dropping architecture (w/o AE)
leads to a sharp performance drop, highlighting the superior-
ity of the learnable architecture in adapting to heterogeneous
views. Subsequently, the absence of either the edge-dropping
preprocessing or the contrastive objective results in a cer-
tain decrease in performance. Overall, CAMEL consistently
outperforms each variant, validating its ability to effectively
leverage consistency and complementarity across views.

5 Conclusion

In this paper, we reveal that multi-view graph contrastive
learning requires preprocessing, with the edge-dropping
strategy promoting consistency supported by mathematical
derivation. Inspired by these findings, we introduce a multi-
view contrastive paradigm called CAMEL, which synergis-
tically enhances both strategy and architecture to learn con-
sistent representations. On the strategic side, the proposed
adaptive edge-dropping preprocessing strategy, guided by dy-
namic topology, along with the neighborhood consistency
contrastive objective, effectively extracts consistency infor-
mation from multi-view data. On the architectural side, the
learnable GNN encoder boosts the adaptability to diverse
views. Extensive experiments on various datasets validate the
superiority of CAMEL.
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