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Abstract

Federated learning is vulnerable to model poison-
ing attacks in which malicious participants com-
promise the global model by altering the model up-
dates. Current defense strategies are divided into
three types: aggregation-based methods, validation
dataset-based methods, and update distance-based
methods. However, these techniques often neglect
the challenges posed by device heterogeneity and
asynchronous communication. Even upon identi-
fying malicious clients, the global model may al-
ready be significantly damaged, requiring effec-
tive recovery strategies to reduce the attacker’s im-
pact. Current recovery methods, which are based
on historical update records, are limited in en-
vironments with device heterogeneity and asyn-
chronous communication. To address these prob-
lems, we introduce FedHAN, a reliable federated
learning algorithm designed for asynchronous com-
munication and device heterogeneity. FedHAN
customizes sparse models, uses historical client up-
dates to impute missing parameters in sparse up-
dates, dynamically assigns adaptive weights, and
combines update deviation detection with update
prediction-based model recovery. Theoretical anal-
ysis indicates that FedHAN achieves favorable con-
vergence despite unbounded staleness and effec-
tively discriminates between benign and malicious
clients. Experiments reveal that FedHAN, com-
pared to leading methods, increases the accuracy
of the model by 7.86%, improves the detection ac-
curacy of poisoning attacks by 12%, and enhances
the recovery accuracy by 7.26%. As evidenced by
these results, FedHAN exhibits enhanced reliability
and robustness in intricate and dynamic federated
learning scenarios.

∗Corresponding author

1 Introduction
Federated learning (FL) [Konečný et al., 2017], a widely-
used framework for distributed machine learning, is a signif-
icant research focus. Most FL algorithms, such as the clas-
sic FedAvg, fall into Synchronous Federated Learning (SFL).
They require the server to wait for all selected clients’ lo-
cal training and uploads before aggregating updates, and as-
sume uniform model sizes among clients. However, in reality,
mobile devices often face limits in computational and com-
munication capacities, which makes large models challeng-
ing. This results in extended training durations and slows FL
progress. Consequently, semi-asynchronous federated learn-
ing algorithms that support model heterogeneity have become
crucial [Sun et al., 2023]. These methods assign models
based on device capabilities and use a semi-asynchronous ap-
proach where the server aggregates the earliest received up-
dates, bypassing the wait for all clients. This strategy better
accommodates various devices and improves FL efficiency.

Due to its decentralized setup [Fung et al., 2020; Bag-
dasaryan et al., 2020; Fang et al., 2020], federated learn-
ing is highly susceptible to poisoning attacks from malicious
clients. Such clients might alter local data or manipulate
model updates, leading to the degradation of the accuracy and
reliability of the global model once these updates are incorpo-
rated. Current defenses are categorized into three main types:
robust aggregation methods [Blanchard et al., 2017; Chen et
al., 2017] that exclude suspicious updates based on statistical
criteria but may also omit legitimate updates, reducing overall
model accuracy; validation dataset-based methods [Cao et al.,
2021], which depend on the challenging task of creating rep-
resentative validation datasets; and distance-based defenses
[Zhang et al., 2022; Huang et al., 2023; Fung et al., 2020;
Xia et al., 2019], using update distance measurements to de-
tect malicious activities. Nevertheless, these defenses face
further difficulties in practice due to model heterogeneity
and asynchronous communication. In heterogeneous FL, the
varying sizes and architectures of the client models lead to
uneven update distributions, complicating the detection of
malicious actions. In asynchronous FL, differing client up-
load times cause outdated updates that diverge from the latest
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global ones, disrupting synchronization and complicating the
differentiation between benign and malicious updates.

In federated learning systems, standard approaches for de-
tecting malicious clients generally depend on statistical anal-
ysis conducted after several attack rounds. Unfortunately, the
global model might already be significantly compromised by
the time these clients are recognized. Hence, immediate ac-
tion is required once a malicious client is found. One solution
involves adjusting model parameters and adding Gaussian
noise [Xie et al., 2021; Nguyen et al., 2022], which can coun-
teract backdoor attacks, but may reduce model efficiency. Al-
ternatively, “machine unlearning” [Cao et al., 2023; Liu et al.,
2021; Jiang et al., 2025] can eliminate the effects of harm-
ful updates, albeit at the cost of increased storage due to the
need to retain past model updates. Ensuring the success of
current recovery methods in real federated environments re-
mains a challenge. To overcome these issues, we introduce a
defense strategy tailored for heterogeneous devices and asyn-
chronous communications that is adept at detecting and re-
mediating potential attacks. The primary contributions are as
follows.
Pioneering Asynchronous and Heterogeneous Federated
Learning with Anomaly Resilience. To the best of our
knowledge, we are the first to propose a reliable federated
learning algorithm that supports asynchronous communica-
tion and heterogeneous models, also facilitating the detection
and recovery of anomalous clients in practical FL scenarios.
Adaptive Sparse Recovery and Anomaly Mitigation for
Robust Federated Learning. Our preliminary experiments
showed client-induced errors in asynchronous federated
learning, lowering accuracy without efficient model recov-
ery. We developed a new method: the server caches past up-
dates to fill missing parameters in sparse updates, assigning
weights based on staleness. Consistent historical updates ad-
dress Non-IID data. Detecting discrepancies between local
and global updates helps identify attackers, and the model is
reconstructed using the Cauchy mean value theorem.
Convergence Proven, Suspicion Quantified for Secure
Federated Learning. We demonstrate an upper bound of
convergence for the FedHAN algorithm and identify a sus-
picion score threshold to distinguish benign from malicious
clients. (1) Model staleness and size significantly affect con-
vergence speed; (2) FedHAN’s suspicion scores effectively
differentiate between attackers and benign clients.
Elevating Accuracy and Resilience Against Federated Ad-
versaries. We conducted extensive tests and found that
FedHAN increased model accuracy by 7.86% over recent fed-
erated learning algorithms. In three poisoning attack scenar-
ios, including backdoor attacks, its detection and recovery
outperformed leading methods by 12% and 7.16%, demon-
strating the robustness of FedHAN in complex real-world set-
tings.

2 Background and Related Work
2.1 Poisoning Attacks in SAFL
Federated learning is vulnerable to attacks that skew local
data or update models, such as backdoor [Bagdasaryan et al.,

Figure 1: Cache-based FedHAN model update mechanism architec-
ture.

2020] and trim [Fang et al., 2020] attacks, affecting the accu-
racy and reliability of the model. Detecting these threats in-
volves analyzing differences in the feature distribution. Tech-
niques include FABA [Xia et al., 2019], which flags the most
deviant updates; FoolsGold [Fung et al., 2020], which as-
sesses client similarity; and FLDetector [Zhang et al., 2022],
which applies the Cauchy mean value theorem. However,
their effectiveness wanes in real-world settings. FedHAN
bolsters FL systems by integrating caching and update impu-
tation to enhance robustness and threat detection in complex
environments.

2.2 Machine Unlearning
Detection methods often take multiple rounds, allowing the
global model to already be compromised. A key challenge is
countering malicious clients post-detection. Retraining with
only benign clients is an option, but it is costly in terms of
communication. Current recovery strategies cut communi-
cation costs by leveraging historical data. For example, Fe-
dRecovery [Cao et al., 2023] uses the Cauchy mean value
theorem to predict updates, FedEraser [Liu et al., 2021] ad-
justs updates with past data, and Crab [Jiang et al., 2025]
picks crucial historical info using KL divergence and cosine
similarity. These strategies presume detection of malicious
clients and do not integrate well with mainstream detection,
thus reducing real-world efficacy.

FedHAN addresses these challenges with a pioneering al-
gorithm that merges detection and recovery of Byzantine at-
tacks in FL, boosting system robustness and utility in real-
world federated settings.

3 Methodology
3.1 Problem Framework
We explore a federated learning framework that protects a
central server and N clients (see Figure 1). Initially, each
client submits their model width d0,i, and the server gener-
ates a tailored initial model wd0,i0,i for each client. These mod-
els are sent back to the clients, who then use stochastic up-
date descent (SGD) with their local data for updates. Upon
completing their updates, clients upload them directly to the
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(a) (b)

Figure 2: Motivation experiments. (a) Effect of historical update
integration on model training convergence. (b) Impact of robust re-
covery algorithms on adversarial robustness after attack detection.

server. The server keeps a local update cache of size N , stor-
ing the latest imputed updates from each client. An aggre-
gation round is initiated after the cache is updated K times,
leading to an update of the global model:

wj+1 = wj − ηj
N∑
i=1

pj,iḡ(wj,i, ξj,i), (1)

where ηj is the learning rate for the j-th iteration, ḡ(wj,i)
signifies the latest local update for client i at round j, and ξj,i
indicates the data sample employed by the client in this round.
The weight pj,i indicates the significance of the update of the
client i in the aggregation for round j, influenced by the Non-
IID data levels, the staleness of the update and the status of
the cache update.

3.2 Definitions
Definition 1. [Hong et al., 2022] To describe the size of the
model that each client can support, the model size for each
client is defined as the ratio of the hidden channel width in
its local model to the width of the full-scale global model,
denoted as dt,i, where dt,i ∈ (0, 1]. Specifically, when dt,i =
1, the size ofwdt,i is equivalent to the size of the global model.
Definition 2. [Wang et al., 2023] The operation � is defined
as the element-wise product, representing the multiplication
of corresponding elements in two tensors. Let w denote the
global model, wdt,i denote the customized sparse model for
client i in round t, dt,i represent the width of the client model
i in round t, and mdt,i denote the shape of the model corre-
sponding to dt,i. According to Definition 2, the sparse model
for a client can be calculated as wdt,i = w �mdt,i .

3.3 Motivation
In asynchronous FL, each training round involves only K
clients, causing a “partial client participation bias” problem.
This intensifies model drift due to data heterogeneity, as the
global model tends to overfit the data of the participating
clients, reducing its generalization capability. To tackle this,
we propose selecting some historical updates based on co-
sine similarity and incorporating them into the training pro-
cess. Preliminary experiment results (Figure 2a) show that
the red curve, which includes historical updates, exhibits re-
duced fluctuations and faster convergence compared to the

Figure 3: Update imputation, attack detection, and recovery archi-
tecture in FedHAN.

blue curve with stale updates. This suggests that the approach
can enhance model performance and training efficiency.

Traditional defenses against poisoning attacks generally
entail eliminating the identified malicious clients and pro-
ceeding with training using the remaining clients. However,
this approach does not fully negate their adverse effects. To
tackle this problem, we propose adding a recovery process
immediately after detecting a malicious attack, aiming to re-
duce its effects. Preliminary experimental results (Figure
2b) confirmed that models using both detection and recovery
methods outperform those relying only on detection strate-
gies.

3.4 Overall Design of FedHAN
The FedHAN system is composed of three main modules,
including caching and model aggregation, attack detection,
and model recovery (see Figure 3). This modular struc-
ture allows the system to handle challenges efficiently and
safely. Algorithm 1 (see Appendix A) details the FedHAN
execution through these steps. (1) Sparse Model Customiza-
tion. The server generates a client-specific mask mdt,i based
on the capacity of the client, customizes a sparse model
wdt,i = w�mdt,i , and sends it to the client. (2) Local Train-
ing and Upload. Clients train their sparse models on local
data and upload the sparse update g(w

dt,i
t,i , ξt,i) to the server.

(3) Asynchronous Reception and Update Imputation. The
server collects sparse updates from the latest K clients, pads
missing updates using past data to get ḡ(wj,i) (see Equation
(2)), forms a weight matrix based on update timing and client
masks (see Equation (3)) and updates caches. (4) Malicious
Update Detection. The server identifies malicious clients by
checking the Euclidean distance sj,i = ‖ǧ(wj,i)− ḡ(wj,i)‖2
and classifies updates with DBSCAN and k-means. Mali-
cious clients are removed if detected; otherwise, this step is
skipped. (5) Global Model Recovery. Using the Cauchy me-
dian theorem, the server restores a global model, excluding
malicious effects with the help of benign clients and histori-
cal data. (6) Sparse Model Imputation and Aggregate. Using
the latest imputed local update to impute a spare model up-
date, followed by aggregation to form ḡ(wj). (7) Historical
Updates Select and Aggregate. The server selects some un-
received updates from the cache based on cosine similarity,
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followed by aggregation to form g̃(wj). (8) Global Model
Update. Finally, the server computes and applies the global
update using Equation (7).

3.5 Implementation Details of FedHAN
Sparse Model Imputation and Aggregate. To mitigate the
impact of Non-IId data and accelerate model convergence, we
impute the sparse model updates uploaded by clients. We de-
fine the update rule for the latest update ḡ(wj,i) of the client i.
If the update of the current client i, g(w

dt,i
t,i , ξt,i), reaches the

server, i.e., i ∈ Cj , it will be incorporated into the latest im-
puted local updates, specifically g(w

dt,i
t,i , ξt,i) ∪ ḡ(wj−1,i) �

m̃dt,i ; otherwise, the latest imputed update will be the im-
puted update from the most recent round.

ḡ(wj,i) =

{
g(w

dt,i
t,i , ξt,i) ∪ (ḡ(wj−1,i)� m̃dt,i) if i ∈ Cj ,

ḡ(wj−1,i) if i ∈ C−j ,
(2)

where g(w
dt,i
t,i , ξt,i) represents the local sparse update gen-

erated by client i using the global model from round t,
and ḡ(wj−1,i) denotes the imputed update from the previous
round.

The weight matrix Mj,i represents the weights of different
parts of ḡ(wj,i). When the latest imputed update is updated,
the newly imputed part is assigned a weight of βτj,i based on
its staleness, while the other parts decay exponentially with
a factor of β. If no update occurs, the weight matrix Mj,i

decays exponentially with the factor β.

Mj,i =

{
βτj,imdt,i ∪ (βMj−1,i � m̃dt,i) if i ∈ Cj ,
βMj−1,i if i ∈ C−j ,

(3)

where βτj,imdt,i represents the weight of g(w
dt,i
t,i , ξt,i), while

βMj−1,i � m̃dt,i denotes the weight of the remaining parts.
We assign a Mj,i weight to the sparse model update

g(w
dt,i
t,i , ξt,i) uploaded by the client, since it participates di-

rectly in the model update, while the remaining unupdated
part is assigned a separate αMj,i weight. The calculation is
as follows.

p′j,i = Mj,i(m
dt,i ∪ αm̃dt,i), (4)

where p′j,i represents the final weight of the imputed update.
Finally, we perform a weighted aggregation of ḡ(wj,i) to

form ḡ(wj).

ḡ(wj) =
K∑
i=1

pj,iḡ(wj,i), (5)

where pj,i = p′j,i/
∑K
i=1 p

′
j,i.

Historical Updates Select and Aggregate. To reduce the
impact of Non-IID data on model training, more local updates
are needed for aggregation. Updates from non-participating
clients with lower staleness and consistent update directions
can be selected to accelerate training.

The server first calculates the estimated unbiased update
ḡ(wj) aggregated from the local updates of the first K clients
and computes the cosine similarity simj,i between it and the

updates ḡ(wj,i) from the remaining clients in the cache. If
simj,i ≥ simmin, the update is included in the aggregation,
where simmin is a predefined threshold. Updates with sim-
ilarity lower than simmin are discarded as inconsistent. The
formula is as follows.

simj,i = cos(ḡ(wj,i), ḡ(wj)), (6)

where ḡ(wj) represents the estimated unbiased update, and
ḡ(wj,i) represents the historical update of the remaining
clients.

Subsequently, to further reduce the impact of Non-IID data
on model training, we incorporate the global update g̃(wj),
aggregated from the selected client updates, into the global
update ḡ(wj) derived from the K most recent updates, scaled
by a factor α. The formula is as follows.

g(wj) = ḡ(wj) + αg̃(wj), (7)

where α > 0 is a constant, while ḡ(wj) represents the ag-
gregated result of the K most recent updates received by the
server during the j-th iteration, and g̃(wj) denotes the global
update from the selected client updates.

Malicious Client Detection. To detect malicious clients,
the server maintains a latest imputed global update for each
client. The suspicious score for each client is evaluated as
sj,i = ‖ǧ(wj,i) − ḡ(wj,i)‖2, and these scores are collected
into the set Sj . After collecting the scores, we apply the
density-based clustering algorithm DBSCAN. If Sj can be
divided into multiple clusters or contains noise points accord-
ing to the DBSCAN algorithm, we further apply the k-means
algorithm to partition the suspicious scores Sj into two clus-
ters. Finally, clients belonging to the cluster with the highest
average suspicious score are identified as malicious clients
and removed from the current round.

We determine the global model g(wj−τj,i) in round t =
j − τj,i based on the staleness τj,i of the sparse update up-
loaded by the client i. The latest imputed global update
ǧ(wj,i) is updated synchronously with the latest imputed
sparse update ḡ(wj,i). Once the latest imputed sparse update
ḡ(wj,i) is updated, the latest imputed global update ǧ(wj,i) is
updated according to the following rule as follows.

ǧ(wj,i)

=

{
g(wj−τj,i)�mdt,i ∪ ǧ(wj−1,i)� m̃dt,i , if i ∈ Cj ,
ǧ(wj−1,i), else,

(8)

where t = j−τj,i, and g(wj−τj,i) represents the global model
from round t, and ǧ(wj,i) denotes the latest imputed global
update for client i in round j.

Heterogeneous Model Recovery. In the T -th round of de-
tection, the algorithm identified and removed all malicious
clients, then rolled back m rounds to select a clean model
wT−m as the starting point for a new training cycle, ensur-
ing that subsequent training occurs in a reliable environment.
To maintain training continuity and efficiency, the recovery
algorithm combined two strategies: precise updates with be-
nign clients following the FedHAN protocol and estimated
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Figure 4: Model recovery process details.

updates using historical data from rounds T −m to T , reduc-
ing the reliance on real-time participation. To prevent error
accumulation, clients performed precise calculations during
the early recovery phase and at fixed intervals, promptly cor-
recting errors and enhancing recovery quality (see Figure 4).
This innovative design balanced estimated updates and pre-
cise computations, minimizing error risks and ensuring stable
and reliable global model recovery.

We utilize the L-BFGS algorithm [Liu and Nocedal, 1989]
to approximate the Hessian matrix in the heterogeneous
model recovery. Specifically, each iteration draws on changes
in the global model and updates from previous iterations for
this purpose. The global model deviation in iteration t is
∆wt = ŵt − wt, indicating the difference between the re-
covered and original global models. For the i-th client, the
model update deviation is ∆git = ḡ(ŵt,i, ξt,i)− ḡ(wt,i, ξt,i),
showing the variance from the exact update. The algo-
rithm keeps a buffer of global model deviations, ∆Wt =
[∆wb1 ,∆wb2 , . . . ,∆wbs ], and a buffer of client update devi-
ations, ∆Git = [∆gib1 ,∆g

i
b2
, . . . ,∆gibs ], where s is the buffer

size. Based on the integral version of the Cauchy mean value
theorem, we can calculate the estimated model updates gij as
follows.

ĝ(ŵj,i, ξj,i) = ḡ(wj,i, ξj,i) + Ĥj,i(ŵj − wj), (9)

where Ĥj,i(ŵj−wj) is calculated by the L-BFGS algorithm,
and ḡ(wj,i, ξj,i) represents the imputed client update during
the training process.

4 Theoretical Analysis
4.1 Complexity Analysis
To mitigate the error caused by partial client participation,
the server needs to store the latest updates, weights, masks,
and global updates for all clients. The storage cost for this
part is O(4Np), where p represents the number of parame-
ters in the global model. Furthermore, the recovery algorithm
requires historical updates from the most recent m rounds to
accelerate the recovery process, which incurs a storage cost of
O(mKp), where K denotes the number of clients participat-
ing in asynchronous aggregation per round. Thus, the overall
space complexity of FedHAN is O(mKp+ 4Np).During the
recovery phase, FedHAN selects historical updates based on
cosine similarity. Assuming that the number of clients that
satisfy τj,i ≤ τmax is s, the time complexity of this operation

is O(spT ). In addition, some communication costs are intro-
duced for the clients. These communication costs mainly de-
pend on the number of rounds in which clients are required to
compute model updates. The additional communication cost
per client can be expressed asO(Tw+m−Tw

Tc
), where Tw rep-

resents the number of rounds that require precise updates in
the early stage of the recovery process, m−TwTc

represents the
number of rounds that require periodic precise updates during
recovery. Thus, the additional communication cost per client
is O(Tw + m−Tw

Tc
).

4.2 Convergence Analysis
Theorem 1. Assume Assumptions 1, 2, 3, 4 hold. Learning
rate satisfies that η ≤ 1

Lsj
and subjects toMj ≥ 0, where

Mj = (
ηjsj

2
−

∑J

l=j
ηl

∑l−1

t=j
η
2
t

∑t

k=1
α
t−j

Il,k,t).

Then, we can obtain the following convergence result
1

J

∑J

j=1
Mj ||∇F (wj)||22 ≤

1

J

∑J

j=1
(
3ηjsj

2
C+

ηjσ
2
c

∑j

l=1

j−1∑
t=l

η
2
t stIl,k,t) +

F (w1)− F (w∗)

J
,

where C = G2 + σ2
e

∑K
i=1 E[pl,i] and Il,k,t =

3L2B2stα
l−k(l − τk).

4.3 Theoretical Analysis on Suspicious Scores
Theorem 2. Suppose that the update of each client’s loss
function is L-smooth, FedHAN is used as the aggregation
rule, the learning rate α satisfies α < 1

(N+2)L (N is the win-
dow size). Suppose that malicious clients perform an untar-
geted model poisoning attack in each iteration by reversing
the true model updates as the poisoning ones, that is, each
malicious client i sends −g(wj,i) to the server in each iter-
ation t. Then we find that the expected suspicious score of a
benign client is smaller than that of a malicious client in each
iteration t. Formally, we have the following inequality.

E(sti) < E(sta), ∀i, (10)
where the expectation E is taken with respect to the random-
ness in the clients’ local training data, B is the set of benign
clients, and M is the set of malicious clients.

The theoretical proofs of Theorem 1 and Theorem 2 are
provided in Appendix B.

5 Experiments and Discussion
5.1 Experimental Setup
FedHAN is evaluated using MNIST, FMNIST, and CIFAR-10
datasets with trim attack, backdoor attack and label-flipping
(LF) attack. We compare asynchronous federated learning
methods like TWAFL, SASGD, Byzantine defense methods
such as FoolsGold, FLDetector, and recovery strategies like
Retrain, FedEraser, Crab. Experiments involve 2000 commu-
nication rounds with local training epochs and a batch size of
4, using SGD at a 0.005 learning rate. The model has two
convolutional and two fully connected layers. Data hetero-
geneity is simulated with Dirichlet distribution values of 0.3
and 0.8; model heterogeneity uses 0.2 and 0.5 mask levels.
The momentum is 0.2, decay rate is 0.9. Further details are in
Appendix C.
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(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 5: The performance comparison of three different algorithms under N/K = 1000/20 on the MNIST, Fashion-MNIST and CIFAR-10
dataset.

(a) Trim attack (b) Backdoor attack (c) LF attack

Figure 6: The test accuracy (presented in the bar chart) and ASR (presented in the line chart) on MNIST dataset after recovering from trim
attack, backdoor attack and LF attack respectively when the attack intensity is at 40%.

5.2 Comparison of FedHAR with Other Models

Results and Analysis. Figure 5 shows FedHAN outper-
forming TWAFL and GASGD on MNIST, Fashion-MNIST,
and CIFAR-10 datasets, with quicker accuracy gains and
smoother training curves, highlighting its stability. FedHAN
remains robust against staleness (N/K = 1000/20), thanks
to its client selection mechanism minimizing errors from non-
participating clients. While TWAFL balances update infor-
mation well, Table 1 corroborates FedHAN’s superiority in
accuracy, speed, and robustness, effectively tackling hetero-
geneity and Non-IID issues. Its design enhances model gen-
eralization and accuracy across data distributions, proving its
value for real-world federated learning.

5.3 Ablation Study of the Detection Algorithm

Detection Results. Table 2 shows that FedHAN excels over
other defenses in the MNIST, Fashion-MNIST and CIFAR-10
datasets. It achieves 100% effectiveness against Trim attacks,
has impressive detection rates of 91% for backdoor attacks,
and 90% for label flipping attacks on MNIST, with low false
negatives (15%, 12%) and false positives (5%, 7%). Although
slightly less effective in CIFAR-10, FedHAN still proves to
be a solid defense.

Dataset Mask
level

Dirichlet
distribution

N/K=1000/20

FedHAN TWAFL SASGD

MNIST
0.5 0.8 98.91 95.37 90.14

0.3 97.13 93.47 90.25

0.2 0.8 97.77 94.87 89.54
0.3 95.19 91.05 84.25

Fashion
MNIST

0.5 0.8 82.93 78.45 65.75
0.3 80.41 73.31 52.05

0.2 0.8 77.44 74.67 63.74
0.3 74.62 70.37 58.63

CIFAR-10
0.5 0.8 47.31 41.42 31.51

0.3 45.16 37.89 25.05

0.2 0.8 45.87 37.98 27.76
0.3 43.94 34.49 21.94

Table 1: Prediction accuracy of FedHAN at the level of staleness
(N/K = 1000/20), model heterogeneity, and Non-IID degree.

5.4 Ablation Study of the Recovery Algorithm

Test Data Accuracy. Figure 6 demonstrates that in analyz-
ing the MNIST dataset at the 60th recovery round, increasing

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 7: The MISR (presented in the bar chart) and ASR (presented in the line chart) on MNIST, Fashion-MNIST and CIFAR-10 after
recovering from backdoor attack.

Dataset Detector Trim attack Backdoor attack LF attack

DACC FPR FNR DACC FPR FNR DACC FPR FNR

MNIST
FoolsGold 0.92 0.09 0.03 0.83 0.31 0.44 0.79 0.43 0.36
FLDetector 0.96 0.04 0.02 0.84 0.15 0.11 0.81 0.32 0.11
FedHAN 1.00 0.00 0.00 0.91 0.15 0.05 0.90 0.12 0.07

Fashion-
MNIST

FoolsGold 0.91 0.08 0.04 0.77 0.67 0.15 0.72 0.64 0.22
FLDetector 0.95 0.05 0.02 0.80 0.41 0.10 0.81 0.30 0.11
FedHAN 1.00 0.00 0.00 0.90 0.14 0.05 0.87 0.21 0.13

CIFAR-10
FoolsGold 0.93 0.09 0.02 0.63 0.83 0.32 0.65 0.81 0.33
FLDetector 0.95 0.05 0.02 0.75 0.78 0.17 0.75 0.71 0.15
FedHAN 1.00 0.00 0.00 0.87 0.12 0.08 0.82 0.31 0.14

Table 2: Detection accuracy, FPR, FNR comparisons of FedHAN versus baseline approaches against trim attack, backdoor attack and label
flipping attack.

malicious client percentages caused a significant drop in test
accuracy (e.g., 12.8% with 40% malicious clients in backdoor
attacks). However, the FedHAN algorithm consistently out-
performed other recovery methods, demonstrating its strength
in tackling attacks and enhancing model resilience.

Attack Success Rate (ASR). Figure 7 illustrates that the
Attack Success Rate of the Recovery Algorithm (ASR)
dropped to approximately 12.7%, indicating a strong de-
fense against backdoor threats. Also, Membership Inference
Attacks (MIA) confirmed its prowess in mitigating privacy
threats, with the Membership Inference Success Rate (MISR)
reduced to 28.62% on MNIST dataset, underscoring the sys-
teMs capability in preserving data privacy and model security.

5.5 Discussion
FedHAN effectively addresses outdated updates and Non-IID
data in global models through update imputation, adaptive
weighting, and consistent historical update selection. It uses
past data to supplement updates and adjusts the influence of
each update based on its staleness, allowing for meaningful
contributions to the global model.

By aggregating updates using cosine similarity, it ensures
diverse client input, boosting model accuracy by 9.56% (see
Table 1). In federated settings with model heterogeneity and
asynchronous communication, FedHAN efficiently detects

malicious clients by imputing updates and analyzing devia-
tions between local and global updates, using clustering al-
gorithms like DBSCAN and k-means. It enhances detection
accuracy by 12% compared to traditional methods (see Table
2). With historical update imputation, FedHAN reconstructs
a robust global model post-malicious client detection, outper-
forming other methods by 7.26% without significant accuracy
loss (see Figure 6).

6 Conclusion
Under realistic circumstances, federated learning faces signif-
icant obstacles, such as Non-IID data, asynchronicity, model
heterogeneity, and poisoning attacks. We propose FedHAN,
a cache-based semi-asynchronous algorithm designed to en-
hance robustness. FedHAN employs sparse model filling,
adaptive weight distribution, and selective historical updates
to handle stale updates and Non-IID data effectively. This
method keeps a padded global update while incorporating
client-sparse updates, aiding in the accurate identification of
malicious attacks. By applying the Cauchy mean value the-
orem, FedHAN neutralizes the effects of such attacks, en-
suring model reliability. We demonstrate FedHAN’s conver-
gence and its proficiency in detecting attacks, with experi-
ments across three datasets confirming its superior accuracy
and robustness, underscoring its practical utility.
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A Algorithm

Algorithm 1 FedHAN

Require: learning rate η0, number of updates received by
server K, weighted parameter β, momentum α

Ensure: Optimal solution w∗
Server side:

1: Initialize model parameter w0 and iteration j = 1
2: Clients send model width dt,i to server.
3: Server customizes wdt,ij = wj �mdt,i to all clients.
4: while the stopping criteria is not satisfied do
5: stage = 1
6: ḡ(wj)← SMIAA(·)
7: g̃(wj)← HUSAA(·)
8: g(wj) = ḡ(wj,i) + αg̃(wj,i)
9: Call Detect(·) to detect malicious clients.

10: if Detected malicious clients then
11: stage = 2
12: w̃j= Recover(·)
13: wj ← w̃j
14: continue
15: end if
16: wj+1 ← wj − njg(wj)
17: j ← j + 1
18: end while

Client side:
1: Receive model wdt,it from server at round t.
2: Perform update descent to get g(w

dt,i
t,i , ξt,i) based on

samples ξt,i.
3: Upload g(w

dt,i
t,i , ξt,i) and model widthdi.

B Proofs of Theorem 1 and Theorem 2
B.1 Assumption
Assumption 1. Lipschitz Continuity. Objective function F(·)
satisfies L-Lipschitz continuity,∀w1, w2, ∃constant L

‖F (w1)− F (w2)‖ ≤ ∇F (w)
T ·

L

2
‖w1 − w2‖22. (11)

Assumption 2. (Client-Level Unbiased Update).The update
g(wj , ξj,i) of client i is a client-level unbiased update which
means that the expectation of update g(wj , ξj,i) is equal to
∇Fi(wj) as follows.

E[g(wj , ξj,i)] = ∇Fi(wj). (12)

Assumption 3. (Updates With Bounded Variance).The up-
date g(wj , ξj,i) of client i has client-level bounded variance:
∃ constants σc,Mc,

E
[
‖g(wj , ξj,i)−∇Fi(wj)‖22

]
≤
σ2
c

m
+
Mc

m
‖∇Fi(wj)‖22, (13)

where ∇Fi(wj) is the unbiased update of client i. To guar-
antee the convergence of the model, we also need to assume
∇Fi(wj) satisfies global-level bounded variance: ∃ constant
G,

‖∇F (wj)−∇Fi(wj)‖22 ≤ G
2
. (14)

We have explained the rationale behind using historical up-
date imputation and clip techniques to enhance prediction ac-
curacy and stabilize the training process in previous sections.
In this section, we further analyze the convergence rate of the
proposed algorithm in which the loss function is non-convex,
considering both staleness and heterogeneity. We begin with
a proof sketch for the proposed FedHAN algorithm. Firstly,
we connect the local update ḡ(wl,i, ξl,i) with update g(wl) by
clipping ḡ(wl,i, ξl,i), we have

‖ḡ(wj , ξj,i)‖22 ≤ B
2‖g(wj)‖22. (15)

Secondly, after alleviating the effect of Non-IID data and
staleness, for the reason that the estimated update ḡ(wl) is
close to the unbiased updates, we can assume

‖ḡ(wl)−∇F (wl)‖22 ≤ σ
2
c , ∃σ

2
c , (16)

which bridges the connection between ḡ(wl) and ∇F (wl).

B.2 Proof of Theorem 1
Proof of Theorem 1. Based on Assumption 1 and update
rule wj+1 = wj − ηj

∑j
l=1 α

j−l∑K
i=1 pl,iḡ(wl,i, ξl,i), we

have

F (wj+1)− F (wj)

≤ ∇F (wj)(wj+1 − wj) +
L

2
‖wj+1 − wj‖22

= −
ηj

2

j∑
l=1

α
j−l

K∑
i=1

pl,i(||∇F (wj)||22

+ ||ḡ(wl,i, ξl,i)||22 − ||∇F (wj)− ḡ(wl,i, ξl,i)||22)

+
L

2
η
2
j ||

j∑
l=1

α
j−l

K∑
i=1

pl,iḡ(wl,i, ξl,i)||22.

Define sj =
∑j
l=1 α

j−l = 1−αj
1−α and take expectation on

both sides of the above equation:

E[F (wj+1)]− F (wj)

≤ −
ηj

2

j∑
l=1

α
j−lE[

K∑
i=1

pl,i(||∇F (wj)||22 + ||ḡ(wl,i, ξl,i)||22

− ‖∇F (wj)− ḡ(wl,i, ξl,i)‖22)]

+
L

2
η
2
j sj

j∑
l=1

α
j−lE[||

K∑
i=1

pl,iḡ(wl,i, ξl,i)||22] (17)

≤ −
ηj

2

j∑
l=1

α
j−lE[

K∑
i=1

pl,i(‖∇F (wj)‖22 + ||ḡ(wl,i, ξl,i)||22

− ||∇F (wj)− ḡ(wl,i, ξl,i)||22)]

+
L

2
η
2
j sj

j∑
l=1

α
j−lE[

K∑
i=1

pl,i||ḡ(wl,i, ξl,i)||22] (18)

≤ −
ηjsj

2
||∇F (wj)||22 +

ηj

2

j∑
l=1

α
j−l

E[
K∑
i=1

pl,i||∇F (wj)− ḡ(wl,i, ξl,i)||22]

︸ ︷︷ ︸
A

. (19)

Equations (17) and (18) are derived on the basis of Jensen’s
inequality. Equation (19) is derived because the learning rate
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satisfies ηj ≤ 1
Lsj

. With respect to term A,

A = E[

K∑
i=1

pl,i‖∇F (wj)−∇Fi(wj) +∇Fi(wj)

−∇Fi(wτ(l)) +∇Fi(wτ(l))− ḡ(wl,i, ξl,i)‖22]

≤ 3G
2

+ 3L
2 E[

K∑
i=1

pl,i‖wj − wl−τl,i‖
2
2]

︸ ︷︷ ︸
B

+3σ
2
e

K∑
i=1

E[pl,i], (20)

Equation (20) is derived based on Assumptions 3.1 and 3.3.
Define τl = max(1, l − τmax). With respect to term B,

B ≤ E[
K∑
i=1

pl,i‖wj − wl−τl,i‖
2
2]

≤ E[

K∑
i=1

pl,i(j − τl)
j−1∑
t=τl

η
2
t ‖

t∑
k=1

α
t−k

K∑
q=1

pk,q ḡ(wk,q, ξk,q)‖22]

≤ (j − τl)E[

j−1∑
t=τl

η
2
t st

t∑
k=1

α
t−k

K∑
i=1

pk,i‖ḡ(wk,i, ξk,i)‖22]

≤ 2(j − τl)E[

j−1∑
t=τl

η
2
t st

t∑
k=1

α
t−k

B
2‖∇F (wk)‖22

+ 2σ
2
cB

2
j−1∑
t=l

(j − τl)η2t s
2
t . (21)

By replacing Equations (20), (21) into Equation (19), we
have

E[F (wj+1)]− F (wj)

≤ −
ηjsj

2
||∇F (wj)||22 +

3

2
ηjsjG

2
+

3

2
ηjsjσ

2
e

K∑
i=1

E[pl,i];

+ 3ηjL
2
B

2
j∑
l=1

j−1∑
t=l

t∑
k=1

α
j−k

(j − τk)η
2
l stα

t−l‖∇F (wl)‖22

+ 3ηjL
2
σ
2
cB

2
j∑
l=1

α
j−l

j−1∑
t=l

(j − τl)η2t s
2
t .

Taking summation with respect to j on both sides, we obtain

F (w
∗
)− F (w1)

≤ −
J∑
j=1

ηjsj

2
||∇F (wj)||22 +

3

2

J∑
j=1

ηjsj(G
2

+ σ
2
e

K∑
i=1

E[pl,i])

+
J∑
j=1

3L
2
B

2
J∑
l=j

ηl

l−1∑
t=j

η
2
t st

t∑
k=1

(l− τl)αl+t−j−k‖∇F (wj)‖22

+
J∑
j=1

3ηjL
2
σ
2
cB

2
j∑
l=1

α
j−l

j−1∑
t=l

(j − τl)η2t s
2
t . (22)

Equation (22) amounts to:

1

J

J∑
j=1

(
ηjsj

2
− 3L

2
B

2
J∑
l=j

ηl

l−1∑
t=j

η
2
t st

t∑
k=1

(l− τk)α
l+t−j−k

)||∇F (wj)||22

≤
1

J

J∑
j=1

(
3ηjsj

2
(G

2
+ σ

2
e

K∑
i=1

E[pl,i]) + 3ηjL
2
σ
2
cB

2

j∑
l=1

α
j−l

j−1∑
t=l

(j − τl)η2t s
2
t ) +

F (w1)− F (w∗)

J
.

B.3 Proof of Theorem 2
According to Lipschitz continues and Lemma 1 in FLDetec-
tor [Zhang et al., 2022], we have

Edt,i − Eda
=E‖ĝ(wt,i, ζt,i)) + Ĥ

t
(wt − wt−1)− ĝ(wt−1,i, ζt−1,i))‖

− E‖ĝ(wt,a, ζt,a)) + Ĥ
t
(wt − wt−1)− ĝ(wt−1,a, ζt−1,a))‖

≥2E‖∇f(wt,Di)‖ − 2(N + 2)Lη‖∇f(wt−1,Di)‖
=(2− 2(N + 2)Lα)E‖∇f(Dj , wt−1)‖ ≥ 0

C Experiments
Sparse Model Settings. The sparse model settings are cus-
tomized for each client based on the width of their model
di, which follows a normal distribution with mean m and
standard deviation 0.05. Four mask levels (mask1, mask2,
mask3, mask4) represent sparse models with 20%, 50%,
75% and 100% of global model parameters. Specifically,
di ≤ 0.25 corresponds to mask1, di ∈ (0.25, 0.5] to mask2,
di ∈ (0.5, 0.75] to mask3, and di ≥ 0.75 to mask4.

Attack Settings. Following prior work, we select 100
clients for training, with 28% randomly designated as ma-
licious by default. The attack scenarios include label flipping
(LF) attacks, backdoor attacks, and trim attacks.

Compared Methods. We compare asynchronous feder-
ated learning methods (TWAFL, SASGD), defense methods
against Byzantine attacks (FoolsGold, FLDetector), and re-
covery methods (Retrain, FedEraser, Crab).

Datasets. Experiments are conducted on image classifica-
tion tasks using MNIST, Fashion-MNIST, and CIFAR-10.

Experimental Equipment. All clients and the server are
simulated on a workstation with a 2.4GHz Intel Core i9-
12900 processor, NVIDIA RTX A5000 GPU, and 64GB
memory.

Evaluation Metrics. Detection Accuracy (DACC), Recall
Rate (RR), and Detection Precision Rate (DPR) measure the
correctness, completeness, and precision of malicious client
identification. Test Accuracy (TACC) evaluates model perfor-
mance, Attack Success Rate (ASR) measures backdoor effec-
tiveness, and Time Consumption tracks recovery duration.

FL Setting. The mask level is set to 0.2 and 0.5 to represent
different distributions of the sparse client model. The Dirich-
let distribution parameter is 0.8 for Non-IID data, and the
staleness level is configured as N/K = 1000/20 for asyn-
chronous scenarios.

Detector Setting. With staleness N/K = 50/10 and mask
level m = 0.5, the experiment involves 50 clients (10 ma-
licious). Attacks include trim and backdoor, with detection
starting at the 50th training round and ensuring at least one
attacker per round.

Recover Setups. The stagnation is set to N/K = 50/20
and the mask level is set to m = 0.7. The experiment uses
50 clients with 5, 10, or 20 malicious clients launching trim
or backdoor attacks. Detection occurs in the 50th round and
recovery is compared in the 60th round.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work is supported by National Natural Science Foun-
dation of China under grants 62171132, 62471139, and
U1905211, and Natural Science Foundation of Fujian
Province under grant 2024J09032.

References
[Bagdasaryan et al., 2020] Eugene Bagdasaryan, Andreas

Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov.
How to backdoor federated learning. In Proceedings of the
23rd International Conference on Artificial Intelligence
and Statistics, pages 2938–2948, 2020.

[Blanchard et al., 2017] Peva Blanchard, El Mahdi
El Mhamdi, Rachid Guerraoui, and Julien Stainer.
Machine learning with adversaries: byzantine tolerant
gradient descent. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
page 118–128, 2017.

[Cao et al., 2021] Xiaoyu Cao, Minghong Fang, Jia Liu, and
Neil Zhenqiang Gong. Fltrust: Byzantine-robust federated
learning via trust bootstrapping. In Proceedings of NDSS,
2021.

[Cao et al., 2023] Xiaoyu Cao, Jinyuan Jia, Zaixi Zhang, and
Neil Zhenqiang Gong. Fedrecover: Recovering from poi-
soning attacks in federated learning using historical infor-
mation. In 2023 IEEE Symposium on Security and Privacy
(SP), pages 1366–1383, 2023.

[Chen et al., 2017] Yudong Chen, Lili Su, and Jiaming Xu.
Distributed statistical machine learning in adversarial set-
tings: Byzantine gradient descent. In Proceedings of the
ACM on Measurement and Analysis of Computing Sys-
tems, volume 1, pages 1–25, 2017.

[Fang et al., 2020] Minghong Fang, Xiaoyu Cao, Jinyuan
Jia, and Neil Zhenqiang Gong. Local model poisoning at-
tacks to byzantine-robust federated learning. In Proceed-
ings of the 29th USENIX Conference on Security Sympo-
sium, pages 1605–1622, 2020.

[Fung et al., 2020] Clement Fung, Chris J. M. Yoon, and
Ivan Beschastnikh. The limitations of federated learning in
sybil settings. In the 23rd International Symposium on Re-
search in Attacks, Intrusions and Defenses (RAID 2020),
pages 301–316, 2020.

[Hong et al., 2022] Junyuan Hong, Haotao Wang,
Zhangyang Wang, and Jiayu Zhou. Efficient split-
mix federated learning for on-demand and in-situ
customization. In the 20th International Conference on
Learning Representations, 2022.

[Huang et al., 2023] Siquan Huang, Yijiang Li, Chong Chen,
Leyu Shi, and Ying Gao. Multi-metrics adaptively identi-
fies backdoors in federated learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 4652–4662, 2023.

[Jiang et al., 2025] Yu Jiang, Jiyuan Shen, Ziyao Liu,
Chee Wei Tan, and Kwok-Yan Lam. Towards efficient
and certified recovery from poisoning attacks in federated

learning. IEEE Transactions on Information Forensics and
Security, 20:2632–2647, 2025.
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