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Abstract
We propose VideoHumanMIB, a novel framework
for Video Human Motion In-betweening that en-
ables seamless transitions between different motion
video clips, facilitating the generation of longer and
more natural digital human videos. While exist-
ing video frame interpolation methods work well
for similar motions in adjacent frames, they often
struggle with complex human movements, result-
ing in artifacts and unrealistic transitions. To ad-
dress these challenges, we introduce a two-stage
approach: First, we design an Appearance Recon-
struction AutoEncoder to decouple appearance and
motion information, extracting robust appearance-
invariant features. Second, we develop an en-
hanced diffusion pretrained network that leverages
both motion optical flow and human pose as guid-
ance conditions, enabling the model to learn com-
prehensive latent distributions of possible motions.
Rather than operating directly in pixel space, our
model works in a learned latent space, allowing
it to better capture the underlying motion dynam-
ics. The framework is optimized with a dual-frame
constraint loss and a motion flow loss to ensure
temporal consistency and natural movement tran-
sitions. Extensive experiments demonstrate that
our approach generates highly realistic transition
sequences that significantly outperform existing
methods, particularly in challenging scenarios with
large motion variations. The proposed VideoHu-
manMIB establishes a new baseline for human mo-
tion synthesis and enables more natural and con-
trollable digital human animation.

1 Introduction
Digital humans are widely utilized in the industry, such as
health care, online counseling, and public transportation sce-
narios, which often require 24-hour ready service. Therefore,

∗Corresponding author.

Video Human Motion In-Betweening

GT

𝑭𝑭𝟏𝟏 𝑭𝑭𝟐𝟐 𝑭𝑭𝒏𝒏−𝟏𝟏 𝑭𝑭𝒏𝒏

Source Frame
(Motion A)

Target Frame
(Motion B)

(a) EMA (b) RIFE

(d) Ours(c) DQBC

  Blurry Indistinct   Ghosting Distorted

  Fuzzy Vague   Clear Hand

Figure 1: Illustration of the Video Human Motion In-betweening
challenge. Given two reference frames, our task is to generate nat-
ural transition sequences (F1, F2, ..., Fn) without additional motion
guidance.

there is an increasing demand for digital human systems ca-
pable of generating continuous, long-term videos with realis-
tic and natural human motion. However, directly generating
longer and perfect human motion videos is very challenging,
in terms of both quality and efficiency.

Current approaches [Guo et al., 2023; Lin et al., 2024;
Xue et al., 2024; Luo et al., 2024] are only capable of di-
rectly generating videos in less than a few minutes with con-
siderable time consumption. Consequently, the majority of
digital humans in the industry rely on pre-recorded body mo-
tion libraries and manipulate meta motions to produce vari-
ous digital human videos, which necessitates a smooth and
natural transition between different meta motions. Since
there has not been a dedicated method for video human mo-
tion in-betweening, recent solutions typically employ video
frame interpolation (VFI) algorithms [Niklaus et al., 2017;
Zhang et al., 2022; Bao et al., 2019a]. Nonetheless, current
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VFI algorithm performs worse on large-scale human motion,
particularly in handling complex hand movements involving
intricate finger articulations and rapid gestures. The algo-
rithm is deficient in the following three aspects:

• Due to the low percentage of pixels representing hands
in the overall video, capturing large-scale and fast-
moving hand features becomes challenging, leading to
the intra-frame attention vaguely estimating motion vec-
tor [Zhang et al., 2023], such as the blurred body result
of EMA [Zhang et al., 2023], shown in Figure 1 (a).

• Because of the non-rigid hand movement, incorrect rigid
motion fields are generated by methods such as object
shift [Huang et al., 2022] or unilateral correlation, re-
sulting in missing hand or erroneous conclusions, as il-
lustrated in Figure 1 (b) and Figure 1 (c).

• Additionally, most VFI algorithms suffer from a re-
stricted number (1-2 frames) of generated frames, which
result in transition animations that are not natural
enough and can easily be noticed by viewers.

To alleviate these issues, the Render In-between approach
[Ho et al., 2021] concentrates on human motion sequences.
This method introduces a novel motion model that infers
nonlinear skeleton movements between frames using a large-
scale motion capture dataset. Subsequently, a neural ren-
dering pipeline employs pose prediction with high frame
rate to generate full-frame output while maintaining pose
and background consistency. However, only similar adjacent
frames are input into the neural rendering pipeline based on
DAIN [Bao et al., 2019b] interpolation, lacking a global com-
prehension of a wide range of movement. Consequently, this
approach is fundamentally constrained to frame rate enhance-
ment scenarios, where the temporal resolution is increased
between adjacent frames with minimal motion variance.

In this work, we first introduce a novel task, named Video
Human Motion In-Betweening, which is different from ex-
isting video frame interpolation that aims at increasing frame
rate, and that the two frames to interpolate are similar, with no
significant variations. Our goal is to generate a sequence of
coherent transition frames depicting human motion between
two arbitrary motions, accommodating potentially large pose
variations. Towards this goal, we propose a two-stage train-
ing framework based on diffusion model to generate complete
human bodies and realistic human motion transitions of arbi-
trary length between two given actions instead of simple lin-
ear interpolation. Hypothesizing that the information in the
human video can be decoupled into human motion informa-
tion and human appearance information, the proposed model
can fit possible human movements as much as possible, in-
cluding turning and hand movements.

In the first stage, we decouple pixel-wise motion and ap-
pearance information from the human videos to preserve
physical details. An encoder-decoder reconstruction model
similar to Variational AutoEncoder (VAE) is used to convert
the human body frames into optical flow information and la-
tent space features of appearance. The reconstruction model
can also recover frames from optical flow information and
human appearance features. Building upon this foundation,

the second stage employs a diffusion-based generation pro-
cess that takes the optical flow information from both source
and target frames as input, guided by extracted pose features.
This design enables the framework to explore and synthe-
size plausible motion trajectories between given poses, with
a dual-frame constraint loss specifically formulated to ensure
temporal consistency and motion naturalness. Through ex-
tensive analysis of motion distributions and model general-
ization capabilities across diverse datasets, our experiments
demonstrate the framework’s effectiveness in capturing and
reproducing complex human movements, suggesting promis-
ing directions for large-scale digital human motion synthesis.

We conduct extensive experiments to validate our hypoth-
esis on several datasets, including MHAD, NATOPS, and the
additional HD video collection dataset. The empirical results
and ablative studies show our method consistently achieves
significant improvements over most VFI methods. The diffu-
sion model generator built from potential motion distribution
also significantly improves more natural and human-likeness
transition, which makes our method learned from mass video
data competitive or superior compared with most VFI mod-
els. In summary, our work mainly contributes in three as-
pects:

• We propose a novel video synthesis framework for the
task of video human motion in-betweening. A diffusion
framework method based on optical flow and pose fea-
tures is designed for generating the transition of arbitrary
two motions.

• We present a dual-frame constraint loss for training
video human motion in-betweening task to achieve a
natural and imperceptible human body motion transi-
tion.

• The extensive experiments demonstrate the effective-
ness of our approach. Our experiments on examining
the relationship between the distribution of actions and
model generalization provide guidance for further study
of large-scale pre-training video generation models.

2 Related Work
Motion In-Betweening The main goal of Human Motion In-
Betweening is to generate transitional movements for digital
humans from the current action to the next one. These transi-
tions should be realistic and in accordance with human behav-
ior. There has been significant progress in 3D digital humans
[Gopinath et al., 2022; Harvey et al., 2020; Li et al., 2022;
Kim et al., 2022; Qin et al., 2022; Oreshkin et al., 2023;
Starke et al., 2023; Ren et al., 2023; Sridhar et al., 2022;
Kaufmann et al., 2020; Tang et al., 2022]. Making transitions
by combining body movements, text, and other information.
But the majority of these methods rely on joint information
and lack texture, resulting in less realistic effects and neces-
sitating extensive time for retargeting and rendering.

However, research is lacking in the context of 2D video
simulations illustrating human motion. An associated project,
Render In-between [Ho et al., 2021], focuses on enhancing
from lower frame rates to higher frame rates to depict intricate
movements of digital human figures in videos. Nonetheless,
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it is restricted to combining low-frame rate video into seam-
less high-frame rate video and does not have the capability to
define transition animations between arbitrary two actions.

Video Frame Interpolation The insertion of frames in
videos is a traditional and important task. Currently, there’s
been a lot of relevant work [Li et al., 2023; Kong et al., 2023;
Reda et al., 2022a; Yu et al., 2023; Huang et al., 2022;
Zhang et al., 2023; Lu et al., 2022; Park et al., 2023;
Plack et al., 2023] that has made some good progress. For
instance, FILM [Reda et al., 2022a] effectively predicts in-
termediate frames by utilizing a two-stage framework that
incorporates a coarse-to-fine strategy. The DFI-WD [Kong
et al., 2023] technique utilizes a lightweight motion percep-
tion network to estimate intermediate optical flow, and subse-
quently, a wavelet synthesis network employs flow-aligned
context features to predict multiscale wavelet coefficients
with sparse convolution for effective target frame reconstruc-
tion. The reduction in computation can be as much as 40%
while maintaining the same accuracy. Besides the methods
mentioned above, Transformers have also been introduced
into the video frame interpolation (VFI) task. With its pow-
erful self-attention mechanism, the Transformer model can
better capture inter-frame correlations, thereby improving the
accuracy of interpolation. EMA [Zhang et al., 2023] uses at-
tention mechanisms between frames to extract both motion
and appearance information, effectively capturing key fea-
tures in the video and generating interpolated frames with
high-quality details. VFIT [Lu et al., 2022] utilizes Cross-
Scale Window-based Attention to effectively deal with the
receptive field and multiscale information. The introduction
of the Transformer architecture provides a novel solution to
the video frame interpolation problem. However, these meth-
ods upgrade generic videos from low frame rate to high frame
rate without smoothing the motion of the virtual digital per-
son from the current action to the next action, lacking a fo-
cused study of the distribution of human behavior.

Video Generation Diffusion Models Recently, VDM [Ho
et al., 2022b] has expanded diffusion models into the realm of
videos, kick-starting exploration of diffusion models in video
generation. Specifically, they’ve transformed a 2D UNet into
a spatio-temporal factorized 3D network and further intro-
duced joint image-video training and gradient-based video
extension techniques. Make-A-Video [Singer et al., 2022]
and Imagen Video [Ho et al., 2022a] employ a series of exten-
sive diffusion models to synthesize large-scale videos based
on given text prompts. However, previous video-based video
generation methods have performed diffusion and denoising
processes in pixel space, requiring significant computational
resources. Inspired by LDM [Rombach et al., 2022] and
LFDM [Ni et al., 2023], these methods learn from a latent
feature space instead of learning directly from image pixels.
In a similar vein, we employ an enhanced diffusion model
for video human motion in-betweening tasks, where instead
of pixel-level features, the diffusion model only needs to be
fed with lower dimensional optical flow and pose feature in-
formation. More recent text-to-video models, such as Open-
Sora, OpenSoraPlan, and EasyAnimate [Lin et al., 2024;
Zheng et al., 2024; Xu et al., 2024], have demonstrated en-
hanced controllability and quality in short video generation.

These approaches introduce novel architectures and training
strategies, improving the fidelity and temporal consistency.

3 Method
Our approach aims to create human-like transitional anima-
tions between two motions of a digital human. For ease of
presentation, we start this section by presenting the defini-
tion of the used symbols in our approach. We then intro-
duce the Appearance Reconstruction AutoEncoder (ARAE),
which translates human video frames to human appearance
and motion optical flow features (3.1). Thereafter, we elab-
orate the improved diffusion model based on motion optical
flow and pose information, involving a forward noisy process
and a backward denoising process. Moreover, we introduce a
dual-frame constraint loss to guide the model seamlessly con-
nect with the source and target frames as much as possible
(3.2). Finally, during the inference stage, the ARAE decoder
will generate the complete transitional video from the refer-
ence frame and the motion optical flow sequence generated
by the diffusion model (3.3).

Given a sequence of real consecutive action frames F
= {F1, F2, . . . , Fi} (1 ≤ i ≤ n), with n being the training
frame number. For brief, we define the end frame of the cur-
rent action as the source frame F1, the start frame of the next
action as the target frame Fn, the predicted results frames as
F̂ = {F̂1, F̂2, . . . , F̂n}, the pose information of the source
frame and target frame as P1 and Pn, the motion optical flow
as f = {f1, f2, . . . , fn}, where f1 represents the motion opti-
cal flow information of the source frame, and fn denotes the
motion optical flow feature of the target frame. Moreover, we
define the noise sequence of the diffusion model as Xt, guide
condition as C, the denoise optical flow result as f̂ , and the
timestamp as t.

3.1 Stage1: Appearance Reconstruction
AutoEncoder

Generally, 2D human poses in videos can be extracted us-
ing pose estimators [Jiang et al., 2023; Contributors, 2020] to
obtain coarse-grained motion features. Nevertheless, the pre-
cision of 2D pose estimators is influenced by the handcrafted
structural design. And pose estimation has lost the associa-
tion information between the human body and the video back-
ground, which brings challenges to conditional guide video
synthesis. According to Siarohin et al. [Siarohin et al., 2019;
Ni et al., 2023], AutoEncoder is able to extract appearance in-
formation and motion optical flow information in the image.
Our idea is to extract high-dimensional action features from
the latent space with an AutoEncoder, based on the obser-
vation that the human video can be decomposed into human
action information and human appearance information. To
this end, we introduce a pre-trained Appearance Reconstruc-
tion AutoEncoder (ARAE) to establish the mapping from hu-
man video to human appearance and motion optical flow. The
ARAE is depicted in the pink background portion of Figure
2, where the ARAE Encoder takes the source frame F1 as
input to extract the appearance feature A, the Optical Flow
Predictor extracts the motion optical flow information f , and
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Figure 2: Overview of Video Human Motion In-Betweening Baseline, VideoHumanMIB. Firstly, we pre-train the Appearance Recon-
struction AutoEncoder (ARAE) to decouple the human appearance information and the motion optical flow features from the video frames
(the pink background portion). Second, we extract the latent optical flow and pose information from the source and target frames through
optical flow and pose predictors separately. Then, using the latent features of the source and target frames as input, pose information and target
frame latent optical flow as guide conditions, we train the flow-based diffusion model for generating the motion optical flow of transition
frames (the green background portion). Finally, we use the decoder from the pre-trained ARAE to generate a series of transitional frames (the
blue background portion). During training, the diffusion model is not directly trained on image pixels. Instead, it learns latent features in a
low-dimensional space and is trained jointly with the dual-frame constraint loss and the motion flow loss.

the ARAE Decoder reconstructs the frame F̂ . The ARAE can
be pre-trained end-to-end with self-supervised training.

3.2 Stage2: Video Human Motion In-Betweening
Diffusion Model

Now that we have mapped the optical flow features from
human video, we aim to synthesize optical flow features by
gradually denoising from pure Gaussian noise, employing a
DDPM [Ho et al., 2020] in the latent space for generation,
and be prepared for reconstructing transitional action clips.
The enhanced diffusion model [Ho et al., 2020] consists of
two main stages: the forward noise addition stage and the re-
verse noise reduction stage.

Forward Process Due to computational power and time
constraints, we propose to conduct diffusion and denoising
the latent space of the video. We train a diffusion model to
generate motion optical flow samples starting from a Gaus-
sian noise XT ∼ N(XT ; 0, I) in T timestep. The diffu-
sion process adds noise to X0 according to variance schedule
β1, β2, ..., βT . Eventually, the sampling point will be similar
to Gaussian noise.

q(X1 : T |X0) :=
T∏

t=1

q(Xt|Xt−1) (1)

q(Xt : T |Xt−1) := N(Xt;
√
1− βtXt−1, βtI) (2)

Thus, to make Xt recover to X0, the diffusion model needs
to be trained to learn the denoising process. Typically, 3D-
UNet is commonly used in image synthesis for the denoise
module.

Reverse Process As mentioned before, when generating
intermediate frames, we must consider the alteration in opti-
cal flow between the source frame and the target frame while
ensuring the structural integrity of the human body during
the synthesis process. Finally, the transition frames should be
naturally and imperceptibly rendered from the source frame
to the target frame. To keep the alteration in optical flow be-
tween the source frame and the target frame, we employ the
pre-train optical flow predictor to extract the motion optical
flow features f1, fn from the source frame F1 and the target
frame Fn. We combine the latent feature f1 + fn as the input
for denoise module. Moreover, we customize a video frame
sampling method to ensure that the model can create transi-
tion animations bilaterally from one motion to the others.

The method allows the data to be randomly reversed, accel-
erated, or decelerated with some probability p of the video.
To guarantee the human-like structural integrity during the
synthesis process, we use the RTMPose [Jiang et al., 2023;
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Contributors, 2020] method to extract the human pose infor-
mation P1, Pn.

We leverage the target frame’s motion optical flow rep-
resentation fn alongside pose information as conditioning
signals to ensure human-like motion synthesis and limb in-
tegrity. The diffusion model then learns to predict a mo-
tion optical flow sequence f̂ by denoising Xt conditioned on
C = [fn, P1, Pn, t], where t denotes the noise timestamp.
This denoising process is implemented through residual con-
nections across the Unet’s downsampling, middle, and up-
sampling layers. To achieve seamless motion transitions, we
enforce temporal consistency by ensuring that the generated
sequence precisely aligns with both source and target frames
at its endpoints. Specifically, we introduce a dual-frame
constraint loss Lc that optimizes the synthesized motion se-
quence to maintain coherent connections with the source and
target frames, effectively minimizing visual discontinuities in
the transition process.

Lc(X0) =
B∑
i=0

∥F̂1 − F1∥22 + ∥F̂n − Fn∥22 (3)

where B denotes batch size, F̂1, F̂n is the first and last frames
generated by the diffusion model. However, we do not use
the consistency loss between the adjacent frames because it is
proven to cause video ghosting by experiments and increase
the complexity of training.

Hence, the training objective includes a motion flow loss
Lf =

∑B
i=0 ∥f̂ − f∥22 and a dual-frame constraint loss Lc.

The motion flow loss Lf is L1 loss between predicted and
ground-truth motion optical flow. The dual-frame constraint
loss Lc is used to eliminate the difference in frame recon-
struction usually caused by the pixel-level reconstruction loss
and further improve the realism of the generation. In sum-
mary, the overall training objective is

Lloss = Lf + λLc (4)

where λ is the weight of the dual-frame constraint loss.

3.3 Inference

As shown in Figure 2, in the inference stage, the ARAE En-
coder encodes the source and target frames into latent motion
flow features f1 and fn. Then f1 + fn is the input for the
denoising module of the 3D-Unet diffusion model. Simulta-
neously, the pre-trained RTMPose module [Jiang et al., 2023;
Contributors, 2020] is used to infer the Pose feature informa-
tion P1, Pn of F1 and Fn. Thus, C = [fn, P1, Pn, t] is used
as a condition to obtain a high-quality flow-based frame se-
quence through inference. The resulting optical flow f̂ and
the latent feature A of the source frame by ARAE encoder,
are fed into the ARAE decoder, which gradually renders the
frame images in order, ultimately synthesizing a complete
transition video. While we extend it to arbitrary motions tran-
sition prediction, we are the first to demonstrate its effective-
ness in video human motion in-betweening.

4 Experiments
4.1 Implementation Details
Datasets We perform experiments on the following full-body
human video datasets: MHAD [Chen et al., 2015] human ac-
tion dataset comprises 861 videos showcasing 27 actions ex-
ecuted by 8 individuals. This dataset encompasses various
types of human actions, including sports activities, hand ges-
tures, and everyday tasks. Each action is recorded multiple
times, typically 3–4 times. From these recordings for each
motion, one is selected as a test sample, while the remain-
ing ones are utilized as training data. Since this dataset con-
tains full-body motion and is well suited for the Human Mo-
tion In-Betweening task, our experimental analysis is mainly
based on the MHAD dataset. This dataset provides nearly 20
minutes of training data, making it suitable for exploring the
range of human body movements and modeling generaliza-
tion capabilities in small datasets.

NATOPS [Song et al., 2011] dataset contains 24 differ-
ent actions recorded by 20 individuals. These actions are
employed in the exchange of information with US Navy pi-
lots and include some common signal processing, such as the
swing of the arms, the stopping of the wings and various hand
gestures. Due to some actions not being fully recorded on the
body, only the visible data of the entire body is retained.

Following the experimental settings by [Ni et al., 2023],
we resized all the videos to 128 × 128 resolution. Since the
dataset is relatively small, we enhanced the data with random
selection, flipping, video acceleration, and slow-motion ef-
fects. Additionally, we also conduct experiments at a high
resolution of 512× 512 , successfully validating the efficacy
of the model. Due to space limitations in the paper, the large
resolution comparison results can be found in the Appendix.

Evaluation Metrics We evaluate the generated videos
through both objective and subjective metrics. For objec-
tive evaluation, we adopt the Fréchet Video Distance fol-
lowing previous works [Zhou et al., 2022; Ni et al., 2023;
Singer et al., 2022]. The FVD metric [Unterthiner et al.,
2018], analogous to Fréchet Inception Distance [Heusel et al.,
2017], quantifies the spatial-temporal similarity between real
and synthetic videos by calculating the Fréchet distance be-
tween their feature distributions. For subjective assessment,
we employ two complementary metrics. The Human Recog-
nition Rate measures the ability of volunteers to distinguish
synthetic videos from real ones, with a lower HRR indicating
better synthesis quality as the generated videos become more
indistinguishable from real ones. The Mean Opinion Score
evaluates the overall quality through a five-point scale rang-
ing from terrible to excellent, where volunteers assess mul-
tiple aspects including video quality, human body integrity,
and motion naturalness.

Experimental Setup Our model is implemented in Py-
Torch on a 40GB Nvidia RTX A100 GPU, and it takes around
2–3 days for training. Longer N frames settings require more
training time. We train using the Adam optimizer with a
learning rate of 1e−4, running for 800 epochs with a batch
size of 64.

We invite 30 volunteers to participate in subjective scor-
ing. The participants mainly include graduate students and
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Figure 3: Visualization of our results for human motion in-betweening.

employed professionals, aged between 20 and 40. We take
measures to keep the participants uninformed about the par-
ticular method variant linked to each video throughout the
rating process.

4.2 Experimental Results
Figure 3 shows an illustration of the results of our network for
human motion in-betweening frames, where N = 10 frames.
These test data have not appeared in the training set. Experi-
ments indicate that our proposed method can synthesize tran-
sition frames between source frames and target frames more
naturally. In particular, we find that when some interaction
occurs between hands and body, the model can also have a
certain generalization ability and show good performance.

Comparisons As video frame interpolation algorithms
currently serve as the primary solution for video human mo-
tion in-betweening, we benchmark our approach against sev-
eral widely adopted VFI methods: EMA [Zhang et al., 2022],
FILM [Reda et al., 2022b], and RIFE [Huang et al., 2022].
These methods have demonstrated their effectiveness in in-
dustrial applications and provide strong baselines for evalu-
ation. Nonetheless, interpolation algorithms, which aim to
convert low-frame rate videos to high-frame rate videos, suf-
fer from a drawback in achieving large-scale digital human
motion.

Results Figure 3 shows the synthesis of test data under
large-scale motion for the different VFI-based methods and
our proposed method. The green box is a reference frame
before inputting into the models, which is required to gener-
ate a transitional animation for the intermediate orange box.
Our method generates transition animations naturally while
maintaining the structural integrity of the body. In contrast,
the VFI-based methods all indicate varying levels of body de-

fects and perform poorly on tasks such as Human Motion In-
Betweening. For example, FILM [Reda et al., 2022b] and
RIFE [Huang et al., 2022] show extremely severe distortions
and disappearances in the head and upper body as the body
motion in the source and target frames transitions from stand-
ing to squatting. Although the EMA [Zhang et al., 2022] does
not exhibit very severe distortions, it is a noticeable blur in the
head. We have observed in numerous test data that the utiliza-
tion of frame interpolation algorithms leads to the absence of
body parts during the generation of transition animations.

We evaluate the VFI-based methods and our method on
MHAD [Chen et al., 2015] and NATOPS [Song et al., 2011]
testing dataset as shown in Table 1. We observe that: (1)
The transition animations generated by EMA and RIFE do
not quite deceive the human eye well, with average perfor-
mance in terms of FVD and MOS. This matches what we
have seen in the visualized data. (2) The coarse-to-fine strat-
egy used in FILM makes it excel in frame interpolation for
large-scale movements. Especially on the NATOPS dataset,
it presents better FVD values. (3) Our proposed method out-
performs EMA, FILM, and RIFE in subjective evaluations
for motion in-betweening, thus proving the generalization ca-
pability of the diffusion model based on latent optical flow
in action transition generation. This positively contributes to
advancing the practical applications of more natural and hu-
manlike 2D digital humans.

Ablation Study We study the effects of each component
in Table 2. We showcase that frame constraint loss Lc, pose
features P1 + Pn and optical flow features f1 + fn as inputs
to the denoising network are all effective to improve motion
in-betweening results.
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MHAD NATOPS
FV D (↓) HRR (↓) MOS (↑) FV D (↓) HRR (↓) MOS (↑)

ASC [Niklaus et al., 2017] 398.45 69.857% ± 6.623 3.652 ± 0.1262 175.82 74.762% ± 6.284 3.642 ± 0.1252
DepthVFI [Bao et al., 2019a] 342.67 68.571% ± 6.714 3.681 ± 0.1285 169.45 72.381% ± 6.425 3.667 ± 0.1264
Phasenet [Meyer et al., 2018] 289.34 67.142% ± 6.825 3.695 ± 0.1296 158.92 70.476% ± 6.587 3.702 ± 0.1268
ACVFI [Niklaus et al., 2017] 271.85 66.190% ± 6.856 3.704 ± 0.1301 152.34 69.047% ± 6.684 3.721 ± 0.1271
EMA [Zhang et al., 2022] 454.99 71.904% ± 6.507 3.619 ± 0.1245 189.74 75.238% ± 6.249 3.638 ± 0.1241
FILM [Reda et al., 2022b] 257.12 65.238% ± 6.894 3.709 ± 0.1307 145.78 68.095% ± 6.748 3.738 ± 0.1273
RIFE [Huang et al., 2022] 406.22 70.476% ± 6.604 3.647 ± 0.1255 177.41 76.190% ± 6.166 3.623 ± 0.1244
Ours 172.34 59.523% ± 7.106 3.819 ± 0.1144 147.68 63.809% ± 6.957 3.761 ± 0.1148

Table 1: Evaluation results of different variant model. Fréchet Video Distance (FVD) (↓), Human Recognition Rate (HRR) (↓) means the
smaller the value, the better the performance. HHR and MOS are shown with 95% confidence intervals.

4.3 Effects of Pose Distribution in Motion
In-Betweening

To explore the relationship between the pose distribution and
the generality of the model, we randomly select 10 actions
from 28 actions in the MHAD dataset for visual analysis by
t-SNE shown in Figure 4. The color of each slot box on the
right of the figure corresponds to the clustering color point.

We discover that: (1) A sequence of actions recorded at
once is considered as one sample, and it can be observed that
each action category generally presents a certain aggregated
distribution. (2) For certain similar actions, the correspond-
ing feature distribution in the latent space distance is also
relatively close. For example, the three actions at the bot-
tom of the Figure 4 mainly involve left-handed variations, so
their features are close in latent space distance. (3) Combin-
ing the observation from Figure 3, it can be noticed that the
hand movements in the transition animation are aligned with
the prior knowledge of hand movements in the feature space.
This proves that the model can successfully model transition
animations between two actions even if the transition action
does not appear in the training data, if the distribution of ac-
tions has been learned.

To further investigate the effect of actions in the training
data on the model performance, we evaluate the effect of
different numbers of action categories and varying amounts
of training data during training. Table 3 demonstrates that

Figure 4: Example action distribution visualization by t-SNE. The
colors represent movements in body parts.

MHAD FV D(↓) NATOPS FV D(↓)
Ours 172.34 147.68

- P1 + Pn 187.44 150.74
- f1 + fn 218.12 184.11
- Lc 196.42 176.47

Table 2: Ablation study. ‘-’ is shorthand for ‘without’.

Categories Proportion of Training Usage FVD (↓)
8 actions 30% 387.49
8 actions 60% 304.14
8 actions 100% 317.11

15 actions 100% 237.65
28 actions 100% 172.34

Table 3: Explore the effects of using different proportions of training
data and the categories of actions involved in training.

(1) the inclusion of a more diverse set of action categories
in training significantly improves model performance. When
the number of action categories in the training set increases
from 8 to 15, the FVD decreases significantly. (2) The utiliza-
tion of a larger dataset for training yields evident advantages
up to a certain threshold. Beyond that threshold, however, the
gain diminishes in magnitude. In our experiments, increasing
the training data from 30% to 60% results in a certain degree
of FVD improvement. Still, when the training data goes from
60% to 100%, the FVD results remain similar. We are confi-
dent that after expanding the variety of actions, the generated
transitional actions will be more human-like and natural. We
provided the visualization demo.

5 Conclusion and Future Work
We introduce a novel video synthesis framework for the video
human motion in-betweening task and investigate the rela-
tionship between the pose distribution and the generality of
the model. Our experiments demonstrate the effectiveness of
our approach, which can generate the humanlike and natural
motion in-betweening with large pose variations. In the fu-
ture, we will investigate a pre-trained large model for human
motion video generation, incorporating human data from on-
line videos to augment the training set.
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