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Abstract
Generative models have achieved remarkable per-
formance recently, and thus model hubs have
emerged. Existing model hubs typically assume ba-
sic text matching is sufficient to search for models.
However, in reality, due to different abstractions
and the large number of models in model hubs, it is
not easy for users to review model descriptions and
example images, choosing which model best meets
their needs. Therefore, it is necessary to describe
model functionality wisely so that future users can
efficiently search for the most suitable model for
their needs. Efforts to address this issue remain
limited. In this paper, we propose Conditional
Generative Model Identification (CGI), which aims
to provide an effective way to identify the most
suitable model using user-provided example im-
ages rather than requiring users to manually review
a large number of models with example images.
To address this problem, we propose the Prompt-
Based Model Identification (PMI) , which can ade-
quately describe model functionality and precisely
match requirements with specifications. To eval-
uate PMI approach and promote related research,
we provide a benchmark comprising 65 models and
9100 identification tasks. Extensive experimental
and human evaluation results demonstrate that PMI
is effective. For instance, 92% of models are cor-
rectly identified with significantly better FID scores
when four example images are provided.

1 Introduction
Deep generative models [Jebara, 2012], such as variational
autoencoders (VAE) [Kingma and Welling, 2014; Kingma
and Welling, 2019; Parmar et al., 2021], generative adversar-
ial networks (GAN) [Goodfellow et al., 2014; Sohn et al.,
2015; Creswell et al., 2018], flow-based models [Rezende
and Mohamed, 2015], and diffusion models [Sohl-Dickstein
et al., 2015; Dhariwal and Nichol, 2021; Rombach et al.,
2022], have shown significant success in image generation.
Generative model hubs like Hugging Face and CivitAI have

∗Corresponding author.

been established to facilitate the sharing and downloading of
models by developers and users, respectively. However, with
the rapid growth of available models, finding the most suit-
able model for specific tasks has become a critical challenge.

Existing generative model hubs provide basic methods
such as model tag filtering, text matching, and download vol-
ume ranking [Shen et al., 2023] to help users search for mod-
els. However, the complex functionalities of generative mod-
els cannot be adequately described using only textual and sta-
tistical information [Lu et al., 2023; Luo et al., 2024]. Al-
though model hubs like CivitAI and OpenArt offer example
images for each model to assist users in finding their desired
models, this solution has two main limitations. First, example
images cannot fully represent model functionality, especially
when user purposes and offered examples mismatch. Sec-
ond, users still need to manually review example images re-
peatedly, which is time-consuming and heavily relies on their
expertise. Therefore, model selection remains challenging for
users, as they must iteratively review, download, and test mul-
tiple models before finding a suitable one.

Conditional Generative Model Identification (CGI).
The above limitation inspires us to consider the following
question: Can we describe the functionality of conditional
generative models in a precise format that enables efficient
and accurate model identification by matching their func-
tionalities with user requirements? Following the learnware
paradigm [Zhou and Tan, 2022], we call the functionality de-
scription the model’s specification. An important characteris-
tic of this problem is the requirement to assign a specification
to the model upon uploading it to the model hub which al-
lows future users to simply compute the similarity between
the specification and their requirements to search for mod-
els. This is fundamentally different from the scenario where
a query and a large set of candidate models are provided, and
the objective is to learn the ranking. We call this novel set-
ting Conditional Generative Model Identification (CGI). To
the best of our knowledge, this problem has not been studied
yet. Figure 1 presents an illustration of the CGI problem and
different from the traditional model selection process.

Challenges of CGI. The challenges of CGI come from two
main sources: (1) How to assign specifications to adequately
describe the functionalities of different conditional genera-
tive models as well as the user requirements, and (2) How
to match the users’ requirements with the models’ specifica-
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Figure 1: Comparison between traditional model selection and CGI
problem setting. With the design of the specification and model
identification, the most suitable model can be efficiently identified
by matching the user’s requirements with the model’s specification.

tions in the same space. There are few works related to this
problem. For instance, HuggingGPT [Shen et al., 2023] and
Stylus [Luo et al., 2024] proposed to describe the model’s
functionality using natural language and search for models
using ChatGPT. However, only natural language is insuffi-
cient to describe the specialty of the model since it is not easy
to match the model’s specific functionality with the text de-
scription. [Wu et al., 2023] proposed to describe the function-
ality of discriminative models by approximating the training
data distribution. However, for conditional generative mod-
els, the functionality is not only related to the generated data
distribution but also to the prompts. There is no existing work
that can be directly applied to solve CGI problems, requiring
to study more wise descriptions for generative models.

Our Solution. To this end, we present a novel system-
atic solution, namely, Prompt-Based Model Indetification
(PMI). Specifically, we first introduce Automatic Specifica-
tion Assignment to generate specifications using a pre-defined
prompt set or developer-provided prompt set. Then, Require-
ment Generation abstracts the user requirements. Both spec-
ification and requirement are projected into a unified model
matching space for future model identification. Finally, we
propose a Task-Specific Matching mechanism to adjust spec-
ification according to the user requirements in the model
matching space to precisely identify the most suitable model.
The basic idea is that if the model produces a data distribution
that is very close to the user’s example images with the sim-
ilar prompts, then there is a high probability that the model
is useful. To evaluate the effectiveness of PMI and promote
the related research, we developed a benchmark comprising
65 conditional generative models and 9100 model identifi-
cation tasks. Extensive experiment results demonstrate that
PMI is effective. Moreover, human and GPT evaluation re-
sults confirm both the validity of our evaluation protocol and
the superior performance of PMI. Our main contributions can

be summarized as follows:
(a) We introduce a novel setting called CGI for identifying

conditional generative models that match user require-
ments. This problem setting consists of two key chal-
lenges: (1) the construction of model specifications and
user requirements and (2) the matching of user require-
ments to model specifications.

(b) We analyze the challenges inherent in the CGI problem
and propose an effective solution PMI. Our approach can
adequately describe the functionality of generative mod-
els and enables future users to efficiently find the most
suitable model with just a few example images.

(c) We develop a benchmark with 65 models and 9100
identification tasks to evaluate model identification ap-
proaches. Extensive experiments and human evaluation
results demonstrate that our proposal can achieve satis-
factory model identification performance.

2 Related Work
This study is related to the following two aspects:
Learnware and Model Selection. With the development
of model hubs, users have the option to search for and adapt
pre-trained models that satisfy their specific needs. A simi-
lar model selection approach can also be applied to enhance
generalization [Zhou et al., 2024; Zhou et al., 2025]. Learn-
ware [Zhou, 2016] offers a paradigm to identify models for
the users. Recently, Wu [Wu et al., 2023] proposed to de-
scribe the model’s functionality by approximating the training
data distribution and searching for models by comparing the
approximated distribution distance. Guo [Guo et al., 2023]
proposed to describe the model’s functionality by approxi-
mating the model’s parameters with a linear proxy model and
enabling the model search by comparing the proxy model’s
parameters. However, these methods are not applicable to
the generative model search. A few works are related to the
generative model search. For example, [Shen et al., 2023]
proposed to describe the model’s functionality via natural
language (e.g., model tags, model architectures, resources
requirement) and adopted ChatGPT as a model selector to
search useful models that meet user’s requirements from the
HuggingFace platform. Stylus [Luo et al., 2024] describes
the model functionality with vision-language models, and
identify conditional generative models with large language
models. However, only natural language can not describe
the model’s functionality adequately, more precise descrip-
tion needs to be studied. [Lu et al., 2023] proposed a content-
based search method that can be applied to unconditional gen-
erative models. Therefore, existing works are not applicable
to the CGI problem, and this paper presents the first attempt
to solve this problem.
Generative Models. In recent years, generative models
have become one of the most widely discussed topics in the
field of artificial intelligence for their promising results in
image generation, exemplified by models such as Genera-
tive Adversarial Networks [Goodfellow et al., 2014; Arjovsky
et al., 2017; Brock et al., 2019; Choi et al., 2020], Vari-
ational Autoencoders [Kingma and Welling, 2014; van den
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Oord et al., 2017; Vahdat and Kautz, 2020], Diffusion Mod-
els [Nichol and Dhariwal, 2021; Dhariwal and Nichol, 2021;
Rombach et al., 2022], etc. With the development of the gen-
erative model, various generative model hubs, e.g., Hugging-
Face and Civitai, have been developed to enable model de-
velopers to share models. These numerous generative models
show different specialties and functionality. Our goal is not
to introduce a new model. Instead, we want to study a new
mechanism that can well organize the developed models and
enable future users to efficiently find the most suitable one.

3 Preliminary
In this section, we first introduce the problem setup of CGI
problem. Then, we present the problem analysis to show the
core challenge of CGI problem.

3.1 Problem Setup
Assume the model hub has M conditional generative mod-
els {fm}Mm=1. Each model is associated with a correspond-
ing specification Sm to describe its functionalities for future
model identification. There are two stages in the CGI setting:
the submitting stage for model developers and the identifica-
tion stage for future users.

Submitting Stage. The model developer submits a model
fm to the model hub, and then we assign a specification Sm

to the model. Formally, the specification Sm is generated by
a specification assignment algorithm As using the model fm,
i.e., Sm = As (fm). It is important to note that uploaded
models are anonymous with no mandatory constraints, which
means we cannot access their training data and developers are
not guaranteed to provide required model information.

Identification Stage. For any user task τ , models are iden-
tified from the model hub using one or a few example images
Xτ = {xτ

i }
Nτ
i=1. When users upload example images to de-

scribe their needs, the model hub generates the requirement
represented in the specification space Rτ = Ar(Xτ ) using
a requirement generation algorithm Ar. Then, we match the
requirement Rτ with model specifications {Sm}Mm=1 using
an evaluation algorithm Ae and compute the matching score
ŝτm = Ae(Sm, Rτ ) for each model fm. Finally, return the
best-matched model with the maximum score or a list of mod-
els sorted by {ŝτm}Mm=1 in descending order.

The two main problems for addressing CGI are: (a) How
to design As and Ar to fully characterize the functionality
of submitted conditional generative models and user require-
ments? (b) How to design Ae to effectively identify the most
suitable model for users’ specific needs using the specifica-
tions and requirements?

3.2 Problem Analysis
Learnware [Zhou, 2016] provides an effective framework for
describing the functionality of discriminative models. It de-
scribes model functionality by approximating the training
data distribution and performs model search by matching the
approximated training and testing data distributions.

Specifically, the learnware methods [Wu et al., 2023] use
Kernel Mean Embedding (KME) techniques to represent

training data distributions by mapping a probability distribu-
tion P defined on X into a reproducing kernel Hilbert space
(RKHS) as

uk(P) :=
∫
X
k(x, ·)dP(x) (1)

where k : X × X → R is a kernel function with associated
RKHS H. In cases of finite training data, the empirical KME
can be used to approximate the true KME using the dataset
X = {xi}Ni=1 which can be seen as data points sampled from
the distribution P:

ûk(P) :=
1

N

N∑
i=1

k(xi, ·) (2)

It has been proved that the empirical KME can converge to
the true KME at a rate O(1/

√
N) [Smola et al., 2007].

However, existing learnware methods cannot be directly
used for the CGI problem since they were designed for dis-
criminative models rather than conditional generative models.
Corresponding to the two main problems mentioned above,
the two main challenges in extending learnware methods to
the CGI problem are:
(a) How to project both the complex functionality of condi-

tional generative models and the diverse styles of user ex-
ample images into a unified space for future model iden-
tification?

(b) How to design an effective matching mechanism between
user requirements and model functionality corresponding
to specific user tasks?

4 Our Approach
In this section, we present our solution Prompt-Based Model
Indetification (PMI) for the CGI setting. As illustrated in Fig-
ure 2, PMI consists of three key modules. Automatic Specifi-
cation Assignment and Requirement Generation project the
model’s functionality and user requirements into a unified
model matching space, addressing the first challenge. Task-
Specific Matching adjusts the specification in the matching
space according to the requirement and identifies the most
suitable model with the highest similarity score, addressing
the second challenge. We first describe the three key modules
in detail. Then, a further analysis is provided as follows.

4.1 Automatic Specification Assignment
Automatic specification assignment aims to automatically
generate a specification for each conditional generative model
to describe its functionality. Its core idea is to prompt the con-
ditional generative model fi to generate data for describing
the model functionality based on a pre-defined prompt set P
or developer-provided prompt set Pi.

When model developer submit a model fi to the model
hub, the automatic specification assignment algorithm As

generates its corresponding specification Si using a N -size
prompt set P which is pre-defined in the model hub. A set of
images Xi is generated by the model fi and the prompt set P
to describe model functionality conditioned on P:

Xi =
{
xi
j = f(pj)|pj ∈ P

}N

j=1
. (3)
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Figure 2: Our proposed PMI method includes three main components: Automatic Specification Assignment, Requirement Generation, and
Task-Specific Matching. Automatic Specification Assignment generates a specification for each model using either a predefined or developer-
provided prompt set to describe model functionality within the model matching space. Requirement Generation formulates the requirement
for each user task by encoding example images and their textual descriptions into the same space. Task-Specific Matching adjusts the
specification in the matching space according to the requirement and identifies the most suitable model with the highest similarity score.

Then, the prompt set P and the generated images Xi are en-
coded to a unified model matching space using textual en-
coder T (·) and vision encoder G(·) from a pre-trained vision-
language model respectively:{

Zi = {zij = G(xi
j)|xi

j ∈ Xi},
Qi = {qij = T (pj)|pj ∈ P}. (4)

Finally, the specification Si is defined as

Si = As(fi,P) = {Zi, Qi}. (5)

Note that if developer can provide a prompt set Pi for
model fi to better describe the model functionality, the better
specification Si can be computed by replacing P with Pi in
Equation 3 and Equation 4.

The advantages of our proposed automatic specification as-
signment are two-fold: (1) The specification Si can be auto-
matically computed within the model hub, providing great
convenience for developers and reducing their burden of up-
loading models. (2) The specification does not require a sig-
nificant amount of storage space on the model hub, as it only
involves storing the feature representation.

4.2 Requirement Generation
Requirement generation aims to produce the requirements Rτ

for the user task τ to select the most suitable model. Its core
idea is to decompose the complex model functionality into
the difference between user-provided example images Xτ =
{xτ

i }
Nτ
i=1 and corresponding textual descriptions, enabling the

future model identification to be more accurate.
Specifically, requirement generation algorithm Ar trans-

forms Xτ into feature representations:

Zτ = {zτi = G(xτ
i )}

Nτ
i=1 (6)

using the vision encoder G(·). Then, the textual descrip-
tion P̂τ is generated by a vision-language model VLM(·) to
describe each example image and be mapped to the model
matching space:{

P̂τ = {p̂τi = VLM(xτ
i )}

Nτ
i=1

Q̂τ = {q̂τi = T (p̂τi )}
Nτ
i=1

(7)

Finally, the user requirement Rτ is computed using Ar as

Rτ = Ar(Xτ ) =
{
Zτ ; Q̂τ

}
. (8)

Note that Rτ is also automatically computed within the
model hub, which is very flexible and easy to use.

4.3 Task-Specific Matching
Task-specific matching aims to identify the most suitable
model for the user task τ by calculating the similarity score
between the user requirement Rτ and the specification Sm of
each model fm. Its core idea is to transform the specification
Sm corresponding to the user requirement Rτ in the model
matching space to better match the functionality.

Specifically, matching algorithm Ae calculates the similar-
ity score between the user requirement Rτ = {Zτ , Q̂τ} and
the specification Sm = {Zm, Qm} for each model fm using
the following formula:

Ae(Sm, Rτ ) =
1
Nτ

Nτ∑
i=1

∥∥∥∥∥ 1
Nm

Nm∑
j=1

qmj q̂τi
∥qmj ∥∥q̂τi ∥

k(zmj , ·)− k(zτi , ·)

∥∥∥∥∥
2

Hk

(9)
where

qmj q̂τi
∥qmj ∥∥q̂τi ∥

measures the similarity between the j-th
specification prompts for model fm and the textual descrip-
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tions of example image xτ
i , transforming organial specifica-

tions to task-specific specifications, which are more focused
on the user tasks. Then, the matching between task-specific
specifications and user requirement can more accurately iden-
tify the most suitable model which meets the required model
functionality. Finally, the similarity score obtained by Equa-
tion 9 can be used to sort the models or directly return the
most suitable model.

4.4 Discussion
It is evident that our proposal for the CGI scenario achieves
a higher level of accuracy and efficiency when compared to
model search techniques employed by existing model hubs.

Accuracy. Our proposal elucidates the functionalities of
generated models by capturing both the distribution of gen-
erated images and prompts. This approach allows for more
accurate identification of suitable models for users, as op-
posed to the traditional model search method that relies on
download counts and star ratings for ranking models.

Efficiency. Suppose that the model hub generates one re-
quirement in Tr time and calculates the similarity score for
each model in Ts time. The time complexity of our proposal
for one identification is O(Tr +MTs) time. Moreover, with
accurate identification results, users can save the efforts of
browsing and selecting models, as well as reducing the con-
sumption of network and computing. This is linearly cor-
related to the number of models on the model hub (which
can be reduced by filtering by tags). Additionally, our ap-
proach also has the potential to achieve further acceleration
through the use of a vector database [Guo et al., 2023] such
as Faiss [Johnson et al., 2019].

5 Experiments
To verify the effectiveness of our proposed method PMI for
CGI problem, we first build a novel conditional generative
model identification benchmark based on stable diffusion
models [Rombach et al., 2022], and then conduct experiments
on this benchmark. Below, we first introduce the details of the
benchmark and evaluation metrics. Then, we present the ex-
perimental results on this benchmark and human evaluation
results to emphasize the importance of CGI problem as well
as the effectiveness of our PMI.

5.1 CGI Benchmark
In this section, we describe the our constructed CGI bench-
mark and corresponding evaluation metrics.

Model Hub and Task Construction. In practice, we ex-
pect model developers to submit their models to the model
hub, allowing users to identify models that meet their spe-
cific needs. To enhance the realism of the evaluation, we
constructed a model hub and user identification tasks to sim-
ulate this scenario. For the model hub construction, we man-
ually collected M = 65 different stable diffusion models
{f1, . . . , fm, . . . , fM} from CivitAI, representing uploaded
conditional generative models on the hub. These models be-
long to the same category to mimic the real process where
users first apply category filters before selecting models.

For model specification generation, we created 61 prompts
{p1, . . . , p61} as a pre-defined prompt set P in the model
hub to simulate cases where developers do not provide spe-
cialized prompts. Additionally, we constructed 61 prompts
{p1, . . . , p61}m for each model fm based on the prompts
provided by developers in CivitAI to simulate developer-
provided prompts. For model identification task construc-
tion, we created 14 evaluation prompts {pτ1 , . . . , pτ14}m
for each model on the model hub to generate testing im-
ages with random seeds in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, forming
Mτ = 14 × 65 × 10 = 9100 different identification tasks
{(xτi , ti)}

Mτ

i=1, where each example image xτi is generated
by model fti and its best matching model index is ti. We also
provide ground-truth prompts for generating example images
to assess the identification performance of each method in
terms of the quality of generated images. We ensure that there
is no overlap between prompts used for constructing specifi-
cations, guaranteeing the correctness of the evaluation.

Evaluation Metrics. In our experiments, we use Top-k ac-
curacy, average rank, and FID score to evaluate the perfor-
mance of methods. We define the rank of model fm for task
τ as r̂τm = 1 +

∑M
i=1 I [ŝτi < ŝτm]. Then, the Top-k accu-

racy is defined as 1
Nτ I

[
r̂τiti ≤ k

]
, which evaluates the abil-

ity of each method to find the best matching model within k

trials. The average rank is defined as
r̂τti
Nτ , which evaluates

the ability of each method to rank the best matching model
among other models. Moreover, we use the identified model
to generate images using the ground-truth prompt for gener-
ating example images for each task. The FID score measures
the distance between distribution of Mτ query images and
distribution of Mτ generated images, evaluating the identifi-
cation performance in aspects of generation quality.

5.2 Experimental Settings
In this section, we introduce the experimental settings, in-
cluding comparison methods and implementation details.

Comparison Methods. First, we compare our proposal
with baseline method, which always uses the model
with the highest downloading volume as the best-matched
model [Shen et al., 2023]. The performance of baseline
can be identified by a reasonable lower bound of CGI prob-
lem. Then, we also consider the basic implementation of
the RKME specification [Wu et al., 2023] as a comparison
method, namely, RKME, for the CGI problem to evaluate
whether learware techniques can be applied to the CGI.

Implementation Details We adopt the official code in [Wu
et al., 2023] to implement the RKME method and the official
code in [Radford et al., 2021] to implement the pre-trained
vision-language model. We follow the default hyperparam-
eter setting of RKME in previous studies [Guo et al., 2023],
setting the size of the reduced set to 1 and choosing the RBF
kernel [Xu et al., 1994] for RKHS. The hyperparameter γ
for calculating RBF kernel and similarity score is tuned from
{0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05}
and set to 0.02. For all experiments without additional notes,
we assume that the specification is generated with developer-
provided prompts. Our experiments are conducted on Linux
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Methods Acc.(↑) Top-2 Acc.(↑) Top-3 Acc.(↑) Top-4 Acc.(↑) Top-5 Acc.(↑) Avg. Rank(↓) FID Score(↓)
Baseline 1.5% 3.0% 4.6% 6.1% 7.6% 33.000 23.44
RKME 3.1% 4.6% 6.2% 7.7% 9.3% 32.014 25.47
PMI 69.2% 78.1% 82.8% 85.8% 88.0% 2.874 18.42

Table 1: Model Identification Performance of each method evaluated by Top-k accuracy, average rank and the generation quality evaluted by
FID score when only one example image is provided. The results show that our PMI can achieve satisfactory model identification performance
as well as generation quality. The best performance is in bold.

Accuracy(↑) FID Score(↓)
Baseline RKME PMI Baseline RKME PMI

1 image 1.5% 3.1% 69.2% 23.44 25.47 18.42
2 images 1.5% 3.1% 84.4% 23.44 25.53 18.17
3 images 1.5% 3.1% 89.7% 23.44 25.53 18.14
4 images 1.5% 3.2% 92.7% 23.44 25.58 18.21
5 images 1.5% 3.2% 94.0% 23.44 25.61 18.18
6 images 1.5% 3.2% 95.9% 23.44 25.53 18.12

Table 2: Comparison of accuracy and FID score across methods with
varying numbers of example images. The results demonstrate that
PMI performance improves with additional examples, while RKME
shows minimal change. The best performance is in bold.

servers with NVIDIA A800 GPUs.

5.3 Experimental Results
In this section, we present the experimental results of our PMI
method and comparison methods.
Model Identification Performance. We evaluate the
model identification performance of each method in Table 1
when only one example image is provided. The Top-k accu-
racy and average rank metrics quantify how well each method
identifies the optimal model. The FID score measures the
quality of images generated by the identified models using
ground-truth prompts. Results show that RKME performs
similarly to the baseline method, with poor accuracy and
rank, indicating the inherent difficulty of the CGI problem
and the limitations of existing techniques designed for dis-
criminative models for CGI problem. Our PMI significantly
outperforms RKME in both accuracy and rank metrics, lead-
ing to two key findings: (1) the CGI problem can be ef-
fectively solved with appropriate model identification strate-
gies; (2) PMI provides satisfactory performance even with
one single example image. The FID scores further demon-
strate that models identified by PMI generate higher qual-
ity images, confirming that one fixed popular model cannot
meet all use cases and highlighting the significance of the
CGI problem. Table 2 presents results with multiple exam-
ple images. The performance of PMI improves with addi-
tional examples, while RKME’s performance remains largely
unchanged, validating the effectiveness of our approach.
Ablation Study. To analyze the contribution of each com-
ponent in PMI, we conduct an ablation study as shown in Ta-
ble 3. Our PMI method extends the RKME framework with
two groups of core components: (1) Model Matching Space
(MMS), which consists of the automatic specification assign-
ment algorithm As and the requirement generation algorithm

MMS TSM FID (↓) Accuracy (↑) Rank (↓)
25.47 3.1% 32.014

✓ 18.43 68.0% 3.120
✓ ✓ 18.42 69.2% 2.874

Table 3: Ablation study. MMS indicates the model matching space,
which includes the automatic specification assignment and the re-
quirement generation. TSM indicates the task-specific matching.
The best performance is in bold.

Ar. These algorithms project both user requirements and
model functionality into a unified matching space. (2) Task-
Specific Matching (TSM), which introduces algorithm At to
perform precise model functionality matching. The results
demonstrate that integrating both components is essential for
achieving optimal performance.

Human Evaluation and GPT-4o Evaluation. To further
validate the effectiveness of our PMI, we conducted human
evaluation with 70 users and a GPT-4o evaluation, respec-
tively For human evaluation, each user completed a survey
containing 5 questions and each question is randomly sam-
pled from 9100 tasks (we skip tasks where all methods iden-
tify the same model) using images generated by Baseline,
RKME, PMI methods as the options. The users are required
to select the image that best matches the example image. For
GPT-4o evaluation, we prompt GPT-4o to choose the best im-
age from the options for all 9100 tasks. The Figure 3 presents
the average win rate of each method voted by human users
and GPT-4o, respectively. The results show that human users
and GPT-4o have different preferences for the images gener-
ated by the Baseline method and RKME method, giving dif-
ferent yet similar win rates for these two methods. Our PMI
achieves the highest win rate with a large margin, indicat-
ing that the images generated by our PMI are more consistent
with the user requirements.

5.4 Further Analysis
In this section, we analyze the model identification perfor-
mance when using default prompts and present qualitative re-
sults through visualization.

Default Prompt Set. When model developers do not pro-
vide prompts, the model hub uses a default prompt set to
generate specifications, making it more adaptable to differ-
ent conditional generative models. Table 4 shows the FID
scores when using default prompts for all models. Our PMI
achieves significantly lower FID scores compared to RKME
and baseline methods, demonstrating its ability to generate
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Figure 3: Human evaluation results. The results show that human
users significantly prefer the images generated by our proposal.

Methods 1 image 2 images 3 images 4 images

Baseline 23.44 23.44 23.44 23.44
RKME 38.24 38.31 38.31 38.34
PMI 20.05 19.94 19.94 20.13

Table 4: FID score of each method when all models use default
prompts set to generate specifications when different number of im-
ages are provided. The best performance is in bold.

high-quality images even with pre-defined prompts. Table 5
presents the Top-k accuracy with one example image. While
PMI maintains superior performance over RKME, its accu-
racy is lower compared to using developer-provided prompts
in Table 1, indicating that developer-provided prompts are
valuable for optimal model identification.

Visualization. We visualize the generated images from
models identified by Baseline, RKME, and PMI in Figure 4,
with example images shown in the first column. While all
identified models generate images with correct content, they
differ significantly in style. Our PMI successfully identifies
models that match the comic art style of the example images,
whereas models identified by other methods generate images
that are overly realistic. These results show that our PMI is
helpful for generating images similar to the example images,
which is consistent with the experimental results.

6 Conclusion
In this paper, we study a novel problem setting called Con-
ditional Generative Model Identification, whose objective is
to describe the functionalities of conditional generative mod-
els and enable the model to be accurately and efficiently
identified for future users. To this end, we present a sys-
tematic solution including three key components. The Au-
tomatic Specification Assignment and Requirement Genera-
tion respectively project the model functionality and user re-
quirements into a unified matching space. The Task-Specific
Matching further builds the task-specific specification in the
matching space to precisely identify the most suitable model.
To promote relevant research, we open-sourced a benchmark

Methods Acc. (↑) Top-2 Acc. (↑) Top-3 Acc. (↑) Top-4 Acc. (↑)

Baseline 1.5% 3.1% 4.6% 6.2%
RKME 3.1% 4.6% 6.2% 7.7%
PMI 27.9% 38.5% 45.3% 50.8%

Table 5: Top-k accuracy of Baseline, RKME, and PMI methods
when all models use default prompts set to generate specifications.
The best performance is in bold.

Figure 4: Visualization of generated images from models identi-
fied by Baseline, RKME, and PMI. The results demonstrate that
PMI identifies models that can generate images with styles consis-
tent with the example images.

based on stable diffusion models with 65 conditional gener-
ative models and 9100 model identification tasks. Extensive
experiment results on the benchmark as well as the human
evaluation demonstrate the important value of the CGI prob-
lem and the effectiveness of our proposal.

In future work, we intend to develop a novel generative
model hub using the techniques presented in this paper. Our
goal is to offer a more accurate description of conditional gen-
erative model functionalities and user requirements. We ex-
pect that this will enhance the efficiency of users in finding
models that meet their specific needs and contribute to the de-
velopment and widespread use of generative models, as well
as promote the development of model hubs.

One limitation of our work is that we only consider the
cases that identify generative models using uploaded exam-
ple images to describe users’ requirements. The assumption
is reasonable since users’ ideas often rely on existing image
templates when they want to generate images, and it is not
difficult to find images that have a similar style to fulfill the
user’s requirements. Despite this, it is also interesting to study
how to quickly and accurately identify models via other infor-
mation such as textual prompts.
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