
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

A Finite-State Controller Based Offline Solver for Deterministic POMDPs

Alex Schutz1 , Yang You2 , Matı́as Mattamala1 , Ipek Caliskanelli2 ,
Bruno Lacerda1 and Nick Hawes1

1University of Oxford
2UK Atomic Energy Authority

{alexschutz, matias, bruno, nickh}@robots.ox.ac.uk, {yang.you, ipek.caliskanelli}@ukaea.uk

Abstract
Deterministic partially observable Markov decision
processes (DetPOMDPs) often arise in planning
problems where the agent is uncertain about its
environmental state but can act and observe de-
terministically. In this paper, we propose DetM-
CVI, an adaptation of the Monte Carlo Value Iter-
ation (MCVI) algorithm for DetPOMDPs, which
builds policies in the form of finite-state con-
trollers (FSCs). DetMCVI solves large problems
with a high success rate, outperforming existing
baselines for DetPOMDPs. We also verify the per-
formance of the algorithm in a real-world mobile
robot forest mapping scenario.

1 Introduction
Many planning problems with environmental probabilities
are naturally framed as deterministic partially observable
Markov decision processes (DetPOMDPs), especially where
the environment state is not fully known a-priori but can be
observed during mission execution. A common example is
robot navigation on a graph where the robot may not know
the true traversability of the edges beforehand. Problems of
this type include workplace environments where movement
of workers and stock may block routes [Nardi and Stachniss,
2020; Tsang et al., 2022; Lacerda et al., 2019], or outdoor
environments (see Figure 1) where the traversability of paths
is uncertain [Huang et al., 2023; Dey et al., 2014].

DetPOMDPs have been under-studied in the literature,
with existing approaches relying on the problems being cast
as another problem type, such as a general POMDP or an
AND-OR graph [Bonet, 2009]. These approaches have lim-
ited applicability on realistic problem sizes. In many do-
mains, independent uncertainties result in a combinatorial
state space. For example, in the robotic navigation domain,
the number of states grows exponentially with the number of
uncertain edges. Such situated AI and robotics problems are
typically goal-oriented, as they involve reaching a destina-
tion or performing a task. Furthermore, resource constraints
on the robot during navigation often restrict online planning.
Therefore, desirable features of an algorithm for these appli-
cations include fast offline synthesis of compact policies with
high goal achievement for problems with large state spaces.

Figure 1: A topological map used for navigation in a forest where
possibly obscured terrain leads to uncertain traversability.

In this paper, we introduce DetMCVI, an offline algorithm
designed for goal-oriented DetPOMDPs, which achieves
state-of-the-art performance on problems with large state
spaces. DetMCVI is based on Monte Carlo Value Iteration
(MCVI) [Bai et al., 2011], adapted to goal-oriented settings
as per Goal-HSVI [Horák et al., 2018], and optimised for de-
terministic POMDPs. The algorithm builds policies as finite
state controllers (FSCs), which allow for general connectivity
in the policy graph. The FSC structure mitigates the failure
cases of tree-based policies when planning is time limited,
since it allows sub-solutions to be reused, minimising policy
incompleteness. Furthermore, DetMCVI scales to domains
out of reach of algorithms that require an explicit representa-
tion by sampling transitions. Our implementation is found at
http://github.com/ori-goals/DetMCVI.

The contributions of this paper are: 1) the introduction
of DetMCVI, a novel scalable algorithm for solving Det-
POMDPs; 2) empirical analysis demonstrating that DetMCVI
quickly generates compact policies which are more success-
ful than current state-of-the-art baselines; 3) modelling of a
real-world robotics problem involving topological navigation
under uncertain environment conditions as a DetPOMDP.

2 Related Work
2.1 Deterministic POMDPs
A partially observable Markov decision process (POMDP) is
used to model a Markov decision process (MDP) in which

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

http://github.com/ori-goals/DetMCVI

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

the state is not fully observable. Interactions with the envi-
ronment produce observations, which inform a belief about
the current state based on observation probabilities. A deter-
ministic POMDP is a restriction of a POMDP where actions
and observations have deterministic outcomes [Bonet, 2009].

A POMDP can be modelled as a Belief-MDP, which is an
MDP whose states are the possible beliefs of the POMDP.
The number of states in the Belief-MDP of a DetPOMDP is
upper bounded by (1 + |S|)|S| [Littman, 1996], making an
exact approach generally computationally infeasible.

Bonet [2009] shows that DetPOMDPs have a direct rela-
tion to AND/OR graphs. These can be solved offline using
search-based heuristic algorithms such as AO⋆ [Chakrabarti,
1994], LAO⋆ [Hansen and Zilberstein, 2001] and RTDP
[Barto et al., 1995], though we do not require the adapta-
tions for cyclic graphs provided by the latter two. Anytime
AO⋆ [Bonet and Geffner, 2021] is a modification which prob-
abilistically searches outside of the best graph, providing bet-
ter solutions under early termination or with a non-admissible
heuristic. AO⋆-based planners have been used for a num-
ber of real-world robotics problems [Guo and Barfoot, 2019;
Chung and Huang, 2011; Ferguson et al., 2004]. These search
approaches produce policy trees, and do not leverage similar-
ity in policy features. In our work we use a more compact pol-
icy representation to avoid repeated solving for similar states.

2.2 Related Problem Formulations
A related formulation is the POMDP-lite [Chen et al., 2016],
which restricts partial observability to state variables which
change deterministically or are constant. Many of the
POMDP-lite domains are examples of DetPOMDPs, as Det-
POMDPs are a restriction of the POMDP-lite. Similarly, the
Multiple-Environment MDP models problems in which the
true environment may be one of many possible MDPs [Raskin
and Sankur, 2014], though no distribution over possible envi-
ronments is assumed. A DetPOMDP can also be framed as
a Bayes-Adaptive MDP (BAMDP) [Duff, 2002], where the
latent variable encodes the true realisation of the state and the
initial distribution is used as the prior. Conformant planning
[Bonet, 2010] and Contingent planning [Muise et al., 2014;
Brafman and Shani, 2021] consider problems with determin-
istic transitions, partial observability, and an unknown initial
state. They differ from DetPOMDPs in that they do not ac-
count for a probability distribution over states.

2.3 Offline POMDP Solutions
While DetPOMDP solution methods have received relatively
little attention, more well-researched POMDP methods can
be applied to DetPOMDPs. The value function of a POMDP
can be represented using a finite set of α-vectors [Shani et
al., 2013]. Point-based methods generate and optimise a set
of α-vectors to approximate the value function. Heuristic
Search Value Iteration (HSVI) [Smith and Simmons, 2005]
bounds the values of beliefs in the belief tree to inform heuris-
tics for a depth-first search, updating α-vectors in the backup
operation. SARSOP [Kurniawati et al., 2009] improves on
HSVI by focusing on reachable beliefs under optimal poli-
cies. Horák et al. [2018] adapt HSVI for use on goal-oriented
POMDPs by addressing the lack of convergence guarantees

for non-discounted problems, adding a depth bound and pre-
venting re-exploration of histories. Point-based approaches
require evaluating all α-vectors in each state, making plan-
ning difficult in large state spaces. Each of these methods
requires explicit knowledge of the transition and observation
functions to calculate value estimates, thus cannot be used if
these functions are unknown or too large to encode.

As an alternative to α-vectors, many approaches directly
compute an FSC, which represents policies using action
nodes and observation edges that lead to the subsequent ac-
tion node. Andriushchenko et al. [2022] search for the best
FSC from a set of candidates before expanding the search
space in an iterative process, though the approach is limited in
scalability as the size of the FSC increases. Other approaches
construct FSCs via non-linear programming [Amato et al.,
2010], parametric Markov chains [Junges et al., 2018], An-
derson acceleration [Ermis et al., 2021] and belief-integrated
FSCs [Wray and Zilberstein, 2019]. However, each of these
approaches requires an enumeration of states, which presents
scalability barriers for very large state spaces.

Monte Carlo Value Iteration (MCVI) [Bai et al., 2011] it-
eratively builds an FSC while searching a belief tree using a
similar method to SARSOP, calculating value estimates using
Monte Carlo simulations. This approach requires only sam-
ples of transitions, and works on continuous-state POMDPs,
thus being suitable for large finite state spaces. In fact, the
size of the state space need not be known in advance as states
are only accessed from sampled beliefs, in contrast to point-
based approaches which evaluate over entire the state space.
These properties make MCVI favourable for specialisation to
large DetPOMDPs, which we describe in Section 4.

For problems with large state-spaces, prior works typically
plan online [Bonet and Geffner, 2021; Eyerich et al., 2010;
Silver and Veness, 2010; Chatterjee et al., 2020]. Direct
offline application is limited by memory inefficiency. The
QMDP heuristic considers uncertain observations only at the
root belief, and assumes a fully observable MDP for child
beliefs [Littman et al., 1995]. Bai et al. [2013] propose a
recursive QMDP-based offline policy tree algorithm for solv-
ing continuous-state robotics problems with deterministic dy-
namics. We use QMDP Trees as a baseline for comparison.

3 Background
3.1 POMDPs and DetPOMDPs
Following [Bonet, 2009], we consider the goal-oriented for-
mulation of a DetPOMDP, thus also define POMDPs in the
goal-oriented setting.
Definition 1. A goal-oriented POMDP is a tuple M =
⟨S,A,O, b0,G, T ,Z, c⟩ where: i) S is the set of states;
ii) A is the set of actions; iii) O is the set of observations;
iv) b0 ∈ ∆(S) is the initial state distribution; v) G ⊆ S is a
set of absorbing goal states; vi) T : S ×A×S → [0, 1] is the
transition probability function; vii) Z : S×A×O → [0, 1] is
the observation probability function; viii) c : S×A → [0,∞)
is the immediate cost of applying action a in state s, with
c(s, a) = 0 ⇐⇒ s ∈ G.

A belief b for a POMDP is a probability distribution over
its state space. We denote the set of all beliefs over state space

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

S as ∆(S). Hereafter, we use Supp(b) to indicate the set of
states in the support of belief b, that is {s ∈ S | b(s) > 0}.

A solution to a POMDP is a policy π which maps an action-
observation history ht = (a0, o1, a1, . . . , at−1, ot) to an ac-
tion at. For a policy π, the value of belief b is given by:

V π(b) = Eπ

[∞∑
t=0

c(st, at) | b0 = b

]
. (1)

We seek to minimise the expected cost of the policy given
the initial belief b0, i.e., find the policy π which minimises
V π(b0). We denote the value of the belief for the optimal
policy as V ∗. The action-value function Q relates the ex-
pected cost of executing action a in belief b and subsequently
following the policy π:

Qπ(b, a) = Eπ

[∞∑
t=0

c(st, at) | b0 = b, a0 = a

]
. (2)

The value iteration backup equation constructs a new esti-
mate of the value function from a previous estimate Ṽ :

Ṽ ′(b) = min
a∈A

{∑
s∈S

c(s, a)b(s) +
∑
o∈O

Pr(o|b, a)Ṽ (b′)

}
. (3)

Here, b′ is the subsequent belief which can be calculated us-
ing Bayes’ rule:

b′(s′) = τ(b, a, o)(s′) = ζZ(s′, a, o)
∑
s∈S

T (s, a, s′)b(s), (4)

where ζ is a normalisation constant.
In goal-oriented POMDPs, the value function for π (Equa-

tion 1) is finite if and only if π reaches a goal state with proba-
bility 1 (π is called proper). For convergence, we assume the
existence of one such policy [Mausam and Kolobov, 2012].

We represent reachable beliefs in a POMDP as a belief tree.
Definition 2. A belief tree rooted at b0 is a tree in which
nodes represent beliefs b ∈ ∆(S), with edges defined by
action-observation pairs e ∈ A×O. A child node b′ is com-
puted from a parent node b via belief update, i.e., if b′ is
the child of b and the edge from b to b′ is (a, o), then b′ =
τ(b, a, o), as defined in Equation 4.

It is not feasible to build a dynamic programming algo-
rithm directly from Equation 3, because the belief space of a
POMDP is infinite. Many approaches have been proposed to
approximate solutions to POMDPs, and in this paper we fo-
cus on MCVI, which we will present next. Before doing so,
we define the DetPOMDP specialisation of a POMDP.
Definition 3. A DetPOMDP is a POMDP in which the tran-
sition and observation functions are deterministic. We denote
the transition function as fT : S × A → S , returning the
subsequent state after taking action a in state s; and the ob-
servation function as fZ : S×A → O, giving the observation
after entering state s′ using action a.

The uncertainty in a DetPOMDP is only in the initial belief.
Thus, if the state is known exactly at any point in the decision
process, the problem is reduced to a deterministic shortest
path problem from that point forward.

b0

b2

b3b1

a1
a2

QF (b0, a2)

a3

o2
o1 o3w1(δ)

(a) Belief tree

a1

a3

a1

a2o3

o2

o1

o3

o1o2

o1

(b) FSC

Figure 2: A partial belief tree and FSC built during MCVI iteration.

Example 1. The robot navigation problem from the introduc-
tion can be posed as a Canadian Traveller Problem (CTP)
[Papadimitriou and Yannakakis, 1989], a topological navi-
gation problem in which some edges are potentially blocked
(with a known probability), and the true traversability of the
edge can only be observed by the agent at one of the edge’s
terminal nodes. The CTP is a DetPOMDP with costs for edge
traversal, a goal node, and an initial belief given by the start
node and the edge traversability probabilities.

3.2 Policy Representations
Policies for POMDPs can be represented in several ways. In
this paper, we are interested in policy trees and FSCs.
Definition 4. A finite-state controller (FSC) is a tuple F =
⟨V , η, ψ⟩, where i) V is a finite set of nodes, with start
node v0; ii) ψ : V → A is the action selection function,
where a = ψ(v) is the action selected when in node v;
iii) η : V × O → V is the node transition function, where
v′ = η(v, o) is the node transitioned into after observing o in
node v.
Definition 5. A policy tree is an FSC with no cycles and each
node v′ having at most one node-observation pair (v, o) such
that η(v, o) = v′.

3.3 Monte Carlo Value Iteration
Monte Carlo Value Iteration (MCVI) [Bai et al., 2011] is an
offline method for computing FSCs, designed for continuous-
state POMDPs and therefore also suitable for solving large
discrete-state POMDPs. The main algorithm for MCVI is a
belief tree search, described in Algorithm 1. In this process, a
belief tree T is traversed by choosing child beliefs to expand
using a guiding heuristic, and then the tree is traversed in re-
verse order while the bounds at each belief are refined and an
FSC F is updated. The search terminates when the bounds at
b0 are within a suitable convergence threshold ϵ.

During the tree traversal, actions are chosen to minimise
the Q function. Observations are chosen which maximise the
weighted excess uncertainty of the child belief (line 21), as
per HSVI [Smith and Simmons, 2005]. Child beliefs are gen-
erated via particle filtering, with an initial set of N samples
(line 17). The belief tree traversal is illustrated in Figure 2a.
Upon reaching a terminal state, or when the excess uncer-
tainty of a belief is negative, the tree is traversed in reverse
order, performing a backup operation at each node (line 8).

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1: Belief Tree Search
1 Function SEARCHBELIEFTREE(b0, ϵ, h)
2 Initialise an FSC F with an empty set of nodes.
3 Initialise belief tree T with root b0.
4 V (b0)←∞,

¯
V (b0)← H(b0).

5 while V (b0)−
¯
V (b0) > ϵ do

6 (bi)
k
i=0 =TRAVERSEBELIEFS(T, b0, ϵ, h, F)

7 for i ∈ k, k − 1, . . . , 0 do
8 F ←BACKUP(F, bi).
9 V (bi)← V F (bi). from (6)

10
¯
V (bi)←

¯
V ′(bi). from (3)

11 return F
12 Function TRAVERSEBELIEFS(T, b0, ϵ, h, F)
13 k ← 0.
14 do
15 a⋆ ← argmina∈AQ

F (bk, a).
16 for o ∈ O do
17 bo ← τ(bk, a

⋆, o).
18 if bo /∈ T then
19 Add bo to T with parent bk and edge

(a⋆, o).
20 V (bo)← αF,v0(b

o),
¯
V (bo)← H(bo).

21 δbo ← V (bo)−
¯
V (bo)− ϵ.

22 o⋆ ← argmaxo∈O Pr(o|a⋆, bk)δbo .
23 bk+1 ← τ(bk, a

⋆, o⋆).
24 k ← k + 1.
25 while δbk > 0

26 return (bi)
k
i=0.

Given an FSC F with starting node v, the expected cost of
executing F from state s is αF,v(s):

αF,v(s) = EF

[∞∑
t=0

c(st, at) | s0 = s

]
. (5)

We will write αF,v(b) to mean
∑

s∈Supp(b) b(s)αF,v(s). From
(1), the value of the belief b under F is:

V F (b) = min
v∈V

αF,v(b). (6)

In MCVI, αF,v(s) is calculated using Monte Carlo simula-
tions of F , given sample-based access to the transition func-
tion for subsequent states and observations, with a default
policy provided where F is undefined. An upper bound V (b)
for V ∗(b) is given by V π(b) for any policy π, so we choose
V F (b) to determine the upper bound using (6). The backup
process updates F by adding a new node which improves this
upper bound. Details of the backup process can be found in
the appendix. An example of an FSC built using the MCVI
backup process is shown in Figure 2b.

Lower bounds are initialised using an admissible heuristic
H. One such heuristic is given by relaxing the POMDP to
a fully observable MDP and solving using a suitable MDP
method. The lower bound is updated using the value iteration
backup (3), given the lower bounds of the child beliefs.

Note that due to the forward-only construction of the FSC,
MCVI cannot generate policies with loops, and is thus unable

Algorithm 2: DetMCVI Backup
1 Function BACKUP(F = ⟨V, η, ψ⟩, b)
2 For each action a ∈ A, Ca ← 0, Ob,a ← ∅.
3 For each action a ∈ A, each observation o ∈ O, and

each node v ∈ V , Va,o,v ← 0.
4 for each action a ∈ A do
5 for si ∈ Supp(b) do
6 s′i ← fT (si, a).
7 oi ← fZ(s

′
i, a).

8 Ob,a ← Ob,a ∪ {oi}.
9 Ca ← Ca + b(si)c(si, a).

10 for each node v ∈ V do
11 Retrieve αF,v(s

′
i) from cache or calculate

via 1 rollout of the policy πF,v .
12 Va,oi,v ← Va,oi,v + b(si)αF,v(s

′
i).

13 for each observation o ∈ Ob,a do
14 Va,o ← minv∈V Va,o,v .
15 va,o ← argminv∈V Va,o,v .

16 Va ← Ca + γ
∑

o∈Ob,a
Va,o.

17 V F ′
← mina∈A Va.

18 a⋆ ← argmina∈A Va.
19 Create a new FSC F ′ = ⟨V ′, η′, ψ′⟩. Set ψ′(v′0) = a⋆

and η′(v′0, o) = va⋆,o. For k ∈ 1, . . . , |V|, set
ψ′(v′k) = ψ(vk−1) and η′(v′k, o) = η(vk−1, o).

20 return F ′

to support infinite horizon problems without a default policy,
which is generally non-trivial to devise. In general, MCVI
is not guaranteed to converge for non-discounted POMDPs
[Smith, 2007]; we address this in the design of DetMCVI.

4 DetMCVI
There are many inefficiencies when using MCVI to solve Det-
POMDPs, including re-evaluation of policy rollouts, repeated
sampling of deterministic transitions, and storage of beliefs.
We propose DetMCVI, an adaptation of MCVI, which solves
DetPOMDPs efficiently in the goal-oriented setting.

The overall process of DetMCVI is similar to Algorithm 1,
with the main differences in the backup process, presented in
Algorithm 2. Here, value estimates are created for the succes-
sor states s′ of a belief b by finding the best node in the FSC
from which to execute the policy in s′ (line 12). These value
estimates are used to create a new node in the FSC (line 19),
labelled with the best action, with outgoing edges connecting
to the best next node in the FSC for each possible observa-
tion. We will next describe the key differences between the
DetMCVI backup function and that of MCVI.

4.1 Policy Rollouts
The repeated rollouts required by MCVI when calculating the
expected policy value αF,v can be eliminated under determin-
istic dynamics. The modifications we make for the policy
rollouts are as follows: 1) we calculate αF,v(s) using a single
rollout, which produces the exact value instead of an approx-
imation; 2) we implement a cache for values of αF,v(s), as
the value does not change when F is updated; 3) instead of

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

calculating the best policy node for each element in the entire
set of observations, we restrict the set to only those observa-
tions o where Pr(o|b, a) > 0 for a belief b and action a. This
set is calculated during the belief expansion. This greatly re-
duces unnecessary computations, as the size of the full set of
observations can be comparatively very large.

4.2 Belief Sampling
The use of Monte Carlo sampling for a deterministic prob-
lem is unnecessary, as for any action a each state only has
one successor state s′ = fT (s, a) and one resultant obser-
vation fZ(s′, a). Thus, sampling multiple times will return
the same result, a property we use for the following changes:
1) we sample N states and their probabilities from b0 without
replacement, instead of sampling N possibly repeated states
as in MCVI. 2) In line 5, we iterate through each state in
Supp(b) instead of sampling each time, ensuring no dupli-
cation. 3) In a DetPOMDP, |Supp(b′)| ≤ |Supp(b)| for any
successor b′ of belief b, as all states have one successor and
these successors may not be unique. Thus, a limit imposed
on the maximum size of the initial belief is never exceeded
by any descendant beliefs, so N is not imposed in later belief
sampling like in MCVI.

4.3 Bounds
As in MCVI, the algorithm performs a search on the belief
tree, with upper and lower bounds maintained at each node,
until the bounds at the root node converge with a specified
tolerance. Each time a backup is performed, the upper bound
V is updated according to the value of the belief in the new
FSC. For leaf nodes the lower bound is calculated using an
admissible heuristic, for example the full-observability MDP
relaxation of the problem. In a DetPOMDP this relaxation re-
duces the problem to a set of deterministic shortest path prob-
lems:

¯
V (b) =

∑
s∈Supp(b) b(s)dist(s,G), where dist(s,G) is

the cost of the shortest path to the goal from state s.

4.4 Convergence
We apply the approach of Horák et al. [2018] to guarantee
convergence of the algorithm for a goal-oriented DetPOMDP
under the same conditions used by the authors, namely that
the goal is reachable from all states. 1) We remove the re-
quirement for a default policy and use uniform random action
selection in the rollout calculation of αF,v where F is unde-
fined, with guaranteed termination [Chatterjee et al., 2016].
Alternatively, we can remove the requirement for the goal to
be reachable from all states so long as rollouts default to a
policy which is proper. 2) We prevent re-exploration of ac-
tion-observation histories by labelling each node in the belief
tree with a binary flag indicating a closed belief. This flag is
set when all states in the belief are terminal, or when all child
beliefs of the node are closed. Closed beliefs are skipped dur-
ing belief expansion. As per Horák et al. [2018], DetMCVI
attains ϵ-optimality under the conditions when we impose a
bound on the search depth T = C

cmin

Cηϵ
(1−η)ϵ for some η < 1

where C is the upper bound on the cost of the uniform policy,
and cmin is the minimum per-step cost.

(a) CTP, n = 5 (b) Wumpus, n = 3

(c) Maze, n = 5 (d) Sort, n = 3

Figure 3: Selected problem instances from each domain

5 Synthetic Experiments
We evaluate the performance of DetMCVI in different Det-
POMDP scenarios using the problem domains illustrated in
Figure 3. 1) CTP: from Example 1. The size of the state space
grows exponentially with the number of uncertain edges.
2) Wumpus World: a goal-oriented modification of that from
Russell and Norvig [2021]. Due to the presence of both low-
and high-cost goal states, this domain illustrates the impor-
tance of optimising the reward function in the process of
seeking a goal state. 3) Maze: this domain has a long hori-
zon but can be solved suboptimally by small FSCs. 4) Sort:
this domain has a short horizon but a solution requires many
branches for optimality. Full domain descriptions can be
found in the appendix.

5.1 Methodology
In each domain, policies were generated using several base-
line solvers. Specific to DetPOMDPs, we evaluate DetMCVI,
AO⋆ [Chakrabarti, 1994], Anytime AO⋆ [Bonet and Geffner,
2021], and QMDP Trees [Bai et al., 2013]. We also evaluate
general POMDP solvers MCVI [Bai et al., 2011] and SAR-
SOP [Kurniawati et al., 2009]. For MCVI we use Q-learning
for the lower bound heuristic [Watkins, 1989] as we assume
only sample-based access to the model, while for DetMCVI,
AO⋆ and QMDP Trees we use the bounded-depth Bellman-
Ford algorithm to compute the shortest path under full ob-
servability without enumerating the entire state space. For
Anytime AO⋆ we use uniform policy rollouts, being faster
than the QMDP heuristic but inadmissible. Implementation
details can be found in the appendix. We impose a domain-
dependent horizon T to shorten computation time for prac-
ticality. This means that convergence to an ϵ-optimal policy
is not guaranteed, but we find that the policies produced by
DetMCVI are of sufficient quality long before convergence.

Policies were evaluated at regular intervals using 105 tri-
als from states randomly sampled from the initial belief. A
trial concluded when a goal state was reached, the horizon
was reached, or π(ht) was undefined. This may occur if an
observation is made in a node which does not have provi-
sion for that observation, for example when planning does

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

CTP Wumpus Maze Sort
n 20 50 100 2 3 4 10 15 20 5 7

|S| 8.60x104 8.76x1011 1.19x1023 3.32x105 7.55x107 4.19x1010 793 1793 3193 120 5040
|Supp(b0)| 2790 1.72x1011‡ 1.18x1021‡ 72 ≥104‡ ≥7.5x104‡ 792 1792 3192 119 5039

T 40 100 200 100 150 200 420 930 1640 10 14

MCVI SR 60.8 ± 31.4

† † * * * * * *

20.6 ± 31.0 0.8 ± 0.7
R - - -

tplan 2037.6 ± 1063.2 140.00 * 18000 *
|πF | 111 ± 51 126 ± 7 721 ± 29

DetMCVI SR 100.0 ± 0 100.0 ± 0.02 99.7 ± 0.5 100.0 ± 0 93.9 ± 4.1 97.1 ± 1.0 100.0 ± 0 100.0 ± 0 99.5 ± 0.8 100.0 ± 0 91.7 ± 0.6
R 1.184 ± 0.011 1.18 ± 0.05 1.964 ± 0.070 28.4 ± 0.4 118 ± 1 182 ± 2 16.1 ± 0.1 27.6 ± 0.1 40.2 ± 0.1 27.0 ± 0.2 52.5 ± 0.3

tplan 3.8 ± 0.8 310 ± 99 2594 ± 315 3.78 ± 0.40 1200 * 18000 * 419 ± 128 5167 ± 1383 32223 ± 5048 2.14 ± 0.02 18000 *
|πF | 11 ± 2 24 ± 11 39 ± 14 100 ± 6 163 ± 61 636 ± 18 493 ± 46 1098 ± 113 1647 ± 119 164 ± 8 1921 ± 70

AO⋆ SR 100.0 ± 0 97.3 ± 1.7 72.8 ± 18.4 100.0 ± 0 7.0 ± 1.2 4.8 ± 1.4 7.9 ± 2.0 4.8 ± 1.2 2.1 ± 0.4 100.0 ± 0 0.3 ± 0.1
R 0.997 ± 0.010 1.18 ± 0.05 0.629 ± 0.023 22.8 ± 0.4 - - - - - 24.4 ± 0.2 -

tplan 55.4 ± 72.6 901 ± 398 18007 ± 8602 0.21 ± 0.01 1200 * 18000 * 1200 * 14400 * 36000 * 59.32 ± 2.23 18000 *
|πF | 329 ± 162 2768 ± 1394 11843 ± 4598 163 ± 7 127 ± 27 97 ± 25 3645 ± 387 9005 ± 774 13434 ± 2213 324 ± 0 401 ± 38

Anytime SR 99.4 ± 1.2

† †

100.0 ± 0 1.1 ± 2.2 4.3 ± 1.0 2.3 ± 0.6 1.7 ± 0.4 0.9 ± 0.2 92.4 ± 13.5 0.3 ± 0.3
AO⋆ R 0.997 ± 0.010 22.8 ± 0.4 - - - - - 28.7 ± 0.2 -

tplan 33.2 ± 718.2 2.01 ± 0 1200 * 18000 * 1200 * 14400 * 36000 * 96.79 ± 28.25 18000 *
|πF | 323 ± 151.8 163 ± 7 47 ± 22 151 ± 89 1969 ± 256 5116 ± 397 7651 ± 1051 350 ± 46 224 ± 72

QMDP SR 100.0 ± 0.01 97.3 ± 1.7 79.6 ± 10.9 0 ± 0 23.3 ± 0.6 15.5 ± 16.4 36.6 ± 9.7 23.8 ± 2.9 17.4 ± 2.0 100.0 ± 0 97.9 ± 0.4
Trees R 0.997 ± 0.010 1.18 ± 0.04 0.817 ± 0.030 - - - - - - 28.9 ± 0.2 41.5 ± 0.3

tplan 5.9 ± 0.9 631 ± 89 6135 ± 383 0.11 ± 0 324 ± 2 372 ± 41 20 ± 2 156 ± 26 586 ± 49 0.01 ± 0.00 4 ± 0
|πF | 329 ± 162 2768 ± 1394 13928 ± 6650 401 ± 0 2119 ± 0 3773 ± 729 37992 ± 4938 119560 ± 14299 260731 ± 15576 352 ± 6 15819 ± 31

SARSOP SR

† † † † † †

100.0 ± 0 100.0 ± 0

†

100.0
†R 5.2 ± 0.0 6.3 ± 0.0 25.0 ± 0.2

tplan 8 ± 2 100 ± 14 0.19
|πF | 402 ± 28 949 ± 48 107

* Computation time limit reached † Memory limit reached ‡ Belief downsampling applied

Table 1: Evaluation of offline algorithms on large DetPOMDP domains. SR = success rate (%),R = mean regret, tplan = wall-clock planning
time (s), |πF | = number of nodes in policy tree or FSC. DetMCVI solves the benchmarks with high success rates and small policy sizes.

not converge or when downsampling results in states not be-
ing planned for. Planning was terminated after reaching a
timeout or memory limitations, or when all trials reached the
goal in an evaluation. Performance is calculated over sets of
10 problem instances for the CTP and Maze problems, and
over three random seeds for Wumpus and Sort.

Belief Downsampling. For problems where |Supp(b0)| is
large, planning can be slow due to processes which operate on
all states in the support, such as belief updates and the heuris-
tic calculation. As described in Section 4.2, we use a belief
for planning which has at most N states in the support. As
the initial belief is only accessed by sampling states, we take
10N samples from b0 to create a distribution of relative like-
lihoods, and choose the first N states from a weighted shuffle
and renormalise their probabilities. We use N = 105, and we
plan with the same sampled initial belief across all baselines.
For the larger CTP and Wumpus problems, N<|Supp(b0)|,
meaning that we do not plan for all states in the support of
the initial belief. The choice of N is analysed in Section 5.4.

Metrics. We define metrics for a trial beginning in state s0
following policy π. The return Rk of a trial up to step k is
given by

∑k−1
t=0 c(st, π(ht)). For trials where π(ht) is defined

for all t ∈ 0, . . . , T , we define the full observability regret
R = RT − dist(s0,G). We call a trial successful if the goal
state is reached under π at a step t < T , and failed otherwise.

5.2 Results
Results in Table 1 demonstrate the performance of each algo-
rithm on a selection of different problem instances. We show
the regret for algorithms with a success rate greater than 70%,
and the regret is calculated only for trials from initial states
which were successful under all of those algorithms.

The results demonstrate the strong performance of DetM-
CVI in quickly finding very compact solutions which reli-
ably achieve the goal in problems with combinatorial state
spaces. Across the problem domains, DetMCVI consistently
has a high success rate metric, outperforming the baselines
in scalability. The number of nodes in the policies produced
by DetMCVI were significantly lower than the policy tree-
based baselines, for example by 360 times for CTP with
n = 100, but still competitive in the regret metric. This differ-
ence in policy size is primarily because policy tree-based ap-
proaches are not able to reuse existing plans for new branches.
In problems where N < |Supp(b0)|, this can result in a drop
in performance as the policy tree branch is not defined from
some states, whereas an FSC policy can still be followed.

Baselines. SARSOP produced high quality solutions, but
could only be applied to the smallest problems due to memory
constraints, demonstrating the advantage of a sample-based
algorithm. Due to the lack of a backup process, QMDP Trees
prove to be effective in domains where many actions have
similar value, so planning for different alternatives does not
greatly benefit the solution. Despite the faster heuristic, Any-
time AO⋆ did not outperform AO⋆ and suffered from memory
constraints due to expanding extraneous parts of the belief
tree. MCVI could not produce policies for most of the prob-
lems, mainly attributed to the calculation of the heuristic.

5.3 Planning with a Budget
Though offline planning is nominally performed with an infi-
nite time allowance, real-world planning demands time con-
straints. It is therefore important to understand the perfor-
mance of a planning algorithm when terminated early. Fig-
ure 4 shows the evolution of policies with increasing planning
time for a CTP problem with n = 25. The success rate of the

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

DetMCVI
AO*
Anytime AO*
QMDP

0 20 40 60
0

20

40

60

80

100

Planning time (s)

Su
cc

es
s

ra
te

 %

0 20 40 60
0

50

100

Planning time (s)

Po
lic

y
no

de
s

Figure 4: Success rate (left) and policy size (right) for different al-
gorithms as evaluated on a CTP problem with n = 25.

1 10 100 1000
0

20

40

60

80

100

Downsampled belief size

Su
cc

es
s

ra
te

 %

1 10 100 1000
0

20

40

60

80

100

Downsampled belief size

Su
cc

es
s

ra
te

 %

DetMCVI
AO*
Anytime AO*
QMDP

Figure 5: Success rate of policies generated with downsampled ini-
tial beliefs. Left: CTP n = 20, |Supp(b0)| = 2048. Right: Wumpus
n = 3, |Supp(b0)| ≥ 10850.

DetMCVI policy quickly improves, reaching 100% success
rate within 11 seconds with a policy size of 11 nodes. In con-
trast, AO⋆ and QMDP Trees take 24 and 14 seconds respec-
tively to achieve a high success rate, and produce policies in
excess of 140 nodes. Because DetMCVI chooses actions ac-
cording to the upper bound, it is able to quickly find a general
solution that reaches the goal from many states, and then im-
prove the cost of the solution for specific states. Conversely,
other DetPOMDP planning approaches choose actions using
the lower bound, meaning that the goal is not reachable under
intermediate policies until planning is complete, even using
an anytime method like Anytime AO⋆.

5.4 Belief Downsampling
We evaluate the impact of downsampling the initial belief by
planning using a range of values for N and evaluating perfor-
mance over the true initial belief. Figure 5 demonstrates the
success rate of policies for a CTP problem (n = 20) and a
Wumpus problem (n = 3), noting the logarithmic scale. In
the CTP problem, all algorithms except Anytime AO⋆ con-
verged within the time limit, and the planning times increased
approximately linearly with N . For the Wumpus problem,
DetMCVI and AO⋆ also began to be affected by the time limit
for larger values of N . QMDP Trees performance in Wum-
pus degrades due to bias toward safe but ineffective actions.
These results show that for these domains, downsampling can
offer improvements in computation time, while only affecting
solution quality for smaller values of N (≈ |Supp(b0)|/5).

6 Forest Experiment
The main advantage of DetMCVI is fast synthesis of com-
pact policies with high reusability across states. This prop-
erty enables us to use the algorithm on a robot, in a setting
where failing to reach the goal is catastrophic, and other algo-

DetMCVI AO* QMDP

0

1k

2k

3k

4k

5k

Po
lic

y
no

de
s

DetMCVI AO* QMDP

0

20

40

60

80

100

Su
cc

es
s

ra
te

 %

DetMCVI QMDP

1

1.02

1.04

1.06

1.08

M
ea

n
co

m
p.

 r
at

io

Figure 6: Success rate, policy size, and mean competitive ratio over
different map realisations from the field data.

rithms fail to plan sufficiently under the constraints of the real
world. As shown in Figure 1, we evaluate on a robotic nav-
igation problem involving the ANYbotics ANYmal D. The
problem (further described in the appendix) is a modification
of the CTP, in which edges can only be observed by attempt-
ing to traverse them, rather than being observed from a node.
We use a map generated from operator-guided navigation in a
forest, with shortcut edges added for the autonomous phase.

We evaluate on 50 map instances with randomised edge
traversal probabilities and start and goal locations, showing
results in Figure 6. Anytime AO⋆, MCVI, and SARSOP
failed to return usable policies for the planning budget of 300
seconds. Across all instances, the average success rates for
DetMCVI, AO⋆, and QMDP Trees respectively were 95%,
7%, and 78%; and the average policy sizes were 24, 225 and
1610. We use the canonical CTP metric of competitive ratio,
defined as the ratio of achieved cost to the best cost under full
observability, and we show only the trials which succeeded in
both DetMCVI and QMDP Trees (AO⋆ did not have a suffi-
cient success rate to include). The average competitive ratios
for DetMCVI and QMDP Trees were 1.014 and 1.008 respec-
tively. Of the successful trials, DetMCVI matches or outper-
forms the competitive ratio of QMDP Trees on 28 of 35 maps.
The results show that DetMCVI nearly always returns a 100%
success rate and has very small policy sizes, with occasionally
slightly higher competitive ratios for successful trials. In the
two maps where DetMCVI failed to produce a viable policy,
all algorithms performed poorly, indicating that the planning
budget was not high enough for these instances.

7 Conclusion
We present DetMCVI, an algorithm for solving DetPOMDPs
in goal-oriented environments. This algorithm is a simple
yet highly effective adaptation of MCVI [Bai et al., 2011]
and Goal-HSVI [Horák et al., 2018], able to scale to large
problems as well as provide convergence guarantees under
the same assumptions used by Goal-HSVI. Empirical eval-
uations demonstrate that our algorithm obtains competitive
performance while scaling to larger problems and producing
highly compact policies. These policies can be several or-
ders of magnitude smaller than state-of-the-art approaches for
DetPOMDPs, making it beneficial in computationally con-
strained settings such as on a mobile robot. Overall, our ap-
proach offers a promising method for solving offline, goal-
driven problems with deterministic dynamics and uncertain
states. Future work includes augmenting the FSC construc-
tion to allow loops, and more efficient heuristic calculations.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgements
This work received EPSRC funding via the “From Sensing
to Collaboration” programme grant [EP/V000748/1] and the
UKAEA/EPSRC Fusion Grant [EP/W006839/1]. A.S. was
supported by a scholarship from the General Sir John Monash
Foundation.

References
[Amato et al., 2010] Christopher Amato, Daniel S. Bern-

stein, and Shlomo Zilberstein. Optimizing fixed-size
stochastic controllers for POMDPs and decentralized
POMDPs. Autonomous Agents and Multi-Agent Systems,
21(3):293–320, November 2010.

[Andriushchenko et al., 2022] Roman Andriushchenko, Mi-
lan Češka, Sebastian Junges, and Joost-Pieter Katoen. In-
ductive synthesis of finite-state controllers for POMDPs.
In Proceedings of the Thirty-Eighth Conference on Uncer-
tainty in Artificial Intelligence, pages 85–95. PMLR, Au-
gust 2022.

[Bai et al., 2011] Haoyu Bai, David Hsu, Wee Sun Lee, and
Vien A Ngo. Monte Carlo value iteration for continuous-
state POMDPs. In Algorithmic Foundations of Robotics
IX: Selected Contributions of the Ninth International
Workshop on the Algorithmic Foundations of Robotics,
pages 175–191. Springer, 2011.

[Bai et al., 2013] Haoyu Bai, David Hsu, and Wee Sun Lee.
Planning how to learn. In 2013 IEEE International Con-
ference on Robotics and Automation, pages 2853–2859,
Karlsruhe, Germany, May 2013. IEEE.

[Barto et al., 1995] Andrew G. Barto, Steven J. Bradtke, and
Satinder P. Singh. Learning to act using real-time dy-
namic programming. Artificial Intelligence, 72(1-2):81–
138, January 1995.

[Bonet and Geffner, 2021] Blai Bonet and Hector Geffner.
Action Selection for MDPs: Anytime AO* Versus UCT.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 26(1):1749–1755, September 2021.

[Bonet, 2009] Blai Bonet. Deterministic POMDPs Revis-
ited. In Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence (UAI), pages 59–66,
Montreal, Canada, 2009. AUAI Press.

[Bonet, 2010] Blai Bonet. Conformant plans and beyond:
Principles and complexity. Artificial Intelligence, 174(3-
4):245–269, March 2010.

[Brafman and Shani, 2021] Ronen Brafman and Guy Shani.
A Multi-Path Compilation Approach to Contingent Plan-
ning. Proceedings of the AAAI Conference on Artificial
Intelligence, 26(1):1868–1874, September 2021.

[Chakrabarti, 1994] P.P. Chakrabarti. Algorithms for search-
ing explicit AND/OR graphs and their applications
to problem reduction search. Artificial Intelligence,
65(2):329–345, February 1994.

[Chatterjee et al., 2016] Krishnendu Chatterjee, Martin
Chmelik, Raghav Gupta, and Ayush Kanodia. Optimal

cost almost-sure reachability in POMDPs. Artificial
Intelligence, 234:26–48, 2016.

[Chatterjee et al., 2020] Krishnendu Chatterjee, Martin
Chmelı́k, Deep Karkhanis, Petr Novotný, and Amélie
Royer. Multiple-Environment Markov Decision Pro-
cesses: Efficient Analysis and Applications. Proceedings
of the International Conference on Automated Planning
and Scheduling, 30:48–56, June 2020.

[Chen et al., 2016] Min Chen, Emilio Frazzoli, David Hsu,
and Wee Sun Lee. POMDP-lite for robust robot planning
under uncertainty. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 5427–5433,
Stockholm, Sweden, May 2016. IEEE.

[Chung and Huang, 2011] Shu-Yun Chung and Han-Pang
Huang. Robot Motion Planning in Dynamic Uncertain
Environments. Advanced Robotics, 25(6-7):849–870, Jan-
uary 2011.

[Dey et al., 2014] Debadeepta Dey, Andrey Kolobov, Rich
Caruana, Ece Kamar, Eric Horvitz, and Ashish Kapoor.
Gauss meets Canadian traveler: Shortest-path problems
with correlated natural dynamics. In AAMAS’14 Proceed-
ings of the 2014 International Conference on Autonomous
Agents and Multi-agent Systems, pages 1101–1108, 2014.

[Duff, 2002] Michael O’Gordon Duff. Optimal Learn-
ing: Computational Procedures for Bayes-adaptive
Markov Decision Processes. University of Massachusetts
Amherst, 2002.

[Ermis et al., 2021] Melike Ermis, Mingyu Park, and Insoon
Yang. On Anderson Acceleration for Partially Observable
Markov Decision Processes. In 2021 60th IEEE Confer-
ence on Decision and Control (CDC), pages 4478–4485,
Austin, TX, USA, December 2021. IEEE.

[Eyerich et al., 2010] Patrick Eyerich, Thomas Keller, and
Malte Helmert. High-quality policies for the canadian
traveler’s problem. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 24, pages 51–58,
2010.

[Ferguson et al., 2004] D. Ferguson, A. Stentz, and S. Thrun.
PAO for planning with hidden state. In IEEE International
Conference on Robotics and Automation, 2004. Proceed-
ings. ICRA ’04. 2004, pages 2840–2847 Vol.3, New Or-
leans, LA, USA, 2004. IEEE.

[Guo and Barfoot, 2019] Hengwei Guo and Timothy D. Bar-
foot. The Robust Canadian Traveler Problem Applied
to Robot Routing. In 2019 International Conference on
Robotics and Automation (ICRA), pages 5523–5529, Mon-
treal, QC, Canada, May 2019. IEEE.

[Hansen and Zilberstein, 2001] Eric A Hansen and Shlomo
Zilberstein. LAO*: A heuristic search algorithm that finds
solutions with loops. Artificial Intelligence, 129(1-2):35–
62, 2001.

[Horák et al., 2018] Karel Horák, Branislav Bosanský, and
Krishnendu Chatterjee. Goal-HSVI: Heuristic Search
Value Iteration for Goal POMDPs. In IJCAI, pages 4764–
4770, 2018.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Huang et al., 2023] Yizhou Huang, Hamza Dugmag, Tim-
othy D. Barfoot, and Florian Shkurti. Stochastic Plan-
ning for ASV Navigation Using Satellite Images. In 2023
IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 1055–1061, London, United Kingdom,
May 2023. IEEE.

[Junges et al., 2018] Sebastian Junges, Nils Jansen, Ralf
Wimmer, Tim Quatmann, Leonore Winterer, Joost-Pieter
Katoen, and Bernd Becker. Finite-state Controllers of
POMDPs via Parameter Synthesis. Conference on Uncer-
tainty in Artificial Intelligence, 2018.

[Kurniawati et al., 2009] Hanna Kurniawati, David Hsu, and
Wee Sun Lee. SARSOP: Efficient Point-Based POMDP
Planning by Approximating Optimally Reachable Belief
Spaces. 2009.

[Lacerda et al., 2019] Bruno Lacerda, Fatma Faruq, David
Parker, and Nick Hawes. Probabilistic planning with for-
mal performance guarantees for mobile service robots. The
International Journal of Robotics Research, 38(9):1098–
1123, 2019.

[Littman et al., 1995] Michael L. Littman, Anthony R. Cas-
sandra, and Leslie Pack Kaelbling. Learning policies for
partially observable environments: Scaling up. In Ma-
chine Learning Proceedings 1995, pages 362–370. Else-
vier, 1995.

[Littman, 1996] Michael Lederman Littman. Algorithms for
Sequential Decision-Making. Brown University, 1996.

[Mausam and Kolobov, 2012] Mausam and Andrey
Kolobov. Planning with Markov Decision Processes:
An AI Perspective. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Springer International
Publishing, Cham, 2012.

[Muise et al., 2014] Christian Muise, Vaishak Belle, and
Sheila McIlraith. Computing Contingent Plans via Fully
Observable Non-Deterministic Planning. Proceedings of
the AAAI Conference on Artificial Intelligence, 28(1), June
2014.

[Nardi and Stachniss, 2020] Lorenzo Nardi and Cyrill Stach-
niss. Long-Term Robot Navigation in Indoor Environ-
ments Estimating Patterns in Traversability Changes. In
2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 300–306, Paris, France, May
2020. IEEE.

[Papadimitriou and Yannakakis, 1989] Christos H Papadim-
itriou and Mihalis Yannakakis. Shortest paths without a
map. In Automata, Languages and Programming: 16th
International Colloquium Stresa, Italy, July 11–15, 1989
Proceedings 16, pages 610–620. Springer, 1989.

[Raskin and Sankur, 2014] Jean-François Raskin and Ocan
Sankur. Multiple-Environment Markov Decision Pro-
cesses, December 2014.

[Russell and Norvig, 2021] S. Russell and P. Norvig. Arti-
ficial Intelligence: A Modern Approach, Global Edition.
Pearson Education, 2021.

[Shani et al., 2013] Guy Shani, Joelle Pineau, and Robert
Kaplow. A survey of point-based POMDP solvers. Au-
tonomous Agents and Multi-Agent Systems, 27(1):1–51,
July 2013.

[Silver and Veness, 2010] David Silver and Joel Veness.
Monte-Carlo planning in large POMDPs. Advances in
neural information processing systems, 23, 2010.

[Smith and Simmons, 2005] Trey Smith and Reid Simmons.
Point-based POMDP algorithms: Improved analysis and
implementation. In Proceedings of the Twenty-First Con-
ference on Uncertainty in Artificial Intelligence, pages
542–549, 2005.

[Smith, 2007] Trey Smith. Probabilistic Planning for
Robotic Exploration. Carnegie Mellon University, 2007.

[Tsang et al., 2022] Florence Tsang, Tristan Walker,
Ryan A. MacDonald, Armin Sadeghi, and Stephen L.
Smith. LAMP: Learning a Motion Policy to Repeat-
edly Navigate in an Uncertain Environment. IEEE
Transactions on Robotics, 38(3):1638–1652, June 2022.

[Watkins, 1989] Christopher John Cornish Hellaby Watkins.
Learning from delayed rewards. PhD thesis, Cambridge
University, 1989.

[Wray and Zilberstein, 2019] Kyle Hollins Wray and
Shlomo Zilberstein. Generalized Controllers in POMDP
Decision-Making. In 2019 International Conference
on Robotics and Automation (ICRA), pages 7166–7172,
Montreal, QC, Canada, May 2019. IEEE.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

