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Abstract
Most rain removal methods based on deep learn-
ing typically adopt a single-stage network archi-
tecture to remove the rain streaks in rainy images
by increasing the depth of the network. The in-
crease in network depth will increase the com-
putational complexity of the model, and the lack
of guidance for intermediate features will lead to
inaccurate feature learning. To address this is-
sue, we proposed a progressive rain removal net-
work based on Fourier-spatial dual Transformer,
called FSDFormer. The network consists of mul-
tiple rain removal stages, each with the same struc-
ture, which can utilize background prior features
to guide the network to reconstruct rainless images
with more texture information. Each stage con-
sists of a prior extraction module (PEM), a prior
attention fusion module (PAFM), and a U-Net in-
cluding multiple Fourier-spatial dual Transformers
(FSD-Transformers). Firstly, PEM is constructed
to extract the background prior features from the
input rainy image or the output of each stage. Then,
a PAFM is designed to reconstruct accurate image
background features by utilizing background prior
features to guide the network. Finally, U-Net ex-
tracts and reconstructs features at different scales
by constructing multiple FSD-Transformers to ob-
tain rainless features at each stage. Extensive ex-
perimental results on synthetic and real datasets
have shown that the proposed method outperforms
some state-of-the-art (SOTA) rain removal meth-
ods in terms of visual quality and quantitative in-
dicators. The source code is available at https:
//github.com/yangjiaxuan6250/FSDFormer.

1 Introduction
The presence of rain streaks or raindrops in images results in
the loss of scene information and low contrast, which will
have a significant impact on some high-level vision tasks,
such as target detection [Redmon, 2016], video surveillance
[Viola and Jones, 2004], and scene understanding [Zhao et

∗Corresponding author.

(a) (b) (c)

Figure 1: (a) single-stage architecture, (b) single-stage multi-input
architecture, (c) our multi-stage architecture.

al., 2017]. In recent years, research on image rain removal
tasks in the field of low-level vision has attracted increasing
attention from researchers.

Early traditional methods [Kang et al., 2011; Chen and
Hsu, 2013; Li et al., 2016] mostly constructed rain removal
models by defining prior information of rain streaks or back-
ground image to obtain rainless images. Later, convolu-
tional neural network (CNN) based methods [Zhang and Pa-
tel, 2018; Li et al., 2018; Yang et al., 2019] demonstrated
excellent performance in learning complex mapping relation-
ships between rainy and clean images due to their powerful
feature representation capabilities, effectively handling rain
streaks of different shapes, sizes, and densities. Recently,
the Transformer method that can model non local information
[Wang et al., 2022] has further improved the performance of
rain removal tasks.

Currently, most rain networks [Xiao et al., 2022a; Chen
et al., 2023b] adopt two single-stage architectures, as shown
in Figs.1 (a) and (b), which cannot utilize the explicit infor-
mation present in multi-scale images. Figure 1 (a) does not
use external information to guide intermediate features in the
feature learning process. Figure 1 (b) can improve the accu-
racy of the mapping relationship by adding multiple inputs
in the middle layers of the network. In addition, reference
[Chen et al., 2024a] improved the above structure by using
a stacked U-Net structure to enhance the performance of the
model, which resulted in a significant increase in computa-
tion and parameter count, but the performance improvement
was not significant. Based on the above analysis, we con-
structed a multi-stage network architecture as shown in Fig-
ure 1 (c). Figure 2 shows a comparison of the performance
of three architectures in rain removal tasks. Each architec-
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Figure 2: Performance comparison of three different architectures
with increasing number of parameters. (a) single-stage architecture,
(b) single-stage multi-input architecture and (c) multi-stage archi-
tecture.

ture uses the same number of feature extraction layers from
Restormer [Xiao et al., 2022a]. From the figure, it can be ob-
served that as the number of parameters increases, the perfor-
mance of our method improves faster. This also indicates that
Figure 1(3) is effective. However, current methods mostly
focus on feature extraction in the spatial domain, using CNN
to extract local features and transformer structure to extract
global features. The Transformer structure only uses a larger
receptive field for feature extraction, which is still limited in
global feature extraction. Therefore, to enhance the model’s
ability to extract global features, we introduce frequency do-
main feature extraction into the model.

Based on the above analysis, we propose a progressive rain
removal network based on Fourier-spatial dual Transformer,
named FSD-Former, which includes multiple rain removal
stages with the same structure. In each stage, image back-
ground prior information is extracted and utilized to guide the
learning of background features. Specifically, each rain re-
moval stage consists of a PEM, a PAFM, and a U-Net that in-
cludes FSD-transformers. Firstly, a PEM is constructed to ex-
tract background prior features from the input rainy image or
coarse rainless image from the previous stage. Then, a PAFM
is designed, which utilizes prior background features to guide
the network to learn background features with rich informa-
tion. Next, a FSD-Transformer U-net is constructed to learn
and reconstruct the different scale features in spatial and fre-
quency domains by utilizing multiple FSD-Transformers, in
order to output the rain removal results for each stage. The
main contributions of this paper are as follows.

• A progressive rain removal network called FSD-Former
is proposed, which gradually obtains clear rainless im-
ages by constructing multiple rain removal stages with
the same structure.

• In each rain removal stage, PAFM is first constructed
based on prior background features as guidance to
achieve preliminary rain removal. Then, a U-net con-
taining multiple FSD-Transformers is constructed to ob-
tain refined background features to obtain the rain re-
moval results for each stage.

• FSD-Transformer is designed to extract local features in
the spatial domain and enhance global features in the
frequency domain by constructing a local feature en-
hancement block (LFEB), a Fourier-spatial dual atten-
tion block (FDAB), and a Fourier enhancement gated
block (FEGB).

2 Proposed Method
2.1 Overall Structure
In this section, a FSDFormer consisting of multiple rain re-
moval stages with the same structure is proposed to achieve
gradual removal of rain streaks, and the specific structure is
shown in Figure 3. The structure of each stage is mainly
composed of three modules: prior extraction module (PEM),
prior attention fusion module (PAFM), and Fourier-spatial
dual Transformer (FSD-Transformer).

In the first stage, the input rain image IRis first fed in par-
allel to a 3×3 convolutional layer and a PEM [27] to obtain
shallow features F0 and prior background features F 1

p . This
module is designed to extract a priori information from the
rain map. Then, the two features are fused through the con-
structed PAFM to achieve the enhancement of background
features. Next, a U-shaped network containing multiple FSD-
Transformers is constructed to achieve fine-grained extraction
and reconstruction of features at different scales. Finally, a
3×3 convolutional layer and a residual operation are used to
obtained the initial rain removal result I1B . The specific oper-
ations can be expressed by the following equations.

F0 = Conv3×3(IR), F
1
P = PEM(IR), (1)

F i
u = Uneti(PAFM(F0, F

1
P )), i = 1, (2)

I1B = Conv3×3(F
1
u) + IR, (3)

where Conv3×3(·) represents a 3×3 convolution operation,
PEM(·)and PAFM(·) represent the operations of PEM and
PAFM, and Uneti(·) represents the U-shape network in the
i − th stage, and its output is F i

u. To reduce the loss of fea-
tures, the second and third stages uses the output of the U-
shaped network in the previous stage and the initial shallow
features as inputs to supplement the features and further refine
the rain removal results. The operations of the subsequent
two stages can be represented as follows.

F i
p = PEM(Ii−1

b ), i = 2, 3, (4)

F i
u = Uneti(Concat(F i−1

u , F0), F
i
p), i = 2, ..., N, (5)

IiB = Conv3×3(Concat(F i
u, F

i−1
u , ..., F 1

u)) + IR, (6)

where Concat(·) represents the concatenation operation.
IiB is the rain removal result from the i − th stage, and INB is
the final rain removal result, denoted as IB .

2.2 Prior Attention Fusion Module (PAFM)
To guide the network to learn rich background features,
PAFM is designed to achieve the fusion of prior background
features and shallow features by establishing a background
prior attention matrix. The architecture of PAFM is illus-
trated in Figure 4. Firstly, the shallow features are sent to two
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Figure 3: The overall architecture of FSDformer.

feature mapping layers containing one layer normalization
operation, Partial Convolution (Pconv) [Chen et al., 2023a],
and one 1×1 convolutional layer to obtain the vectors Q, and
V , and the background priori features are sent to one fea-
ture mapping layer to obtain the vector K. Then, Q, and K
are used to generate the background prior attention matrix,
which weights V to enhance background information. Fi-
nally, the weighted features are mapped to the original feature
space and processed through a 1×1 convolution operation and
a residual operation to obtain the enhanced shallow features
FPA. The operations of PAFM can be represented as follows.

{Q,V } = Reshape(Conv1×1(PConv(LN(F i
u)))),

F 0
u = F0,

(7)

{K} = Reshape(Conv1×1(PConv(LN(FP
i )))), (8)

FPA = Conv1×1(softmax(
QKT

λ
)⊗ v) + F i

u, (9)

where LN(·), PConv(·) and Conv1×1(·) denote the opera-
tions of layer normalization, 3×3 PConv, and 1×1 convolu-
tion, respectively. Reshape(·) denotes the operation of re-
shaping the input sequence, and softmax(·) denotes a Soft-
max activation layer. T denotes the matrix transpose opera-
tion, and ⊗ denotes matrix multiplication operation.

2.3 Fourier-spatial Dual Transformer
(FSD-Transformer)

At present, Transformer has shown superior performance in
rain tasks, but due to its focus on extracting global features
and neglecting the learning of local features, there is still
a problem of insufficient learning of rain streak structures.

Therefore, we design an FSD-Transformer to achieve the ex-
traction and construction of global and local features. FSD-
Transformer mainly consists of local feature enhancement
block (LFEB), Fourier-spatial dual attention (FDAB), and a
Fourier enhancement gated block (FEGB). The structure of
each block is as follows.

Local Feature Enhancement Block (LFEB)
To enhance the local feature learning ability of the trans-
former structure, LFEB is constructed as a multi-scale feature
learning residual block, which extracts local features by uti-
lizing convolution kernels with different receptive fields. The
specific operations are as follows.

F1 = GeLU(Conv1×1(Fin)), (10)

F2 = GeLU(Conv1×1(PConv3×3(Fin))), (11)
F3 = GeLU(Conv1×1(PConv5×5(Fin))), (12)

FLf = Conv1×1(Concat(F1, F2, F3)) + Fin, (13)
where GeLU(·) denotes the GeLU activation function, and
PConv3×3(·) and PConv5×5(·) denotes Pconvs with convo-
lution kernel sizes of 3×3 and 5×5 . F1, F2, F3 represent the
local features extracted by convolution kernels of sizes 1×1,
3×3, and 5×5, respectively. Fin and FLf denote the input and
output of LFEB.

Fourier-spatial Dual Attention Block (FDAB)
To enhance the global feature learning ability of the trans-
former structure, FADB is designed to learn global features in
both spatial and frequency domains by constructing a masked
spatial self-attention block (MSSB) and a masked frequency
self-attention block (MFSB), respectively. Firstly, 3×3 Pconv
and 1×1 convolution operations are employed to achieve fea-
ture mapping and obtain feature vectors Q, K and V . In ad-
dition, to establish the global relationship of features in the
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Figure 4: The structure of FSD-Transformer

frequency domain, a one-dimensional Fourier transform (1D-
FFT) is employed.

{Qsd,Ksd, Vsd} = Reshape(Conv1×1(PConv(F s
in))),

(14)
{Qfd, kfd, vfd} =1D FFT (Reshape(Conv1×1

(PConv(FLf )))),
(15)

where Qm, Km and Vm denote feature vectors, m = sd, fd
denotes the spatial or frequency domain, and 1D FFT de-
notes the 1D-FFT operation.

Then, these feature vectors are fed into MSSB and MFSB
to calculate the attention matrices, as shown in Figure 4.
These two attention matrices are used to enhance spatial and
frequency domain features, respectively. To improve the ac-
curacy of feature extraction, two adaptive learning mask ma-
trices Maskm are introduced to adjust the constructed self-
attention matrices. The above operations are as follows.

EFm =
(
Maskm⊙softmax(QmKT

m/λ)
)
⊗Vm,

m={sd, fd},
(16)

where EFm denotes the enhanced spatial and frequency fea-
tures. ⊙denotes the element-wise multiplication operation,
and ⊗ denotes the matrix multiplication operation.

Finally, the enhanced frequency features EFfd are trans-
formed by inverse Fourier transform and integrated with the
enhanced spatial features through a 1×1 convolution to obtain
the output FFA of FADB. The operations are as follows.

FFA =Conv1×1(Concat(Conv1×1(1D IFFT (EFfd),

Conv1×1(EFsd)))),
(17)

where 1D IFFT denotes the one-dimensional inverse
Fourier transform (1D-IFFT).

Fourier Enhancement Gated Block (FEGB)
FADB mainly enhances features by establishing the corre-
lation of channel dimension features. To increase the cor-

relation of global features in the spatial dimension, we de-
signed a FEGB as shown in Figure 4 , which utilizes a two-
dimensional Fourier transform to enhance the frequency fea-
tures in the spatial dimension. Firstly, 3×3 Pconv and 1×1
convolution operations are employed to expand the chan-
nel number of the feature maps by twice. Then, learnable
weights W are used to perform dot product operations on fre-
quency features to achieve global feature enhancement. Next,
a GeLU activation function is adopted to perform a gating op-
eration in the spatial domain to further enhance the features.
Finally, a 1×1 convolution operation is performed to achieve
feature integration and channel dimensionality reduction.The
above operations are as follows.

Fef = IFFT2D(FFT2D(Conv1×1(PConv(F ′)))⊙W ),
(18)

FFE = Conv1×1(GeLU(Fef ⊙ Fef )), (19)

where FFT2D(·) and IFFT2D(·) denote two-dimensional
Fourier transform and inverse Fourier transform. Fef denotes
the enhanced global features in the frequency domain, and
F ′
in and FFE denotes the input and output of FEGB.

2.4 Loss Function
To better guide the training of the network, we define a joint
loss function consisting of Charbonnier loss Lc [Charbonnier
et al., 1994], Edge loss Ledge [Zamir et al., 2021]] and Fre-
quency Reconstruction loss Lf [30], which is defined as fol-
lows:

Lc =

√
∥IB − IGT ∥2 + ε2, (20)

Ledge =

√
∥∆(IB)−∆(IGT )∥2 + ε2, (21)

Lf = ∥FFT (IB)− FFT (IGT )∥1, (22)

where IGT is the ground truth image, and the confidence level
ε is set to 10−3. In addition, to reconstruct more accurate
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features, L1 loss is used to constrain the output of each stage,
which can be expressed as follows:

Lst =
2∑

k=1

∥Ik − IGT ∥1, (23)

where Ik is the output of the k−th stage. Therefore, the joint
loss function Ltotal is defined as follows:

Ltotal = Lc + λ1Ledge + λ2Lf + λ3L1, (24)

where the weighting factors λ1, λ2 and λ3 are set to 0.05,
0.01 and 0.1, respectively.

3 Experiments
3.1 Experimental Settings
Datasets. All comparison experiments are conducted
on a variety of public benchmark datasets, including
Rain200H[Yang et al., 2017], Rain200L[Yang et al., 2017],
DDN-Data[Luo et al., 2015a], and DID-Data[Zhu et al.,
2017]. To further validate the generalization ability of the
model, a large-scale real-world dataset (SPA-Data) [Wang et
al., 2019] including 638492 training image pairs and 1000
test image pairs [34], and the real dataset Internet-Data [Wang
et al., 2019] lacking reference images, are also employed to
assess the efficacy of the various comparison methods.
Comparison Methods. To evaluate the performance of our
method, we compared it with some SOTA methods, includ-
ing two a priori-based traditional methods (DSC [Luo et al.,
2015b] and GMM [Li et al., 2016]), eight CNN-based meth-
ods (DDN [Fu et al., 2017], RESCAN [Li et al., 2018],
PReNet [Ren et al., 2019], MSPFN [Jiang et al., 2020], RCD-
Net [Wang et al., 2020], MPRNet [Zamir et al., 2021], Du-
alGCN [Fu et al., 2021] and SPDNet [Yi et al., 2021]), as
well as six Transformer-based methods (Uformer [Wang et
al., 2022], Restormer [Xiao et al., 2022a], IDT [Xiao et al.,
2022b], DRSformer [Chen et al., 2023b], MSTD [Chen et al.,
2024a], and NeRD [Chen et al., 2024b]). To ensure fairness
in the comparison, we adopted the same evaluation method
used in [Chen et al., 2024b].
Evaluation Metrics. To facilitate quantitative compar-
isons, two common evaluation metrics, PSNR [Huynh-Thu
and Ghanbari, 2008] and SSIM [Wang et al., 2004], are em-
ployed for the synthetic dataset and the real dataset SPA-Data.
However, for the real dataset Internet-Data lacking reference
images, two reference-free image quality estimation metrics,
NIQE [Mittal et al., 2012] and PIQE [Venkatanath et al.,
2015], are utilized to assess the performance of comparison
methods.
Training Details. The proposed network is implemented
using the PyTorch framework on a NVIDIA GeForce A6000
(48G). During the training process, the initial learning rate is
3×10−4, and the Adam optimizer is used. The cosine anneal-
ing strategy is adopted to gradually reduce the learning rate,
and the final learning rate is reduced to 1×10−6. To increase
the diversity of training samples, we performed random hori-
zontal and vertical flipping operations on the training datasets
for data augmentation. The patch size and batch size are set
to 256× 256 and 6.

3.2 Experimental Results
Results on Synthetic Datasets. As shown in Table 1,
our method achieves state-of-the-art PSNR/SSIM across all
datasets. Figure 1 presents a qualitative comparison on the
Rain200H dataset. It is obvious that the results obtained by
other methods have edge blurring and significant artifacts,
while our results have clearer edges and are closer to the GT
image. This observation aligns with the quantitative values.
This also demonstrates the effectiveness of our method.

Results on Real Datasets. The last column of Table 1
presents the objective results on the real dataset SPA. Simi-
larly, our method achieved the best performance. In addition,
to further validate the generalization of the comparison meth-
ods, we also conduct experiments on the Internet-Data dataset
without reference images. Figs.2 and 7 show the subjective
comparison results on the real datasets SPA and Internet Data,
respectively. From the figures, it can be seen that our results
have the least amount of residual rain streaks and retain more
background information.

Table 2 presents the results of reference-free metrics on the
dataset Internet-Data. The results indicate that our method
achieves the optimal PIQE value, with NIQE value only 0.01
lower than MSDT. This also indicates that our method is also
effective for real rainy images.

Model Efficiency. Table 3 compares computational com-
plexity across Transformer-based methods. Our approach
achieves the fewest parameters, second-lowest FLOPs, and
fastest inference time on 256×256 images. Figure 8 further
visualizes performance via a radar chart (parameters, FLOPs,
runtime, PSNR, SSIM), demonstrating balanced superiority
across all metrics.

3.3 Ablation Studies
To validate the effectiveness of various components in the
model, we conducted extensive ablation experiments on the
Rain200H dataset.

Effectiveness of Multi-stage Structure. To demonstrate
the effectiveness of multi-stage architecture. The first stage
in our network is referred to as the structure of Figure 1 (a),
denoted as M1, and the first stage in which a rainy image is
input in each layer is referred to as the structure of Figure 1
(b), denoted as M2. Our network is the multi-stage network
in Figure 1 (C). To ensure fair comparison, the modules in all
three architectures are the same. Table 4 presents the PSNR
and SSIM values obtained by three architectures. The exper-
imental results demonstrate that the progressive multi-stage
architecture has achieved significant performance improve-
ments.

Effectiveness of Each Module. To verify the effective-
ness of each module in our model, ablation experiments were
carried out and the experimental results are shown in the Ta-
ble 5. In experiments, In the experiment, LFEB was directly
removed, and PAFM was replaced by a Concatenation op-
eration and a 1×1 convolution. For MSSB and MFSB, we
only use spatial self-attention or Fourier self-attention to ver-
ify the effectiveness of both types of self-attention. Specifi-
cally, MSSB is replaced by MFSB, which means there are two
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Datasets Rain200H Rain200L DDN-Data DID-Data SPA-Data

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Prior-based methods DSC 14.73 0.3815 27.16 0.8663 27.31 0.8373 24.24 0.8279 34.95 0.9416
GMM 14.50 0.4164 28.66 0.8652 27.55 0.8479 25.81 0.8344 34.30 0.9428

CNN-based methods

DDN 26.05 0.8056 34.68 0.9671 30.00 0.9041 30.97 0.9116 36.16 0.9457
RESCAN 26.75 0.8353 36.09 0.9697 31.94 0.9345 33.38 0.9417 38.11 0.9707
PReNet 29.04 0.8991 37.80 0.9814 32.60 0.9459 33.17 0.9481 40.16 0.9816
MSPFN 29.36 0.9034 38.58 0.9827 32.99 0.9333 33.72 0.955 43.43 0.9843
RCDNet 30.24 0.9048 39.17 0.9885 33.04 0.9472 34.08 0.9532 43.36 0.9831
MPRNet 30.67 0.9110 39.47 0.9825 33.10 0.9347 33.99 0.9590 43.64 0.9844
DualGCN 31.15 0.9125 40.73 0.9886 33.01 0.9489 34.37 0.9620 44.18 0.9902
SPDNet 31.28 0.9207 40.50 0.9875 33.15 0.9457 34.57 0.9560 43.20 0.9871

Transformer-based methods

Uformer 30.80 0.9105 40.20 0.9860 33.95 0.9545 35.02 0.9621 46.13 0.9913
Restormer 32.00 0.9329 40.99 0.9890 34.20 0.9571 35.29 0.9641 47.98 0.9921

IDT 32.10 0.9344 40.74 0.9884 33.84 0.9549 34.89 0.9623 47.35 0.9930
DRSformer 32.17 0.9326 41.23 0.9894 34.35 0.9588 35.35 0.9646 48.54 0.9924

MSDT 32.45 0.9379 41.75 0.9904 34.36 0.9593 35.37 0.9652 49.07 0.9926
NeRD 32.40 0.9373 41.71 0.9903 34.45 0.9596 35.53 0.9659 49.58 0.9940
Ours 32.87 0.9421 42.05 0.9910 34.48 0.9604 35.65 0.9674 49.67 0.9940

Table 1: Comparison of quantitative results on synthetic and real datasets. bold and underline indicate the best and second-best results.

Rainy Input Restormer DRSformer MSDT NeRD Ours GT

Figure 5: Visual quality comparison on the Rain200H dataset.

Rainy Input Restormer DRSformer MSDT NeRD Ours GT

Figure 6: Visual quality comparison on the SPA-Data dataset.

Rainy Input MPNnet Restormer DRSformer MSDT NeRD Ours

Figure 7: Visual quality comparison on the Internet-Data dataset.
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Methods SPDNet Restormer DRSformer MSDT NeRD Ours

NIQE 3.69 3.70 3.68 3.61 3.64 3.62
PIQE 27.63 27.05 26.81 27.74 26.88 26.08

Table 2: Comparison of quantitative results on the internet-data
dataset.

Methods Restormer IDT DRSformer MSDT NeRD Ours

Params(M) 26.12 16.41 33.70 16.60 22.86 12.38
FLOPs(G) 140.9 61.9 242.9 129.9 148.0 69.9

Runtimes(ms) 118.8 116.3 248.2 116.5 154.5 78.4

Table 3: Comparison of quantitative results on the internet-data
dataset.

Figure 8: Performance comparison of three different architectures
with increasing number of parameters.

MFSBs in FDAB. Similarly, MFSB is replaced by MSSB,
which means there are two MSSBs in FDAB. The results
show that removing any module affects the performance of
the model, which also demonstrates the effectiveness of each
module.

Effectiveness of Stage Number. To illustrate the impact
of stage number on experimental results and computational
costs, we conducted experiments using different stages such
as 1, 2, 3, and 4, and the results are shown in Table 6. The
results indicate that as the number of parameters increases,
the performance of the model improves. When N is 4, the
performance of this model only slightly improves compared
to that of the three-stage model.

Raindrop SPDNet Restormer IDT

DRSformer NeRD Ours GT

Figure 9: Visual quality comparison of raindrop removal on the
UAV-Rain1k dataset.

Methods M1 M2 Ours

PSNR 32.08 32.38 32.87
SSIM 0.9305 0.9394 0.9421

Table 4: Effectiveness of Multi-stage.

Methods LFEB MSSB MFSB PAFM PSNR

(a) ✓ ✓ ✓ 32.61
(b) ✓ ✓ ✓ 32.66
(c) ✓ ✓ ✓ 32.56
(d) ✓ ✓ ✓ 32.58
(e) ✓ ✓ ✓ ✓ 32.87

Table 5: Effectiveness of each module.

Methods N=1 N=2 N=3 N=4

PSNR 31.27 32.49 32.87 32.99
Params(M) 4.13 8.25 12.38 16.59

Table 6: Effectiveness of stage number.

Methods SPDNet Restormer IDT DRSformer NeRD Ours

PSNR 22.54 24.78 22.47 24.93 25.57 25.98
SSIM 0.8594 0.9054 0.8957 0.9155 0.9219 0.9277

Table 7: Comparison of quantitative results on UAV-1K dataset.

3.4 Experiment on Removing Raindrops
To further validate the effectiveness of our model in removing
raindrops, we conducted experiments on the UAV-1K [Chang
et al., 2024] dataset and compared the performance of various
methods in removing raindrops. As shown in Table 7 and Fig.
9, our method achieves the highest PSNR/SSIM with minimal
artifacts, outperforming existing approaches in visual quality
and metrics.

4 Conclusion
This paper proposes a multi-stage image deraining network
to gradually remove rain streaks. Each stage leverages PEM
and PAFM to guide background reconstruction. A U-Net is
constructed in each stage to achieve fine-grained extraction
and reconstruction of background features at different scales
by designing an FSD-Transformer, in order to obtain the rain
removal result of each stage. FSD-Transformer is constructed
to extract the global and local features in the spatial and fre-
quency domains. Experiments demonstrate superior perfor-
mance on both rain streaks and raindrops.
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