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Abstract
Understanding and predicting the effects of cellular
perturbations using single-cell sequencing technol-
ogy remains a critical and challenging problem in
biotechnology. In this work, we introduce CycSeq,
a deep learning framework that leverages cyclic
data generation and recent advances in neural ar-
chitectures to predict single-cell responses under
specified perturbations across multiple cell lines,
while also generating the corresponding single-
cell expression profiles. Specifically, CycSeq ad-
dresses the challenge of learning heterogeneous
perturbation responses from unpaired single-cell
gene expression data by generating pseudo-pairs
through cyclic data generation. Experimental re-
sults demonstrate that CycSeq outperforms exist-
ing methods in perturbation prediction tasks, as
evaluated using computational metrics such as R-
squared and MAE. Furthermore, CycSeq employs
a unified architecture that integrates information
from multiple cell lines, enabling robust predic-
tions even for long-tail cell lines with limited train-
ing data. The source code is publicly available at
https://github.com/yczju/cycseq.

1 Introduction
Single-cell experiments provide fine-grained insights into cell
types and states, thereby enabling researchers to analyze cel-
lular heterogeneity at an unprecedented resolution. More-
over, single-cell perturbation studies are particularly crucial
because they allow researchers to investigate gene function
and cellular responses to various stimuli or genetic modifica-
tions at the individual cell level. However, the high dimen-
sionality of gene expression data can pose substantial chal-
lenges for extracting valuable information from single-cell
sequencing datasets.

As single-cell technologies continue to advance and the
demand for detailed medicinal insights grows, the use of
CRISPR-based perturbation data is increasing. Nonetheless,
current datasets covering multiple cell lines remain limited in
both scale and comprehensiveness. Consequently, there is an

∗ Corresponding authors.

urgent need for computational methods capable of generat-
ing and analyzing such data to support expanding integrative
studies.

1.1 Related Work
Several deep learning–based approaches have been developed
to predict the effects of perturbations in single-cell data, often
through latent representations. For example, CellOT [Bunne
et al., 2023] employs input convex neural networks to model
cell state transitions via optimal transport, and Guided Sparse
Factor Analysis (GSFA) [Zhou et al., 2023] defines gene
modules in a latent space to predict perturbations. However,
these methods typically generate a latent representation of
original scRNA-seq data rather than the perturbed single-cell
expression profiles. This focus on latent representations lim-
its the scope of downstream analyses and may introduce bias
when assessed against ground truth data.

Other methods leverage Variational AutoEncoders (VAEs)
[Baldi, 2012] to generate single-cell expression data. For
instance, scGen [Lotfollahi et al., 2019] predicts single-cell
perturbation responses using an architecture that adapts vec-
tor arithmetic for scRNA-seq data. Meanwhile, scVI [Lopez
et al., 2018] employs a scalable hierarchical Bayesian model
implemented with VAEs to analyze scRNA-seq data, and sc-
VAE [Grønbech et al., 2020] extends traditional VAE frame-
works to better accommodate zero-inflation. Biolord [Piran
et al., 2024], on the other hand, leverages disentangled repre-
sentations to predict perturbed gene expression. While such
approaches demonstrate promising performance, they often
struggle to adapt to novel cell lines and are limited to pertur-
bations appearing in the training data.

As a result, attempts have been made to incorporate prior
knowledge of gene regulatory networks [Levine and David-
son, 2005] to more accurately capture gene-gene interac-
tions. For example, CellOracle [Kamimoto et al., 2023] and
SCENIC+ [Bravo González-Blas et al., 2023] model in silico
gene perturbations by inferring gene regulatory networks, al-
though constructing precise networks can be challenging for
incomplete datasets and typically focuses on predicting tran-
scription factor perturbations. GEARS [Roohani et al., 2024]
integrates a knowledge graph of gene–gene relationships with
deep learning to simulate genetic perturbations, allowing it to
generalize to novel perturbation spaces. However, practical
application of these models can still be constrained by data
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scarcity, especially when dealing with long-tail cell lines or
extensive perturbation spaces.

1.2 Associated Challenges and Our Approach
Single-cell RNA sequencing (scRNA-seq) data are high-
dimensional, although they are often well-described by
lower-dimensional manifolds or principal components [Ding
and Regev, 2021]. Many previous methods leverage graph-
based or neural network models in these reduced-dimensional
spaces [Bendall et al., 2014; Wolf et al., 2019], but consider-
able challenges remain. Specifically, model training is com-
plicated by the lack of paired data—i.e., before- and after-
perturbation observations from the same cell, and by the long-
tail data distribution characterizing cell lines. These factors
make out-of-sample predictions particularly challenging and
often restrict analyses to single cell lines or tissue types, re-
quiring multiple sub-models to be trained for different lines.
Cell lines with limited data are especially problematic be-
cause they reduce model generalizability, and many frame-
works are not designed to handle multi–cell line data simul-
taneously.

To address these challenges, we present CycSeq, a deep
learning framework that leverages cyclic data generation for
unpaired before- and after-perturbation datasets. CycSeq in-
corporates a pre-training stage across multiple cell lines, fol-
lowed by fine-tuning stage on a specific cell line. In this way,
CycSeq develops a generalized multi–cell line model that can
transfer knowledge from data-rich lines to those with fewer
samples. Upon fine-tuning, CycSeq achieves accurate pre-
dictions for various tasks, including drug effect analysis and
drug target discovery, even in scenarios where only limited
data are available.

2 Methodology
2.1 Overall Structure
We present CycSeq, a deep learning framework designed
to handle unpaired before-perturbation (control) and after-
perturbation single-cell expression profiles without relying
on simulation data (Figure 1). In the pre-training stage, our
model assumes that gene inactivation in different cell lines
often produces similar effects. For example, in A549, HeLa,
and HepG2 cell lines, knock-down of the MALAT1 gene
yields comparable responses [Li et al., 2015]. During fine-
tuning, the model could learn the data distribution of a spe-
cific cell line to guide data generation processes and achieve
improved performance.

CycSeq employs an integrated single-cell gene expression
training set that includes multiple cell lines, incorporating ef-
fective batch-effect elimination for the pre-training stage, and
focuses on a target cell line for the fine-tuning stage. Data-
rich cell lines can be leveraged during pre-training to trans-
fer knowledge to data-insufficient cell lines in both the pre-
training and fine-tuning stages. Consequently, the perturba-
tion prediction problem is addressed through an inherent log-
ical sequence: (1) using the pre-trained CycSeq to predict
perturbation effects in data-insufficient or previously unseen
cell lines, and (2) employing the fine-tuned CycSeq to pre-
dict perturbation effects more accurately for specific cell lines

...
sc RNA-seq
216 cell lines

Stage I: Pre-train

Stage II: Fine-tuneShare weight

Encoder

Latent space

Decoder
Skip connection

batch effect
removal

......

sc CRISPR screening
2,357 gene perturbations

Over 1,000,000 
cells

CycSeq

a

b

random
sampling

Gene expression
after perturbation

Gene expression
before perturbation 

Generator
Generator

Original expression
before perturbation Generated expression

after perturbation

Original expression
after perturbation

Discriminator

Recovered expression
before perturbation 

Discriminator

Generator
Original expression
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Figure 1: CycSeq overview. a. Training data integration and pre-
processing. b. CycSeq training during pre-train and fine-tune stages.

that have sufficient training data. As such, the model remains
adaptable to most cell lines, even in scenarios where the tar-
get cell line for generated data is excluded from the training
process.

2.2 Data Integration
Data Source
We utilize multiple data sources to train CycSeq. The first
source derives from a comprehensive study on aberrations
in patients who underwent radical hepatectomy as a treat-
ment for hepatocellular carcinoma (HCC)[Chiyonobu et al.,
2018], encompassing 25 gene-level perturbations in the K562
(chronic myeloid leukemia) cell line.

Our second dataset comprises single-cell CRISPR natural
killer (NK) cells and non-natural killer (noNK) cells from
Crop-Seq [Dufva et al., 2023]. Perturbations were introduced
in 5 distinct representative cell lines (K562, LP1, MM1,
NALM6, and SUDHL4) within both NK and noNK cell pop-
ulations, targeting the functionality of 78 genes. For compar-
ative analysis, the single-cell expressions from noNK cells
were used as a control group.

Our third data source stems from a genome-wide perturb-
seq study[Replogle et al., 2022] that involved perturbing all
expressed genes in the RPE1 and K562 cell lines. We se-
lected targeted common essential genes for the RPE1 cell line
(n=2,057) and the K562 cell line (n=1,973).

Lastly, the Pan-cancer analysis [icg, 2020] dataset was in-
tegrated from 201 unique cell lines, each serving as a putative
normal control sample.

Data Pre-process
Initially, the single-cell gene expression data was log normal-
ized, utilizing the original count metrics. Let’s denote the
original count metrics as

M = {m | m ∈ Rg × Rc},

where g and c represent for gene number and cell number,
respectively. Next, for generalized training process, the inter-
section of genes across all metrics was identified, represented
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as gi = 6, 742. Mgi,c is used for model training and valida-
tion. The metrics were then log-normalized as

Dgi,c = log2(M
gi,c + 1).

In order to ensure that the observed variations in the dataset
reflect authentic biological differences rather than artifacts
arising from different experimental conditions and to enhance
the precision and eliminate the potential batch effect, Com-
Bat [Zhang et al., 2020] was employed across 4,728 batches
in 9 cell lines to eliminate batch effects. We used single-cell
data from 201 distinct cell lines in the Pan-cancer project[icg,
2020] as the reference. The single-cell expression profile was
aligned to this reference in each batch.

Subsequently, we defined cs as randomly selected cells in
each single cell gene expression data. We defined a bit vector
cls for each data to identify perturbed genes. The concatena-
tion operation if symbolized as ⊕. Random samplings were
performed on the gene expression data with selected cells
Dgi,cs for R times, represented as

Dgi,cs
R = {cls⊕Dgi,cs}NR

r=1,

where cs and NR denotes the number of random samplings
applied to each gene knockout spectrum across each cell line,
respectively. cs and gi are adjustable hyper-parameter and
could be defined by users. We set the value of cs = 50 and
NR = 50. We designated N i

c as the number of cells within
the i − th expression spectrum. In instances where c < 50,
we permitted sampling with replacement. After random sam-
pling, in the instance of each control set of each cell line,
we made adjustments to D in accordance with their corre-
sponding knockout genes, represented by K. This procedure
yielded a putatively gene-paired dataset P , consisting of per-
turbed and unperturbed datasets. This is conveyed as

P gi,cs
NK ,R = Pair(Dgi,cs

NK ,R,K
gi,cs
NK ,R),

where P denotes the basic dataset unit in the training pro-
cess and NK implies the number knocked-out genes gk across
all cell lines. To guarantee that every gene knockout is incor-
porated in the intersection of genes across all datasets, we
subsequently filtered the knocked-out genes as gk = gk ∩ gi.

Finally, datasets were split into training and validation sets.
We implemented the leave-one-out (LOO) strategy, in which,
out of R samplings, one single random instance j was desig-
nated as the validation set, and the remaining R− 1 instances
were allocated as the training set.

2.3 Pre-train with Generalized Cell Lines
CycSeq is a deep learning generative model with several com-
ponents for joint optimization. The input of CycSeq is a
dataset

P = {{(Dgi,cs
k,r ,Kgi,c

k,r )}NK

k=1}
R
r=1,

where K is the number of distinct gene knock across all
cell lines and R is the number of the random sampling. For
each perturbation k, Dgi,c

k,r ∈ Rgi × Rc.
We defined two gene expression distribution fields corre-

sponding to perturbed and unperturbed single cell expression

data. The aim of CycSeq is to learn the mappings from per-
turbed data to unperturbed data G (and F vice versa). In an
effort to construct generalized mappings Gpt and Fpt appli-
cable across multiple cell lines, we have employed a pre-
training process with data sourced from various cell lines,
where Gpt and Fpt denotes mappings in pre-training stage.
We deal with unmatched data using cycling data generation.

2.4 Fine-tune with Specific Cell Line
Following the pre-training stage, mappings G and F under-
goes fine-tuning. In instances where data Dgi,cs

kc,r
is available

for a particular cell line, where kc denotes the perturbed genes
in this specific cell line, enhanced models in the fine-tuning
stage Gft and Fft is conceived through the guidance of Gpt

and Fpt.
By utilizing specific data for each cell line with available

data and fine-tuning the model, we are able to significantly
augment the data generation competencies of the model for
the corresponding cell line.

2.5 Network Architecture
We assume that specific nonlinear relationships exist between
the corresponding cells in P and N , which represent two dis-
tinct states of the same cell line and can be captured by a
deep neural network. Although we lack explicit paired exam-
ples, we can generate the corresponding expression through
a cyclic model architecture. Concretely, we have one set of
scRNA-seq expression profiles in P and another set in N .
First, our goal is to learn a mapping G: P → N which trans-
forms the expression from distribution of Pdata to Ndata. The
mapping G we trained :P → N produce output n̂ = G(p),
p ∈ P , is indistinguishable from expression n ∈ N by an
adversary trained to classify n̂ apart from n. This objective
is designed to induce an output distribution that conform to
distribution of all n ∈ N . The optimal G thereby translates
the domain P to a domain N̂ distributed identically to N .
However, without the format of supervised learning, there
exists many G for each p to induce the same distribution
over n̂ which is not a meaningful way. In practice, with-
out supervision, models tend to generate same n̂ when op-
timizing the adversarial object. We follow the definition cy-
cle consistent proposed in CycleGAN. In our task, that is we
transform scRNA-seq expression from perturbation to con-
trol, then transform again from control to perturbation. Math-
ematically, we have a generator G : P → N and another gen-
erator F : N → P , then G and F should be inverses of each
other, and both mappings should be bijection. We apply this
structural assumption by training both the mapping G and F
simultaneously, and adding a cycle consistency loss [Zhou et
al., 2016] that encourages F (G(p)) ≈ p and G(F (n)) ≈ n.
Therefore, we train the unsupervised model in a supervised
formula by generating corresponding target in another field
without any simulated dataset. These two mappings are both
guided by adversarial losses. The full training objective is

G∗
pt, F

∗
pt = arg min

Gpt,Fpt

max
AN

pt,A
P
pt

L(Gpt, Fpt, A
N
pt, A

P
pt),

Each stage of the CycSeq model can be defined as train-
ing two mappings based on the fundamental architecture of
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an auto-encoder. Taking the pre-training stage as an exam-
ple, one mapping Fpt ◦ Gpt : N → N is learned jointly
with another mapping Gpt ◦ Fpt : P → P . However, these
mappings diverge from the original auto-encoders in that they
map an expression spectrum to the corresponding expression
via a latent representation, which translates the spectrum into
another domain (perturbation to control, and vice versa).

Generator Architecture
Our model utilizes an encoder-decoder architecture for the
generator, purposed for the generation of gene expression
data. The generator utilize an input that is a concatenation of
gene expression data as well as condition information which
encompasses the perturbed gene condition and the batch con-
dition. In particular, the input vector is assembled from these
three components:

• Gene expression data: Denoted as x ∈ RN , where N
delineates the number of genes.

• Perturbed Gene Condition: Shown as a one-hot encoded
vector p ∈ 0, 1Kp , where Kp characterizes the number
of unique perturbed genes.

• Batch condition: Expressed as a one-hot encoded vector
b ∈ 0, 1Kb , where Kb signifies the number of batches.

The unified input vector is thus represented as zin =
[x; p; b] ∈ RN+Kp+Kb .

To more effectively capture the impact of condition infor-
mation on gene expression, we introduce condition embed-
ding layers. The one-hot encoded vectors for the perturbed
gene condition and batch condition are mapped onto a lower-
dimensional embedding space. Specifically: Perturbed gene
embedding: ep = Embeddingp(p) ∈ RH , batch embedding:
eb = Embeddingb(b) ∈ RH . Here, the H is the dimensional-
ity of the embedding space.

Encoder Network
The Generator employs an encoder-decoder architecture that
begins with an encoder network, which maps the concate-
nated input of gene expression data, perturbed gene embed-
dings, and batch embeddings into a structured latent space.
The input to the encoder combines the gene expression vec-
tor x, the perturbed gene embedding ep, and the batch em-
bedding eb. These are concatenated to form the input vector
h0,

h0 = [x; ep; eb],

with dimensionality N + 2H , where N is the dimensionality
of the gene expression data, and H is the dimensionality of
the embedding space. The concatenated input is processed
by a fully connected layer, followed by PReLU activation to
introduce nonlinearity:

h1 = PReLU(W1h0 + b1),

where W1 and b1 denote the weights and biases of the fully
connected layer, respectively. To enhance feature extraction,
the network sequentially applies L residual blocks, which are
designed to improve gradient flow and representation learn-
ing:

hl+1 = ResidualBlock(hl),

for l = 1 to L. A self-attention mechanism is subsequently
applied to capture the dependencies among genes. This en-
ables the encoder to focus on important features:

hatt = SelfAttention(hL+1).

The final output of the encoder is projected into six distinct
latent vectors, representing the mean and log variance param-
eters for expression, KO (KnockOut) perturbation, and noise
latent spaces.

Reparameterization
To enable efficient sampling in the latent space while main-
taining back-propagation capabilities, we employ the repa-
rameterization trick. The mean and log variance parame-
ters output by the encoder are used to compute the latent
vectors as follows: The standard deviation is computed as:
σ = exp

(
0.5 log σ2

)
. The latent vector for each space is then

sampled by introducing a noise vector ϵ ∼ N (0, I), and per-
forming the following transformation: z = µ+σ⊙ϵ, where z
corresponds to the samples drawn from the KO perturbation,
expression, and noise latent distributions (zko, zexp, znoise).

Decoder Network
The decoder reconstructs the input gene expression and con-
ditional information by processing the latent vectors and em-
beddings. After latent vector concatenation, the sampled la-
tent vectors zko, zexp, and znoise are concatenated with the
perturbed gene embedding ep and the batch embedding eb to
form the decoder input:

hdec = [zexp; zko; znoise; ep; eb],

where the dimensionality becomes 3D + 2H . The concate-
nated input is passed through a fully connected layer with
PReLU activation:

hdec1 = PReLU(W3hdec + b3).

Similar to the encoder, the decoder applies L residual blocks
to model complex non-linear mappings to capture dependen-
cies and refine the feature representations:

hdec,l+1 = ResidualBlock(hdec,l),

for l = 1 to L. A self-attention mechanism is subsequently
applied to capture the dependencies among genes. This en-
ables the encoder to focus on important features:

hdec,att = SelfAttention(hdec,L+1).

A final linear projection maps the output into the original di-
mensionality space, representing the reconstructed gene ex-
pression and the one-hot encoding for perturbed gene and
batch conditions:

o = W4hdec,att + b4.

The output vector o is split into three segments:
• The first segment corresponds to the gene expression

data, activated using PReLU: x̂ = PReLU(o[:N ]).
• The second segment represents the embedding for the

perturbed gene condition: p̂ = o[N :N+Kp].
• The final segment contains the embedding for batch con-

ditions: b̂ = o[N+Kp:].
In this way, the decoder faithfully reconstructs the origi-

nal input while preserving essential features and conditional
information encoded in the latent spaces.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Residual Blocks
Incorporating residual blocks into our architecture improves
gradient flow during back-propagation and enables deeper
networks to capture complex non-linear relationships. First,
the input h is linearly transformed and passed through a
PReLU activation: r1 = PReLU(Wr1h+ br1), then Dropout
is applied to r1 to reduce over-fitting by randomly deactivat-
ing a fraction p of neurons: rdrop = Dropout(r1, p). Next, an-
other linear transformation produces r2: r2 = Wr2rdrop+br2,
which is added to the original input h, and a final PReLU ac-
tivation is applied: hout = PReLU(r2+h). This residual con-
nection simplifies identity learning and allows the optimizer
to guide the residual function toward zero when necessary,
thus stabilizing and accelerating the training process.

Self-Attention Mechanism To enhance the model’s ability
to learn dependencies within the input data, particularly long-
range dependencies among gene interactions, we employ a
self-attention mechanism. This mechanism enables the model
to focus on critical parts of the input sequence by dynamically
weighting its elements. The self-attention process is defined
as follows:

The input feature vector h is linearly projected into three
separate spaces to form queries Q, keys K, and values V :
Q = WQh, K = WKh, V = WV h. Attention Scores
Calculation: The attention scores are computed by taking
the dot product between the queries and keys, scaled by the
square root of the dimensionality of the keys (dk), and apply-
ing a softmax function to ensure that the scores sum to one:

Attention(Q,K, V ) = softmax

(
Q

K

⊤√
dk

)
V.

The self-attention mechanism provides the model with the
capability to assign varying importance to different parts of
the gene expression input, thus learning more sophisticated
feature representations.

2.6 Training Objective
The training process of the generator and discriminator is
driven by a composite loss function that integrates adversar-
ial, reconstruction, and regularization components.

Adversarial Loss
The adversarial loss guides the generator to produce outputs
that are indistinguishable from real data samples, while the
discriminator aims to correctly classify real and generated
samples:

Generator Loss: Encourages the generation of realistic sc-
RNA profiles by minimizing the negative log-likelihood of
the discriminator classifying the generated samples as real:

LG = −Ex ∼ pdata[logD(G(x))]

Discriminator Loss: Directs the discriminator to maximize
the separation between real and generated samples:

LD = −Ex ∼ pdata[logD(x)]−Ez ∼ pz[log(1−D(G(z)))]

Reconstruction Loss
The reconstruction loss measures the discrepancy between
the original and reconstructed gene expression data and con-
ditions, ensuring that the generator maintains fidelity to the
input data. The total reconstruction loss is split into three
parts as follows:

• Gene expression reconstruction loss:

Lrec = Ex

[
|x− x̂|2

]
.

• Perturbed gene reconstruction loss:

Lp = Ep [CrossEntropy(p, p̂)] .

• Batch label reconstruction loss:

Lb = Eb

[
CrossEntropy(b, b̂)

]
.

Regularization
The Kullback-Leibler (KL) divergence term imposes a regu-
larization constraint that aligns the approximate posterior dis-
tribution with the prior distribution:

Lexp
KL = KL (q(zexp|x)∥N (0, I))

Lko
KL = KL (q(zko|x)∥N (0, I))

Lnoise
KL = KL (q(znoise|x)∥N (0, I))

Total Loss Function
The ultimate objective minimizes a weighted sum of the ad-
versarial, reconstruction, and regularization losses to ensure
optimal performance of both the generator and discriminator:

Ltotal =LG + λrecLrec + λpLp + λbLb (1)

+λKL(Lko
KL + Lexp

KL + Lnoise
KL ) (2)

where λrec, λp, λb, and λKL are hyper-parameters that con-
trol the contributions of each component.

Implementation Details
The data integration of the experiments were conducted using
R version 4.3.1, with the Seurat package version 5.0.1 and
SeuratDisk version 0.0.0.9021. All other experiments were
conducted using python 3.9.11, PyTorch 2.3.1, CUDA 12.4,
numpy 1.23.5, scanpy 1.9.6 and scikit-learn 1.0.2.

Hyperparameters
In both the pre-training and fine-tuning stages, we configure
all generator architectures of G and F with hidden linear lay-
ers of widths 1,024, 512, 256, and 128. A learning rate decay
of 0.9 is applied after each ⌊0.1 ∗ num epoch⌋. G and F are
learned in an iterative fashion.

In the pre-training stage, we set the maximum training
epoch to 100, the batch size to 512, the optimizer to Adam
(with a learning rate of 0.0002, (β1 = 0.5, β2 = 0.9), and
λ = 1. In the fine-tuning stage, which adapts the pre-trained
model to a small dataset of a specific cell line, the maximum
training epoch is set to 30, the batch size to 64, and the op-
timizer to RMSprop with a learning rate of 0.00001. Early
stopping is employed to mitigate overfitting, with patience
values of 30 and 10 for the two stages, respectively.
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Figure 2: Performance of CycSeq pretrain.

3 Experiments

3.1 Performance

Pre-trained CycSeq Successfully Predict Perturbation
Effects Across Cell Lines
We pre-trained CycSeq on over 1 million cells covering 4,728
gene perturbations across nine cell lines. Then, CycSeq
was applied to a published genome-scale Perturb-seq dataset,
which involves CRISPR interference (CRISPRi) of all ex-
pressed genes in over 2.5 million human cells [Replogle et
al., 2022].

To evaluate the performance of the model, we employed
several metrics commonly used in generative models, includ-
ing R-suqared, Mean Square Error (MSE), and Mean Abso-
lute Error (MAE). In two cell lines, RPE1 and K562, CycSeq
outperforms other methods (Figure 2).

Knocking out a single gene usually results in minimal al-
terations on global expression profile, thus, the similarity be-
tween perturbation and control remains high. In generative
models, targets highly similar to the input can inflate perfor-
mance metrics. Consequently, we selected key cancer-related
genes to test whether the similarity between the target and
the output surpasses that between the input and the output,
thereby providing a rigorous validation of the model.

The MED30 gene encodes a subunit of the Mediator com-
plex, a pivotal co-activator in transcriptional regulation, and
its altered expression has been linked to various cancers,
underscoring its therapeutic potential. TTK protein kinase
(TTK), also known as Monopolar Spindle 1 (MPS1), is a key
regulator of the spindle assembly checkpoint (SAC), which
preserves genomic integrity. We used perturbation data from
the knockout of these two genes in the K562 cell line to val-
idate CycSeq in both prediction directions. As a result, Cyc-
Seq achieves average R-squared of 0.70 and 0.68 between
the target and the output, surpassing both the input-output
similarity and the performance of other models, including
GEARS and scGen (Figure 3).

Figure 3: Triangular validation on MED30 and TTK genes.

Model Cell line R2 ↑ MAE ↓ MSE ↓

scGen

K562 0.723 0.158 0.042
LP1 0.881 0.102 0.019

MM1 0.875 0.1 0.019
SUDHL4 0.846 0.116 0.024
NALM6 0.86 0.108 0.022

GEARS

K562 0.625 0.242 0.102
LP1 0.652 0.192 0.061

MM1 0.757 0.162 0.044
SUDHL4 0.637 0.223 0.094
NALM6 0.673 0.196 0.072

CycSeq p2n

K562 0.827 0.035 0.002
LP1 0.849 0.048 0.004

MM1 0.868 0.049 0.004
SUDHL4 0.807 0.05 0.004
NALM6 0.85 0.053 0.005

CycSeq n2p

K562 0.835 0.031 0.002
LP1 0.845 0.036 0.003

MM1 0.927 0.02 0.001
SUDHL4 0.877 0.028 0.001
NALM6 0.909 0.022 0.001

Table 1: Evaluation results of fine-tuned CycSeq compared to other
models.

Fine-tuned CycSeq Accurately Predict Single Cell
Perturbation Effect in Multiple Cell Lines
During the CycSeq fine-tuning stage, our proposed Cyc-
Seq n2p generally outperforms other models across multi-
ple metrics, achieving higher R-squared and lower MAE and
MSE on the K562, LP1, MM1, SUDHL4, and NALM6 cell
lines derived from Crop-Seq (Table 1). This robust perfor-
mance validates the model’s ability to generalize across dif-
ferent cell lines, reflecting CycSeq’s effective adaptation to
various batch effect removal strategies. By specifically opti-
mizing CycSeq for target cell lines, we further enable the pre-
diction of cell line–specific features with greater precision.

During the CycSeq fine-tuning stage, our proposed Cyc-
Seq n2p generally outperforms other models across multi-
ple metrics, achieving higher R-squared and lower MAE and
MSE on the K562, LP1, MM1, SUDHL4, and NALM6 cell
lines derived from Crop-Seq (Table 1). This robust perfor-
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Figure 4: Metric comparisons of pre-trained CycSeq and fine-tuned
CycSeq.

Drug name R2 ↑ MAE ↓ MSE ↓
Capecitabine 0.549 0.026 0.002
Disulfiram 0.559 0.024 0.001
Entacapone 0.588 0.022 0.001
Meprednisone 0.566 0.026 0.001
Mercaptopurine 0.514 0.025 0.001

Table 2: Evaluation results of drug perturbation prediction.

mance validates the model’s ability to generalize across dif-
ferent cell lines, reflecting CycSeq’s effective adaptation to
various batch effect removal strategies. By specifically opti-
mizing CycSeq for target cell lines, we further enable the pre-
diction of cell line–specific features with greater precision.

CycSeq Simulates Dynamic Drug Perturbation Effects
on Expression
To test the practical applications of CycSeq, we carried out
performance evaluation of CycSeq on a series of compound-
induced perturbations. CycSeq was evaluated using a single-
cell high-throughput screening library that includes 290,888
transcriptional profiles of 188 active compounds targeting a
diverse range of enzymes and molecular pathways [Srivatsan
et al., 2020]. We split the dataset based on the number of
genes each compound impacts. Single gene-targeting com-
pound affected profiles are chosen as the test set.

Among the screened cell lines, K562 was treated with each
of these 188 compounds at four dosages (10 nM, 100 nM,
1 µM, 10 µM). We trained our CycSeq n2p model to pre-
dict the perturbation response of cells exposed to increasingly
higher dosages, visualizing the results with PHATE [Moon
et al., 2019]. We found that the fine-tuned CycSeq n2p
could accurately predict gene expression in cells receiving
higher dosages from sc-RNA-seq data of cells exposed to
lower dosages (Table 2). Notably, predictions from different
dosages clustered together (Figure 5).

We performed Gene Set Enrichment Analysis (GSEA) on
the results predicted by CycSeq, using Temsirolimus (CCI-
779 NSC683864) as an example. Temsirolimus, a piperidine

Figure 5: PHATE visualization of drug perturbation prediction.
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Figure 6: GSEA analysis of CycSeq prediction on Temsirolimus.

ketone derivative and a specific inhibitor of the mammalian
target of rapamycin (mTOR), is an anti-tumor drug that reg-
ulates cell proliferation, growth, survival, and angiogenesis.
By inhibiting mTOR activity, Temsirolimus effectively halts
cancer cell growth and reproduction.

The top three enriched pathways identified from the Cyc-
Seq n2p predictions include: (1) regulation of regulatory T
cell (Treg) development and homeostasis via interleukin-2 re-
ceptor (IL-2R) signaling; (2) downregulated genes in Foxp3-
ires-GFP T regulatory cells; and (3) upregulated genes in ef-
fector CD8+ T cells compared to memory CD8+ T cells dur-
ing contraction. Consistent with these findings, it is reported
that CD8+ T cells typically exhibit impaired mTORC1 and
mTORC2 activity [Chen et al., 2023]. The IL-2R signaling
pathway is critical for Treg cells, with mTOR signaling serv-
ing as a key regulatory factor in Treg cell development. Con-
sequently, knockdown of FKBP1A may alter mTOR signal-
ing, indirectly affecting IL-2R signal transduction, and thus
influencing Treg cell development and function. Notably,
mTOR signaling plays a pivotal role in Treg cell differen-
tiation, and altered FKBP1A expression may impact Foxp3
expression and its downstream genes in Treg cells.

In contrast, the top enriched pathways predicted by Cyc-
Seq p2n in cell expression data include: (1) hydrolysis of
carboxylic ester bonds; and (2) pathways related to RNA tran-
scription from the mitochondrial genome in mitochondria.
These pathways are primarily linked to cellular metabolism,
reflecting fundamental biological processes.

This analysis indicates the ability of CycSeq to predict bi-
ologically relevant pathways consistent with known mecha-
nisms, thereby highlighting the model’s potential in capturing
complex cellular dynamics.

4 Conclusion
To efficiently leverage before- and after-perturbation un-
paired data in multi-cell lines for training, we developed Cyc-
Seq, which integrates a pre-training stage across multiple
cell lines with fine-tuning stage within a specific cell line.
The pre-trained CycSeq is designed to produce a generalized
model capable of transferring knowledge from data-rich cell
lines to those with limited data. Subsequently, the fine-tuned
CycSeq can provide accurate predictions for individual cell
lines in applications such as drug effect analysis. By facil-
itating the exploration of gene functions in diverse cellular
contexts and accelerating drug dose analysis, CycSeq holds
promise for more efficient and personalized healthcare solu-
tions.
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