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Abstract
Large Vision-Language Models (LVLMs) have ex-
perienced significant advancements in recent years.
However, their performance still falls short in tasks
requiring deep visual perception, such as identify-
ing subtle differences between images. A poten-
tial cause is the scarcity of visual knowledge in
popular instruction-tuning corpora, resulting in in-
adequate visual perception and reasoning capabil-
ities. To address this challenge, we introduce a
self-improvement framework grounded in a novel
visual knowledge-intensive task, Causality-driven
Visual object Completion (CVC). This task re-
quires LVLMs to infer the masked object in an im-
age based on its causal relationships with the other
visible information. We first obtain rich exam-
ples cheaply through our automated instance con-
struction pipeline, without relying on sophisticated
LVLMs (e.g., GPT-4V) or human assistance. Then,
LVLMs effectively self-improve through trial and
error learning using these created instances. Our
experiments demonstrate substantial gains across
four challenging specialized tasks and four widely-
used comprehensive benchmarks. Especially on
specialized tasks, our method achieves an aver-
age improvement of 5.4% and 4.0% compared to
the corresponding baselines when utilizing LLaVA-
1.5-7B and LLaVA-1.5-13B, respectively. Code
and the supplementary file are available at https:
//github.com/XMUDeepLIT/CVC.

1 Introduction
In the pursuit of Artificial General Intelligence (AGI), the
ability to effectively process and understand multimodal in-
formation is of paramount importance. The surge in Large
Language Models (LLMs) [Achiam et al., 2023] has cat-
alyzed the development of powerful Large Vision-Language
Models (LVLMs) [Yang et al., 2023; Team et al., 2023]. The
main idea of most LVLMs is to integrate a pretrained visual

∗Corresponding Author

Occlude “Racket”

(a) Conventional Visual Reasoning
Involves Few Visual Knowledge

(b) Our CVC Demands
Visual Knowledge-Intensive Reasoning

What factors can influence the success 
of the man's swing?

Several factors can influence the success of the man's 
swing in the tennis game. Some of the essential factors 
include body positioning, timing, racquet grip, stance, 
and technique. Proper body positioning and stance 
ensure a strong foundation for a successful swing.

What could the object occluded in the 
man's hand be?

1. First, we can see the man in sportswear, seemingly 
engaged in some activity.  
2. Second, the yellow item above his head appears to 
be a tennis ball, matching its typical color and shape.  
3. Third, the red clay and the net suggest this is a tennis 
court, as these are common features of tennis court.  
Therefore, the occluded object is a tennis racket.

Figure 1: Comparison between conventional and our CVC instances
for visual reasoning, where contents involving visual knowledge and
linguistic commonsense knowledge are highlighted in green and red,
respectively.

encoder [Radford et al., 2021] with LLMs using an align-
ment module [Liu et al., 2023b]. By leveraging the inherent
capabilities of LLMs, these LVLMs have achieved excellent
performance in various visual tasks, such as image caption-
ing [Yang et al., 2023], visual question answering [Lan et
al., 2024a; Liu et al., 2024a], and multimodal machine trans-
lation [Lin et al., 2020; Lan et al., 2023; Yin et al., 2023;
Lan et al., 2024b].

Despite the remarkable progress made by LVLMs, they
still struggle with some basic visual perception and reason-
ing tasks, which humans can solve almost unerringly [Tong
et al., 2024; Fu et al., 2024]. For instance, [Tong et al.,
2024] demonstrate that existing LVLMs may perceive im-
ages with clear visual differences as similar, thus failing to
distinguish them. This issue may stem from the inherent
deficiency of current LVLM training corpora, which prior-
itize commonsense knowledge over visual knowledge and
lack complex reasoning tasks involving visual scenarios. In
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Figure 1(a), we showcase a typical example categorized as
“complex reasoning” within the popular LLaVA training cor-
pus [Liu et al., 2023b]. The overall reasoning process in-
volves limited visual knowledge (“playing tennis”), but in-
stead, mostly relies on the LLM’s intrinsic commonsense
knowledge (“the factors influencing the success of swing”).
This can be because widely-used corpora [Zhao et al., 2023;
Liu et al., 2023b] are mostly crafted from strong language-
only GPT-4 [Achiam et al., 2023], thus naturally contain a
large amount of linguistic knowledge. As a result, train-
ing with these instances only may limit the exploitation of
LVLMs’ capabilities in visual perception and reasoning.

To tackle this issue, we propose a novel self-improvement
framework for further exploiting the visual capabilities of
LVLMs autonomously. Specially, in addition to existing
vision-language tasks [Goyal et al., 2017; Krishna et al.,
2017; Kang et al., 2023], we introduce causality-driven visual
object completion (CVC), a challenging visual knowledge-
intensive reasoning task for multimodal instruction tuning.
This task is inspired by “visual completion” [Pessoa et al.,
1998] in perceptual psychology, where humans with high-
level cognitive processing and reasoning skills are capable
of extracting meaning even from incomplete visual informa-
tion. Taking Figure 1(b) for example, given an image where
an object is masked, the LVLM has to take the visible con-
text as evidence and provide a step-by-step reasoning path
(rationale) for explicitly inferring the masked object. Similar
ideas have been successfully applied to the fields of vision-
language for self-supervised pretraining [Chen et al., 2020].
However, unlike these studies where the masked area is ran-
domly selected, we especially emphasize the high causality
between the masked object and its surroundings. This pre-
vents the LVLM from forcibly fitting training targets that are
uncertain and difficult to infer, encouraging it to conduct rea-
sonable inference over the masked image.

To cost-effectively produce training instances of CVC, we
first leverage widely available image-caption pairs [Lin et al.,
2014] and occlude the high-causality objects recognized in
images. Particularly, the causality score between an object
and its image context is empirically estimated by the confi-
dence of a Masked Language Model (e.g., RoBERTa [Liu et
al., 2019]) on its corresponding caption entity.

With the crafted CVC instances above, we aim to synthe-
size valid rationales that lead to the target answer for LVLM
training. To address this challenge, we apply trial and error
learning [Young, 2009] to LVLMs for self-improvement: for
each CVC instance, we first ask an LVLM to synthesize mul-
tiple rationales (trials) for inferring the masked object. Then,
the difficulty of each instance is assessed based on the fre-
quency of its trials yielding the target answer. We select chal-
lenging instances that are valuable for training to enhance the
LVLM’s learning efficiency. Finally, these successful self-
generated trials are fed to the LVLM for self-improvement.
In this way, the LVLM is not only taught to recognize the
detailed information of images (visual perception), but also
encouraged to conduct “slow thinking” [Daniel, 2017] for ex-
plicitly predicting the masked object by leveraging its rele-
vant surroundings (visual reasoning). Thus, the visual capa-
bilities of the LVLM can be comprehensively improved with-

out the help of humans or sophisticated LVLMs (e.g., GPT-
4V [Achiam et al., 2023]).

To demonstrate the effectiveness of our proposed self-
improvement framework, we conduct extensive experiments
on challenging specialized tasks, including MMVP [Tong et
al., 2024], Winoground [Thrush et al., 2022], V∗Bench [Wu
and Xie, 2024], VSR [Liu et al., 2023b] and comprehensive
benchmarks: MME [Fu et al., 2023], MMBench [Liu et al.,
2023c], SEEDBench [Li et al., 2023] and MM-Vet [Yu et al.,
2023]. The results on LLaVA-1.5 family LVLMs show that
our method consistently outperforms the corresponding base-
lines, particularly on the more challenging tasks of MMVP
and Winoground, with improvements of +10.0% and +8.2%,
respectively. Detailed analyses also indicate that our method
can scale to larger data volumes, validating the promise of our
method for more pervasive use.

2 Related Work
Large Vision-Language Models (LVLMs). Mainstream
LVLMs adopt a similar architecture [Liu et al., 2023b], where
a vision encoder is linked to an LLM via an alignment mod-
ule, enabling perception of visual information. Nowadays,
LVLMs have shown excellent performance in downstream
tasks. However, recent studies highlight their limitations
in visual understanding. For instance, [Tong et al., 2024]
benchmark LVLMs on distinguishing fine-grained visual dif-
ferences, revealing the poor performance of existing LVLMs.
Similarly, [Fu et al., 2024] point out that existing bench-
marks overlook visual perception, and instead use classic vi-
sion tasks to assess LVLMs. Though easy for humans, these
tasks remain challenging for current models.

Learning from Rationales. Early studies have demon-
strated that human-annotated rationales can enhance model
performance [Zhang et al., 2023]. Today, thanks to the
emerging reasoning abilities in LLMs [Wei et al., 2022;
Wang et al., 2025], many studies [Ho et al., 2022; Hsieh
et al., 2023] apply knowledge distillation to learn from syn-
thetic rationales generated by advanced LLMs with hundreds
of billions of parameters. However, the above approaches can
be costly. Therefore, an alternative line of research focuses
on self-improvement methodologies, enabling LLMs to learn
from self-generated rationales [Huang et al., 2022]. In the
field of LVLMs, such self-improvement techniques remain
under-explored. In this paper, we harness LVLMs’ inherent
reasoning abilities to autonomously generate rationales, using
them to cheaply enhance the LVLM’s visual capabilities.

Mask-then-Predict. This paradigm aims to enhance model
performance by recovering masked signals. It has been ex-
tensively investigated in both language [Devlin et al., 2018;
Liu et al., 2019] and vision [Bao et al., 2021; He et al., 2022]
domains separately. Along this line, a series of works [Chen
et al., 2020; Kwon et al., 2022] employ this paradigm to con-
duct Vision-Language Pre-training (VLP). Unlike conven-
tional approaches in VLP where masked signals are directly
predicted, our method requires the LVLM to infer the masked
object through a step-by-step rationale. Additionally, we em-
phasize the high causality between the masked object and its
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2. Image Occlusion

A sewing machine sits 
on a desk, surrounded 
by sewing supplies and 
a red-colored lamp.

Create an instruction for the 
input entity following the 
given examples.
  

Entity: Refrigerator
Instruction: What kind of 
appliance might the occluded 
object be?
……
 

Entity: {input entity}
Instruction:

1. High-Causality Entity Collection

…
sewing machine

lamp

sewing machine

desk

sewing supplies

lamp

Extract Entities Mask-then-Predict

Detect & 
Segment Occlude

Sewing 
Machine

What kind of machine might 
the occluded object be?

3. Instruction Generation

Sewing 
Machine

Sewing 
Machine

Figure 2: Overview of our data construction pipeline. Using widely available image-caption pairs, we construct CVC instances cost-
effectively. Each CVC instance consists of a high-causality entity, an occluded image, and a task instruction.

surroundings, rather than applying random masking. By do-
ing so, our method can further develop the LVLM’s ability to
utilize visible context and conduct reasonable inference over
the masked image.

3 Our Framework
In this section, we introduce an innovative self-improvement
framework for LVLMs. We start by providing a detailed for-
mal definition of causality-driven visual object completion
(CVC), a challenging visual knowledge-intensive reasoning
task for LVLMs (§3.1). Next, we present an overview of
the pipeline used to construct task instances cheaply (§3.2).
Finally, using the constructed CVC instances, we utilize an
LVLM to autonomously synthesize valid rationales. These
self-generated data are used as additional training data for the
multimodal instruction tuning of the LVLM (§3.3).

3.1 Task Definition
Formally, given an occluded image I\e, where an object
e1 having high causality with its surroundings is artificially
masked, we ask an LVLM to infer the masked object by pro-
viding a step-by-step rationale r:

r = LVLM(I\e, q, p), (1)

where the rationale r refers to natural language explanations
that support the model’s final prediction, q is the task in-
struction (e.g., “What is the occluded object?”), and p is the
Chain-of-Thought (CoT) prompt (i.e., “Let’s think step by
step”) used to elicit the rationale. In this context, high causal-
ity refers to the strong logical association between the masked
object and its surroundings, enabling reasonable inference.

Compared with predicting the object e only, providing a
step-by-step rationale r can better help the LVLM learn to
search for relevant cues in the visible context and then con-
duct causal reasoning over them to infer the answer. There-
fore, deep visual perception and reasoning capabilities of the
LVLM can be promoted through this process.

3.2 Data Preparation
Based on widely available image-caption pairs, we develop
an automatic data construction pipeline to create the dataset

1For the sake of clarity, we denote both an object in an image and
its corresponding entity by e.

of CVC, where each instance is composed of {e, I\e, q}. As
shown in Figure 2, we successively construct the three ele-
ments of each instance through (i) high-causality entity col-
lection, (ii) image occlusion, and (iii) instruction generation.
We describe these steps in detail below.2

High-Causality Entity Collection. Directly estimating the
causality between an object and its image context is non-
trivial. Therefore, we empirically compute the causality score
of an object by utilizing the uncertainty estimation of the cor-
responding entity in the caption, which shares the same se-
mantic meaning as the corresponding image. Specifically,
given an image-caption pair {I, T}, where I denotes the im-
age and T represents the caption, we first employ LLaMA2-
7B [Touvron et al., 2023] to extract entities (e.g., ei) from
T via in-context learning. Next, we mask an entity ei in the
caption T , yielding the masked text T\ei . We then feed T\ei
into RoBERTa [Liu et al., 2019] (denoted as ϕ) to predict the
masked tokens. The prediction probability of ei serves as the
causality score: p(ei | T\ei ;ϕ). Intuitively, entities with high
causality are more easily predicted based on their context,
resulting in higher probabilities compared to low-causality
entities. Finally, we select those high-causality entities with
scores exceeding a threshold γ.

Image Occlusion. After collecting high-causality entities,
we proceed to occlude these entities in their corresponding
images. First, we utilize GLIP [Li et al., 2022] to ground each
entity’s corresponding object in the image, thereby yield-
ing a bounding box. This bounding box serves as input for
SAM [Kirillov et al., 2023], which predicts a mask that pre-
cisely delineates the region of the object. We then apply
heavy occlusion to the segmented pixels. We use rectangu-
lar boxes instead of actual contours to occlude objects. This
prevents the LVLM from relying on shapes for predictions
thus hindering its effective use of surroundings for reasoning.

Instruction Generation. The task instruction aims to elicit
the desired LVLM predictions. Given the diverse range of en-
tities we collected, a fixed instruction (e.g., “What is the oc-
cluded object?”) might lead to ambiguous references, thereby
reducing the data efficiency because it is hard for an LVLM to
yield the answers exactly. Besides, it limits the data diversity,

2Final processed data, along with more implementation details,
will be provided in our supplementary file.
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What kind of machine might  
the occluded object be?

The occluded machine is near food and 
other kitchen appliances … It’s a refrigerator.

It may be related to printing or document 
production tasks … So it a 3D printer.

...

The image shows a craft room … there is a 
machine to assist in creating crafts or 
garments. This might be a sewing machine.

1. Trial Sampling

2. Trial Learning

Figure 3: Overview of our self-improvement approach. Based on
trial and error learning, the LVLM samples multiple rationales (tri-
als) for a given CVC instance. The sampled trials are selectively
learned based on their correctness and estimated difficulty.

which can be crucial for model generalization. Therefore, we
construct a specialized instruction for each entity. To achieve
this, we manually craft several examples of entity-instruction
pairs and use LLaMA2-7B through in-context learning to
generate a new instruction based on the input entity.

3.3 Model Training
Thus far, the crafted CVC instances still lacks valid rationales
that lead to the target entity. To address this, we apply trial
and error learning [Young, 2009], a core learning mecha-
nism in behavioral science, to LVLMs for self-improvement:
faced with an unfamiliar problem, the learner experiments
with multiple trials, evaluates their successfulness based on
environmental feedback, and learns from successful attempts
to improve problem-solving capabilities. As shown in Fig-
ure 3, we illustrate how successful trials are sampled and then
fed back into the LVLM for self-improvement.

Trial Sampling. Given each CVC instance {e, I\e, q} and
an LVLM parameterized by θ, each rationale produced by the
LVLM for inferring the masked object is treated as a trial. We
adopt the popular nucleus sampling [Holtzman et al., 2019]
to obtain N different trials:

r1, r2, . . . , rN ∼ LVLM(I\e, q, p). (2)

Then, we assess the successfulness of each trial rj by ver-
ifying its corresponding answer êj against the target entity
e. Concretely, for each trial rj , we extract the answer êj uti-
lizing LLaMA2-7B through in-context learning3, and rj is
successful when êj = e.

Trial Learning. With the obtained successful trials for each
instance, we only select challenging ones that are worth learn-
ing to train the LVLM for improving learning efficiency. To
achieve this, we measure the difficulty of a CVC instance by
calculating the inverse frequency of its trials that yield the
target answer e: F = 1 − 1

N

∑N
k=1 I(êk = e), where I(·)

denotes the indicator function. Then, only successful trials

3We provide the prompting examples in our supplementary file.

from instances with difficulty scores higher than the thresh-
old α are chosen. Finally, for an instance {e, I\e, q} with a
successful trial r′, we train the LVLM by hybridizing the trial
and target entity as supervised signals, using the following
standard cross-entropy loss:

L = −
(
log p(e | I\e, q; θ) + log p(r′ | I\e, q, p; θ)

)
. (3)

The hybrid loss term promotes the “fast and slow thinking” of
the LVLM via learning to not only predict the direct answer
but also decompose the complex visual completion process
step by step. To maintain the LVLM’s instruction-following
ability, we combine our data with general multimodal instruc-
tion data and jointly perform multimodal instruction tuning.

Through this process, without the need for sophisticated
LVLMs (e.g., GPT-4V) or human annotations, the LVLM au-
tonomously learns from its own scarce but successful trials.
While achieving proficiency in CVC, the LVLM’s visual per-
ception and reasoning capabilities are further developed.

4 Experiments
4.1 Setup
Evaluation Datasets. We conduct in-depth analyses on a
range of challenging specialized tasks and widely-used com-
prehensive benchmarks, aiming to test the effectiveness of
our method on the deep visual perception and general capa-
bilities of LVLMs, respectively.

• Challenging specialized tasks: MMVP [Tong et al.,
2024], Winoground [Thrush et al., 2022], V∗Bench [Wu
and Xie, 2024], and VSR [Liu et al., 2023a].
Among these, MMVP focuses on distinguishing fine-
grained visual differences that LVLMs often overlook.
Winoground tasks LVLMs to select the correct caption
for an image from two options with easily confused spa-
tial relationships. V∗Bench challenges the model to rec-
ognize subtle visual details, and VSR assesses visual
spatial understanding capability.

• Comprehensive benchmarks: MME [Fu et al., 2023],
MMBench [Liu et al., 2023c], SEEDBench [Li et al.,
2023], and MM-Vet [Yu et al., 2023]. These bench-
marks encompass a wide range of subtasks, providing
a thorough assessment of our method’s generalization.

We follow [Liu et al., 2024a] to use the same testing scripts
and evaluation metrics for fair comparison.
Implementation Details. Since most mainstream LVLMs
share the same architecture, we follow [Zhou et al., 2024]
to choose popular LLaVA-1.5 [Liu et al., 2024a] for exper-
iments. Both the 7B and 13B versions are used for demon-
strating the scalability of our method across various model
sizes. The CVC instances are constructed based on COCO
dataset [Lin et al., 2014]. We set γ, N , and α to 0.3, 16, and
0.75, respectively. By default, we use 90K of our data for
training across all experiments unless otherwise noted. Dur-
ing training, we combine our data with the 665K instruction
data from LLaVA-1.5 for multimodal instruction tuning. To
ensure a fair comparison, our training starts from the pre-
trained (i.e., not yet instruction-tuned) weights of LLaVA-
1.5, following the same training hyperparameters. All exper-
iments are conducted on 8 × A100 80G GPUs.
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Specialized Task Comprehensive Benchmark

Method MMVP Winoground V∗Bench VSR MME MMBench SEEDBench MM-Vet

LLaVA [Liu et al., 2023b] 6.0 - 35.6 - 809.6 38.7 37.0 25.5
InstructBLIP [Dai et al., 2023] 16.7 - 34.0 - 1212.8 36.0 58.8 26.2
Gemini Pro [Team et al., 2023] 40.7 - 48.2 - 1496.6 73.6 62.4 64.3
GPT-4V [Achiam et al., 2023] 38.7 - 55.0 - 1409.4 81.0 69.1 67.7

Naive-VC 27.3 29.5 48.7 66.9 1473.8 65.6 66.3 30.8

LLaVA-1.5-7B [Liu et al., 2024a] 20.7 25.3 47.6 66.9 1510.7 64.3 66.1 31.1
w/ CVC 30.7 33.5 49.7 68.1 1519.5 66.6 67.1 34.1
∆ +10.0 +8.2 +2.1 +1.2 +8.8 +2.3 +1.0 +3.0

LLaVA-1.5-13B [Liu et al., 2024a] 33.3 34.3 48.7 67.3 1531.3 67.7 68.2 36.1
w/ CVC 36.0 39.0 51.8 72.7 1543.8 70.1 68.2 38.2
∆ +2.7 +4.7 +3.1 +5.4 +12.5 +2.4 +0.0 +2.1

Table 1: Performance of our method on LLaVA-1.5 across all evaluation datasets. Baseline results are primarily sourced from [Tong et al.,
2024], [Wu and Xie, 2024] and [Liu et al., 2024a]. Results for GPT-4V and Gemini Pro on comprehensive benchmarks are obtained from the
respective official leaderboards.4

MMBench SEEDBench

Method LR RR AR VR AP II

LLaVA-1.5-13B 44.1 62.6 70.4 77.0 38.6 73.2

LLaVA-1.5-7B 30.5 53.0 73.4 76.7 33.7 69.1
w/ CVC 33.1 64.4 70.4 77.6 37.0 70.1
∆ +2.6 +11.4 -3.0 +0.9 +3.3 +1.0

Table 2: Results on visual reasoning tasks. The abbreviations for
these tasks are as follows: Logical Reasoning (LR), Relation Rea-
soning (RR), and Attribute Reasoning (AR) for MMBench; and Vi-
sual Reasoning (VR), Action Prediction (AP), and Instance Interac-
tion (II) for SEEDBench.

Baselines. To better validate the effect of our framework,
we introduce a baseline termed Naive-VC. It is based on
LLaVA-1.5-7B and trained extensively on data of the naive
visual completion task, where entities are randomly selected
before masking the corresponding objects in images. Addi-
tionally, we include results from other open-source LVLMs
like LLaVA [Liu et al., 2023b] and InstructBLIP [Dai et
al., 2023], as well as state-of-the-art models like GPT-
4V [Achiam et al., 2023] and Gemini Pro [Team et al., 2023],
to further demonstrate the effectiveness of our method.

4.2 Main Results
Our Method Notably Boosts Deep Visual Perception. As
shown in Table 1, our method achieves notable improvements
on 4 challenging specialized tasks. For LLaVA-1.5-7B, our
method achieves nearly a 10% improvement on the two dif-
ficult tasks of Winoground and MMVP. Consistent perfor-
mance gains are also significant in V∗Bench and VSR. Com-
pared with Naive-VC, our method achieves more pronounced
improvements. It is because CVC encourages the LVLM to
engage in reasonable inference by leveraging richer contex-
tual cues, demonstrating the importance of leveraging high-
causality objects for visual completion. Notably, LLaVA-

4We provide the URL for the leaderboard of each comprehensive
benchmark in our supplementary file.

1.5-7B equipped with CVC data achieves performance com-
parable to or even surpassing vanilla LLaVA-1.5-13B on
these tasks. For LLaVA-1.5-13B, our method also achieves
substantial performance gains, with improvements of nearly
2%∼5%. These results demonstrate that our method can ef-
fectively enhance this more advanced LVLM, showcasing its
potential to improve well-developed models at larger scales.
Regarding comprehensive benchmarks, although our method
is task-agnostic, it effectively enhances the performance of
both LLaVA-1.5-7B and LLaVA-1.5-13B, achieving average
improvements of 1.69% and 1.28%, respectively. Given that
these tasks do not emphasize deep perception but involve a
broader range of visual knowledge, these results indicate that
our method effectively injects intensive visual knowledge into
LVLMs and further aligns it within the language domain,
demonstrating the generalizability of our approach.

Our Method Further Enhances Reasoning in Visual Sce-
narios. Since our method also encourages the LVLM to en-
gage in visual reasoning, we further investigate how it im-
pacts the reasoning ability of the LVLM in visual scenarios.
To this end, we assess performance on several reasoning sub-
tasks from MMBench and SEEDBench, which require not
only basic perception but also cognitive inference [Li et al.,
2023; Liu et al., 2023c]. As shown in Table 2, the perfor-
mance of LLaVA-1.5-7B is generally improved on these rea-
soning tasks. Notably, the performance on relation reasoning
exhibits the most substantial improvement, with an increase
of 11.4%. These results indicate that our method effectively
enhances the LVLM’s reasoning ability, further validating its
effectiveness from another perspective.

4.3 Analysis
Effect of Scaling Up CVC Data. We further investigate the
effect of CVC data scale on downstream visual tasks. We
apply our method to LLaVA-1.5-7B with varying CVC data
scales, ranging from 30K to 150K. To highlight the effec-
tiveness of our method on the deep visual perception, we
focus on three challenging tasks: MMVP, Winoground and
V∗Bench. The results are shown in Figure 4. We can observe
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Specialized Task Comprehensive Benchmark

Synthesizer Recall (%) MMVP Winoground V∗Bench VSR MME MMBench SEEDBench MM-Vet

MiniGPT-v2 17.3 32.7 32.3 52.9 68.7 1516.5 65.8 67.4 32.7
LLaVA-1.5-7B 12.1 30.7 33.5 49.7 68.1 1519.5 66.6 67.1 34.1
LLaVA-NeXT-34B 10.3 30.7 31.8 48.7 70.8 1497.8 66.3 67.6 33.2

Table 3: Comparison of different LVLMs used as the rationale synthesizer. All training is conducted on LLaVA-1.5-7B. Recall indicates the
proportion of successful rationales generated by each synthesizer. The best results are bolded, and the second-best results are underlined.
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Figure 4: Results of scaling up CVC data for LLaVA-1.5-7B.

a consistent trend of performance improvement across three
tasks as the CVC data scale increases. Notably, after train-
ing with 150K of CVC data, our method achieves an accu-
racy of 36.3% on Winoground and 32.0% on MMVP, show-
ing absolute improvements of 11.0% and 11.3% compared to
the vanilla LLaVA-1.5-7B. A positive impact of CVC data
scale on V∗Bench is also observed, though it is relatively less
pronounced. Analyzing the effect of each data scale setting,
we find that the 30K setting yields the most significant in-
cremental improvement across the three tasks. After exceed-
ing 90K, the rate of performance improvement slows, but the
LVLM continues to benefit from additional data. However,
in general scenarios (e.g., SEEDBench), we observe a slight
performance decline when scaling up to 150K. This may
be attributed to the excessive proportion of CVC data in the
training corpus, which diminishes the impact of general data.
Nonetheless, from the perspective of core visual perception,
these results demonstrate that our method is not only efficient
with limited data but also scalable to larger data volumes.

Influence of Different Synthesizers. So far, we have shown
the effectiveness of our method in self-improvement. Never-
theless, other LVLMs can also function as the rationale syn-
thesizer within our framework. In Table 3, we present the
performance of MiniGPT-v2 [Chen et al., 2023] and LLaVA-
NeXT-34B [Liu et al., 2024b] as the synthesizer. Specifi-
cally, MiniGPT-v2 is an LVLM based on LLaMA2-7B, and
LLaVA-NeXT-34B is a more advanced LVLM trained on su-
perior multimodal data. The results first reveal that CVC

115
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Generated Instruction
Fixed Instruction

Figure 5: Comparison between two different task instruction settings
in the distribution of F across all CVC instances. Both settings use
LLaVA-1.5-7B for rationale synthesis.

presents a substantial challenge to current LVLMs, as evi-
denced by the extremely low recall of each synthesizer. Sec-
ond, our results show that different synthesizers yield compa-
rable improvements. We attribute this to our method ensuring
comparable data quality across the synthesizers by validating
rationales with gold answers. As a result, our method is still
effective when applied to less sophisticated LVLMs. Third,
the improvement of our method in deep visual perception is
closely tied to the synthesizer’s performance on CVC. For
example, MiniGPT-v2, with the highest recall of 17.3%, ex-
hibits overall more advanced performance on 4 challenging
specialized tasks. In contrast, although LLaVA-NeXT-34B
has achieved state-of-the-art results across a wide range of
benchmarks [Liu et al., 2024b], its lower proficiency in CVC
results in relatively modest improvements. This suggests that
utilizing LVLMs with higher proficiency in CVC could fur-
ther enhance the potential of our method. We hope these find-
ings offer valuable insights for future research.

Generated Instruction Promotes Data Diversity. To evalu-
ate the effect of generated instruction, we compare this set-
ting with using a fixed instruction (“What is the occluded ob-
ject?”). First, our results demonstrate that using generated
instructions significantly outperforms a fixed instruction in
terms of data diversity. As shown in Figure 5, using a fixed
instruction results in nearly 20% more CVC instances with
no successful rationale compared to using generated instruc-
tions. This indicates that generated instruction can lead to
more specific references, thereby aiding the LVLM in pro-
ducing accurate answers. Due to this design, our data covers
nearly 2,000 different entities, ensuring data diversity. Sec-
ond, in Table 4, using generated instructions exhibits better
performance on both specialized and general visual tasks.
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Question:
What pattern is in the picture?
A. Pumpkin Lights
B. Bats

LLaVA-1.5-7B:
A. There are orange and purple candles; thus, the pattern is related to candles. B. There are bats in the air,  
which is also in the shape of a bat pattern ...  This pattern could be related to pumpkins since a pumpkin is 
a natural image associated with Halloween, and there are candles in the image. C. Although bats may 
come in handy, the focus of the image is most likely pumpkins as the pattern. 
So, the pattern in the picture is a combination of a pumpkin theme, candles, and the presence of bats. 
However, since we have found the most valid and fitting pattern, A. is the correct answer.

Ours:
First, we know that the image has a spooky atmosphere due to the ghost and pumpkin decorations. 
Second, we also know that there is a moon … Now, let's consider the possible pattern in the picture. 
A: Pumpkin Lights - While there is a possibility of pumpkin decorations as a pattern, considering the other 
elements of the scene, like the ghosts, we can disregard option A.
B: Bats - Given the available information, we can safely conclude that the bats have a significant role in the 
pattern in the picture. They are scattered throughout, both in the sky and hovering around the ghost.

Figure 6: An example comparison of LLaVA-1.5-7B with and without our method. Left: A test sample from MMVP includes a question and
an image, with the correct option annotated. Right: The reasoning processes and relative attention maps of the two methods. The highlighted
regions in the attention map reveal where this method places more attention compared to the other.

Method MMVP Wino SEED MM-Vetground Bench

LLaVA-1.5-7B 20.7 25.3 66.1 31.1
w/ CVC (α = 0.5) 30.0 29.5 66.9 31.7
w/ CVC (α = 0.75) 30.7 33.5 67.1 34.1

w/o Generated Inst. 28.7 32.5 67.1 31.8

Table 4: Results of our method enhanced by introducing generated
instructions (Generated Inst.) and harder CVC instances. We con-
duct this ablation study on LLaVA-1.5-7B.

Harder CVC Instances Boost Greater Performance. We
measure the difficulty of a CVC instance based on the fre-
quency of its trials that yield the target answer. To investigate
how the difficulty of CVC instances impacts LVLM perfor-
mance, we collect CVC instances with different difficulties
for LVLMs training. As depicted in Table 4, the harder CVC
instances (α = 0.75) exhibit a more pronounced performance
improvement compared to the easier ones (α = 0.5). This
finding underscores that training with harder CVC instances
drives the LVLM to achieve more substantial gains in tack-
ling complex visual scenarios, highlighting the importance of
instance difficulty in boosting model performance.

Effect of Hybrid Loss. Another key decision of our method
is how to format the synthesized data for LVLMs training. To
investigate this, we conduct an ablation study of the hybrid
loss. As shown in Table 5, both rationale-only and direct-
answer-only training can generally enhance the LVLM’s per-
formance on downstream visual tasks, with the exception of
MM-Vet. When combining both rationale and direct answer
for training, the hybrid loss enables the LVLM to engage in
“fast and slow thinking,” leading to further improvements in
overall performance.

4.4 Case Study
We present a case study to underscore the efficacy of our
method in visual reasoning that demands deep perception. As
shown in Figure 6, although vanilla LLaVA-1.5-7B success-
fully identifies the key visual features (“bats”), it tends to

Rationale Direct MMVP Wino SEED MM-VetAnswer ground Bench

✗ ✗ 20.7 25.3 66.1 31.1
✓ ✗ 28.0 26.0 66.8 29.4
✗ ✓ 30.7 27.0 66.3 29.2
✓ ✓ 30.7 33.5 67.1 34.1

Table 5: Ablation study of the hybrid loss on LLaVA-1.5-7B.

rely on its linguistic commonsense knowledge (i.e., “pumpkin
lights” is a more Halloween-related pattern), leading to an in-
correct inference. In contrast, our method enables the LVLM
to confidently harness its visual perception capability, accu-
rately identify the key pattern (“bats”) and conduct a reason-
able inference over the image. Additionally, by comparing
the relative attention maps of the two methods, we observe
that our method places most attention on the key visual fea-
tures, demonstrating a more precise and focused attention pat-
tern. Conversely, the vanilla LLaVA-1.5-7B exhibits a more
dispersed attention distribution, failing to effectively isolate
the key visual features. These results further validate that our
method effectively promotes the visual perception and rea-
soning capabilities of LVLMs.

5 Conclusion
In this paper, we propose a self-improvement framework that
autonomously enhances the visual perception and reason-
ing capabilities of LVLMs. This framework is grounded in
causality-driven visual object completion (CVC), which re-
quires LVLMs to perform visual knowledge-intensive rea-
soning. We first develop a pipeline for constructing high-
causality CVC instances. Then, leveraging trial-and-error
learning, we harness the LVLM’s inherent reasoning ability to
synthesize rationales for each CVC instance and select more
challenging ones for self-improvement. Experiments con-
ducted on both challenging specialized tasks and comprehen-
sive benchmarks demonstrate that our method significantly
enhances the visual capabilities of LVLMs, particularly in
scenarios demanding deep visual perception and reasoning.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
The project was supported by National Key R&D Program
of China (No.2022ZD0160501), Natural Science Founda-
tion of Fujian Province of China (No.2024J011001), and
the Public Technology Service Platform Project of Xiamen
(No.3502Z20231043). We also thank the reviewers for their
insightful comments.

Contribution Statement
Qingguo Hu and Ante Wang contributed equally to this work.

References
[Achiam et al., 2023] Josh Achiam, Steven Adler, Sandhini

Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

[Bao et al., 2021] Hangbo Bao, Li Dong, Songhao Piao, and
Furu Wei. Beit: Bert pre-training of image transformers.
arXiv preprint arXiv:2106.08254, 2021.

[Chen et al., 2020] Yen-Chun Chen, Linjie Li, Licheng Yu,
Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. Uniter: Universal image-text representation
learning. In Proc. of ECCV, 2020.

[Chen et al., 2023] Jun Chen, Deyao Zhu, Xiaoqian Shen,
Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mo-
hamed Elhoseiny. Minigpt-v2: large language model as a
unified interface for vision-language multi-task learning.
arXiv preprint arXiv:2310.09478, 2023.

[Dai et al., 2023] Wenliang Dai, Junnan Li, Dongxu Li, An-
thony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip:
Towards general-purpose vision-language models with in-
struction tuning, 2023.

[Daniel, 2017] Kahneman Daniel. Thinking, fast and slow.
2017.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805, 2018.

[Fu et al., 2023] Chaoyou Fu, Peixian Chen, Yunhang Shen,
Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive
evaluation benchmark for multimodal large language mod-
els. arXiv preprint arXiv:2306.13394, 2023.

[Fu et al., 2024] Xingyu Fu, Yushi Hu, Bangzheng Li,
Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A
Smith, Wei-Chiu Ma, and Ranjay Krishna. Blink: Mul-
timodal large language models can see but not perceive.
arXiv preprint arXiv:2404.12390, 2024.

[Goyal et al., 2017] Yash Goyal, Tejas Khot, Douglas
Summers-Stay, Dhruv Batra, and Devi Parikh. Making the
v in vqa matter: Elevating the role of image understanding
in visual question answering. In Proc. of CVPR, 2017.

[He et al., 2022] Kaiming He, Xinlei Chen, Saining Xie,
Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proc. of CVPR,
2022.

[Ho et al., 2022] Namgyu Ho, Laura Schmid, and Se-Young
Yun. Large language models are reasoning teachers. arXiv
preprint arXiv:2212.10071, 2022.

[Holtzman et al., 2019] Ari Holtzman, Jan Buys, Li Du,
Maxwell Forbes, and Yejin Choi. The curious case of neu-
ral text degeneration. arXiv preprint arXiv:1904.09751,
2019.

[Hsieh et al., 2023] Cheng-Yu Hsieh, Chun-Liang Li, Chih-
Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander
Ratner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfis-
ter. Distilling step-by-step! outperforming larger language
models with less training data and smaller model sizes.
arXiv preprint arXiv:2305.02301, 2023.

[Huang et al., 2022] Jiaxin Huang, Shixiang Shane Gu,
Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Ji-
awei Han. Large language models can self-improve. arXiv
preprint arXiv:2210.11610, 2022.

[Kang et al., 2023] Liyan Kang, Luyang Huang, Ningxin
Peng, Peihao Zhu, Zewei Sun, Shanbo Cheng, Mingxuan
Wang, Degen Huang, and Jinsong Su. Bigvideo: A large-
scale video subtitle translation dataset for multimodal ma-
chine translation. arXiv preprint arXiv:2305.18326, 2023.

[Kirillov et al., 2023] Alexander Kirillov, Eric Mintun,
Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C
Berg, Wan-Yen Lo, et al. Segment anything. In Proc. of
CVPR, 2023.

[Krishna et al., 2017] Ranjay Krishna, Yuke Zhu, Oliver
Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A
Shamma, et al. Visual genome: Connecting language and
vision using crowdsourced dense image annotations. In-
ternational journal of computer vision, 2017.

[Kwon et al., 2022] Gukyeong Kwon, Zhaowei Cai, Avinash
Ravichandran, Erhan Bas, Rahul Bhotika, and Ste-
fano Soatto. Masked vision and language modeling
for multi-modal representation learning. arXiv preprint
arXiv:2208.02131, 2022.

[Lan et al., 2023] Zhibin Lan, Jiawei Yu, Xiang Li, Wen
Zhang, Jian Luan, Bin Wang, Degen Huang, and Jinsong
Su. Exploring better text image translation with multi-
modal codebook. arXiv preprint arXiv:2305.17415, 2023.

[Lan et al., 2024a] Zhibin Lan, Liqiang Niu, Fandong Meng,
Wenbo Li, Jie Zhou, and Jinsong Su. Avg-llava: A large
multimodal model with adaptive visual granularity. arXiv
preprint arXiv:2410.02745, 2024.

[Lan et al., 2024b] Zhibin Lan, Liqiang Niu, Fandong Meng,
Jie Zhou, Min Zhang, and Jinsong Su. Translatotron-v
(ison): An end-to-end model for in-image machine trans-
lation. arXiv preprint arXiv:2407.02894, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Li et al., 2022] Liunian Harold Li, Pengchuan Zhang, Hao-
tian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Li-
juan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al.
Grounded language-image pre-training. In Proc. of CVPR,
2022.

[Li et al., 2023] Bohao Li, Rui Wang, Guangzhi Wang, Yuy-
ing Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
marking multimodal llms with generative comprehension.
arXiv preprint arXiv:2307.16125, 2023.

[Lin et al., 2014] Tsung-Yi Lin, Michael Maire, Serge Be-
longie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Com-
mon objects in context. In Proc. of ECCV, 2014.

[Lin et al., 2020] Huan Lin, Fandong Meng, Jinsong Su,
Yongjing Yin, Zhengyuan Yang, Yubin Ge, Jie Zhou, and
Jiebo Luo. Dynamic context-guided capsule network for
multimodal machine translation. In Proc. of ACMMM,
2020.

[Liu et al., 2019] Yinhan Liu, Myle Ott, Naman Goyal,
Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta:
A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[Liu et al., 2023a] Fangyu Liu, Guy Emerson, and Nigel
Collier. Visual spatial reasoning. Transactions of the As-
sociation for Computational Linguistics, 2023.

[Liu et al., 2023b] Haotian Liu, Chunyuan Li, Qingyang
Wu, and Yong Jae Lee. Visual instruction tuning. Ad-
vances in neural information processing systems, 2023.

[Liu et al., 2023c] Yuan Liu, Haodong Duan, Yuanhan
Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike
Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mm-
bench: Is your multi-modal model an all-around player?
arXiv preprint arXiv:2307.06281, 2023.

[Liu et al., 2024a] Haotian Liu, Chunyuan Li, Yuheng Li,
and Yong Jae Lee. Improved baselines with visual instruc-
tion tuning. In Proc. of CVPR, 2024.

[Liu et al., 2024b] Haotian Liu, Chunyuan Li, Yuheng Li,
Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowl-
edge, 2024.

[Pessoa et al., 1998] Luiz Pessoa, Evan Thompson, and Alva
Noë. Finding out about filling-in: A guide to perceptual
completion for visual science and the philosophy of per-
ception. Behavioral and brain sciences, 1998.

[Radford et al., 2021] Alec Radford, Jong Wook Kim, Chris
Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, et al. Learning transferable visual models from nat-
ural language supervision. In Proc. of ICML, 2021.

[Team et al., 2023] Gemini Team, Rohan Anil, Sebastian
Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja
Hauth, et al. Gemini: a family of highly capable multi-
modal models. arXiv preprint arXiv:2312.11805, 2023.

[Thrush et al., 2022] Tristan Thrush, Ryan Jiang, Max Bar-
tolo, Amanpreet Singh, Adina Williams, Douwe Kiela,
and Candace Ross. Winoground: Probing vision and
language models for visio-linguistic compositionality. In
Proc. of CVPR, 2022.

[Tong et al., 2024] Shengbang Tong, Zhuang Liu, Yuexiang
Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
shut? exploring the visual shortcomings of multimodal
llms. In Proc. of CVPR, 2024.

[Touvron et al., 2023] Hugo Touvron, Louis Martin, Kevin
Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

[Wang et al., 2025] Ante Wang, Linfeng Song, Ye Tian,
Baolin Peng, Dian Yu, Haitao Mi, Jinsong Su, and Dong
Yu. Litesearch: Efficient tree search with dynamic explo-
ration budget for math reasoning. In Proc. of AAAI, 2025.

[Wei et al., 2022] Jason Wei, Xuezhi Wang, Dale Schuur-
mans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits
reasoning in large language models. Advances in neural
information processing systems, 2022.

[Wu and Xie, 2024] Penghao Wu and Saining Xie. V?:
Guided visual search as a core mechanism in multimodal
llms. In Proc. of CVPR, 2024.

[Yang et al., 2023] Zhengyuan Yang, Linjie Li, Kevin Lin,
Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Li-
juan Wang. The dawn of lmms: Preliminary explorations
with gpt-4v (ision). arXiv preprint arXiv:2309.17421,
2023.

[Yin et al., 2023] Yongjing Yin, Jiali Zeng, Jinsong Su, Chu-
lun Zhou, Fandong Meng, Jie Zhou, Degen Huang, and
Jiebo Luo. Multi-modal graph contrastive encoding for
neural machine translation. Artificial Intelligence, 2023.

[Young, 2009] H Peyton Young. Learning by trial and error.
Games and economic behavior, 2009.

[Yu et al., 2023] Weihao Yu, Zhengyuan Yang, Linjie Li,
Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multi-
modal models for integrated capabilities. arXiv preprint
arXiv:2308.02490, 2023.

[Zhang et al., 2023] Zhuosheng Zhang, Aston Zhang,
Mu Li, Hai Zhao, George Karypis, and Alex Smola.
Multimodal chain-of-thought reasoning in language
models. arXiv preprint arXiv:2302.00923, 2023.

[Zhao et al., 2023] Bo Zhao, Boya Wu, Muyang He, and
Tiejun Huang. Svit: Scaling up visual instruction tuning.
arXiv preprint arXiv:2307.04087, 2023.

[Zhou et al., 2024] Yiyang Zhou, Zhiyuan Fan, Dongjie
Cheng, Sihan Yang, Zhaorun Chen, Chenhang Cui, Xiyao
Wang, Yun Li, Linjun Zhang, and Huaxiu Yao. Calibrated
self-rewarding vision language models. arXiv preprint
arXiv:2405.14622, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


