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Abstract

Together with the NSGA-II and SMS-EMOA, the
strength Pareto evolutionary algorithm 2 (SPEA2)
is one of the most prominent dominance-based
multi-objective evolutionary algorithms (MOEAS).
Different from the NSGA-II, it does not employ
the crowding distance (essentially the distance to
neighboring solutions) to compare pairwise non-
dominating solutions but a complex system of o-
distances that builds on the distances to all other
solutions. In this work, we give a first mathemat-
ical proof showing that this more complex system
of distances can be superior. More specifically, we
prove that a simple steady-state SPEA2 can com-
pute optimal approximations of the Pareto front of
the OneMinMax benchmark in polynomial time.
The best proven guarantee for a comparable variant
of the NSGA-II only assures approximation ratios
of roughly a factor of two, and both mathematical
analyses and experiments indicate that optimal ap-
proximations are not found efficiently.

1 Introduction

Many optimization problems in practice consist of several
conflicting objectives. One common approach for such
problems is to compute a set of solutions witnessing the
Pareto front (or a sufficiently diverse subset thereof) and
then let a human decision maker select the final solution.
For such multi-objective optimization problems, evolution-
ary algorithms with their population-based nature are an ob-
vious choice, and in fact, such multi-objective evolutionary
algorithms (MOEAs) are among the most successful algo-
rithms [Coello et al., 2007; Zhou et al., 20111].

Most research on randomized search heuristics is empiri-
cal, and much fewer theoretical works exist [Neumann and
Witt, 2010; Auger and Doerr, 2011; Jansen, 2013; Zhou
et al., 2019; Doerr and Neumann, 2020]. However, theo-
retical analyses of MOEAs, usually proving runtime guar-
antees and from this aiming at a deeper understanding of
these algorithms, exist for more than twenty years [Laumanns
et al., 2002; Giel, 2003; Thierens, 2003]. This field has
made a huge step forward recently with the first mathemat-
ical runtime analysis of the NSGA-II [Zheng et al., 2022;

Zheng and Doerr, 2023], the most prominent MOEA. This
work was quickly followed up by more detailed analyses of
the NSGA-II [Bian and Qian, 2022; Doerr and Qu, 2023a;
Doerr and Qu, 2023b; Doerr and Qu, 2023c; Dang et al.,
2023; Cerf et al., 2023; Dang et al., 2024; Deng et al.,
2024; Zheng and Doerr, 2024a; Zheng and Doerr, 2024b;
Doerr et al., 2025] and by analyses of other prominent
MOEAs... such as the NSGA-IIT [Wietheger and Doerr,
2023; Opris et al., 2024; Deng et al., 2025; Opris, 2025],
SMS-EMOA [Bian er al., 2023; Zheng and Doerr, 2024c;
Li et al., 2025], and SPEA2 [Ren et al., 2024].

Interestingly, these results show very similar performance
guarantees for these algorithms (which agree with the results
known for the classic (G)SEMO analyzed in the early the-
oretical works on MOEAs). Also, [Ren et al., 2024] pro-
vide a mathematical framework allowing to prove compara-
ble runtime bounds for several MOEAs. The sole outlier so
far is the result [Zheng and Doerr, 2024b] showing that the
NSGA-II has enormous difficulties for three or more objec-
tives (see [Doerr et al., 2024] for a second such result). This
problem of the NSGA-II can be resolved with an additional
tie-breaker [Doerr et al., 2025] and then the same perfor-
mance guarantees as known for the other algorithms hold.

In this work, we detect a second notable performance dif-
ference, namely in the ability to approximate the Pareto front.
This aspect is understood much less than the time to compute
the full Pareto front. The only such result for the algorithms
mentioned above is [Zheng and Doerr, 2024a]. In that work, it
was argued via theoretical arguments that the classic NSGA-
II, computing the crowding distance for all individuals and
then selecting the next population, can have difficulties to ap-
proximate the Pareto front as it ignores that every removal of
an individual affects the crowding distance of other solutions.
However, for the algorithm variant that removes the individ-
uals sequentially and updates the crowding distances after
each removal (as suggested already in the little known work
[Kukkonen and Deb, 2006]), a 2-approximation result was
shown for the optimization of the bi-objective OneMinMax
benchmark. This is the only approximation guarantee so far
for one of the classic algorithms named above.

Our contribution. In this work, we study the approxima-
tion ability of the simple Pareto evolutionary algorithm 2
[Zitzler er al., 2001] (SPEA?2). Like the NSGA-II, the SPEA2
is a dominance-based algorithm, that is, its first priority is to
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keep non-dominated solutions. As a tie-breaker for removing
solutions, like the NSGA-II, it regards how close incompara-
ble solutions are and first removes those with other solutions
nearby, thus aiming for an evenly spread population. We dis-
cuss the precise differences of the distance measures used by
the NSGA-II and SPEAZ2 later in this work, and remark for
now only that the SPEA2 takes into account the distances to
all other solutions (in the order from near to far), whereas
the crowding distance of the NSGA-II only accounts for the
distances to the two neighboring solutions in each objective.
As we shall show in this work, with its more complex
distance measure, the SPEA2 is able to compute much bet-
ter approximations of the Pareto front. Taking again the
OneMinMax benchmark as example, we prove that a sim-
ple version of the SPEA2 finds an optimal approximation to
the Pareto front in polynomial time, more precisely, expected
time O(u?log(u)nlog(n)) (Theorem 1), where y is the pop-
ulation size of the SPEA2 and n is the problem size of the
benchmark. We contrast this result by showing that there are
states in the NSGA-II that are close to being an optimal ap-
proximation, but the algorithm takes nonetheless with over-
whelming probability a super-polynomial time to get to the
optimal approximation (Theorem 11). This shows that the
NSGA-II can struggle immensely to compute an optimal ap-
proximation whereas the SPEA2 does not have this problem.
These results give a strong evidence for the hypothesis that
the more complex way of measuring the distance between
solutions of the SPEA2 is worth the additional complexity
and leads to significantly stronger approximation abilities.

2 Preliminaries

Denote the natural numbers by N (with 0) and the reals by R.
For all m,n € N, let [m..n] := [m,n] NN and [n] := [1..n].

For all n € N>q, we call z € {0,1}" an individual. We
call a multi-set of individuals a population, and we use stan-
dard set operations for populations, which extend naturally to
multi-sets. We consider pseudo-Boolean maximization of bi-
objective functions f: {0,1}" — R?, which map individuals
to objective values. For each x € {0,1}™ and i € [2], we
denote the objective value i of = by f;(x).

We compare objective values u, v € R via the dominance
partial order. We say u weakly dominates v (written u > v) if
and only if w1 > v1 and us > v, and w strictly dominates v
if and only if at least one of these inequalities is strict. If and
only if neither u > v nor v = u, we say uw and v are incompa-
rable. Given a bi-objective function, we extend this notion to
all individuals by implicitly referring to their objective value.

For a (multi-)set P of individuals and a bi-objective func-
tion f, we say that an individual = € P is non-dominated if
and only if there is no y € P that strictly dominates u. We
call each non-dominated individual of {0, 1}" Pareto-optimal
and its objective value a Pareto optimum. Last, we call the set
of all Pareto optima the Pareto front (of f).

We use traditional set notation for both normal sets (with
unique elements) and multi-sets. The union of multi-sets does
not remove any duplicates, and the cardinality of a multi-set
accounts for all duplicates. However, if we apply a function
to multi-set, then the result is a normal function, that is, the

function values are not duplicated. Note that populations are
multi-sets whereas sets of objective values are normal sets.

The OneMinMax Benchmark. The OneMinMax (OMM)
benchmark, introduced by [Giel and Lehre, 2010], is a bi-
objective function that aims at maximizing the number of
ones and the number of zeros of an individual. Formally, for
all z € {0,1}", we have

OMM(z) = (Zz‘e[n] i, Yierm (1 — xi))'

Since the objectives are the inverse of each other, no indi-
vidual strictly dominates another one. Thus, the Pareto front
is the set of all objective values, namely {(i,n — i) | i €
[0..n]}, which has a size of n + 1.

We call the objective values (0,n) and (n,0) the extreme
objective values, since they feature the maximum and mini-
mum possible value in each of their objectives.

Optimal spread. We aim at approximating the Pareto front
on OMM algorithmically via a population. To this end,
let P be a population of size u := |P| € [2..n], and let
(OMMl(x))a;eP =t (vs)ie[u) be the first objective of each
individual in P in ascending order. Furthermore, assume that
v1 = 0 and that v, = n, that is, that the extreme objec-
tive values are witnessed by P. We say that P computes an
optimal spread on the Pareto front of OMM if and only if
foralli € [ — 1], wehave vy —v; € {| 27 ],[25 1} In
other words, the distance between two neighboring objective-
values is as close as possible to being equidistant.
In order to more concisely describe an optimal spread, let
a=[ 7] and f € [0..n—1] (1

1
such that oS + (e + 1)(u — 1 — 3) = n,

where we note that 3 is uniquely determined.

3 The SPEA2 and NSGA-II Algorithms

The strength Pareto evolutionary algorithm 2 [Zitzler et al.,
2001] (SPEA2, Algorithm 1) and the non-dominated sort-
ing genetic algorithm II [Deb et al., 2002] (NSGA-II, Al-
gorithm 2) are both popular population-based multi-objective
optimization heuristics. Since we analyze the SPEA?2 in more
depth in this paper, we explain it in more detail below in Sec-
tion 3.1, noting that both algorithms act identically in broad
parts on the OMM benchmark. We outline the most impor-
tant parts of the NSGA-II in Section 3.2, referring for more
details to the original paper by [Deb er al., 2002].

3.1 The SPEA2

We regard an equivalent formulation of the SPEA?2 that was
proposed in the extension of [Wietheger and Doerr, 2024]
(currently only on arXiv). The SPEA2 (Algorithm 1) maxi-
mizes a given bi-objective problem f: {0,1}" — R? by iter-
atively refining a multi-set of individuals (the parent popula-
tion) of given population size 4 € Nx>1. In each iteration, the
algorithm generates a user-defined amount A € N> of new
individuals (the offspring population) via a process called mu-
tation. Afterward, the SPEA2 selects the  most promising
individuals among the parent and the offspring population, to
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be used in the next iteration. The basis for this new population
are all non-dominated individuals. If this number is greater
than g, then the algorithm removes individuals based on a
clustering technique called o-distances. This is the predom-
inant case in our analysis in Section 4, as the OMM bench-
mark only features non-dominated objective values.

If, instead, the number of non-dominated individuals is less
than p, then the SPEA2 adds dominated individuals, based
on their strength-based indicator. Last, if the number of non-
dominated individuals is exactly p, the algorithm proceeds
immediately with the next iteration.

Mutation. We consider two types of mutation, each of
which is given a parent x € {0,1}" and generates a new
individual y € {0, 1}" (the offspring).

1-bit mutation copies x and flips exactly one bit at position
i € [n] chosen uniformly at random. That is, we have y; =
1 —x;,and for all j € [n] \ {i}, we have y; = x;.

Standard bit mutation copies x and flips each position in-
dependently with probability 1. That is, for all i € [n], we
have Prly; = 1 — z;] = % and Prly; = o] =1 — %, inde-
pendent from all other random choices.

The o-distances. Given a population P of size s € N>
of non-dominated individuals, the o-distances are based on
a function o: {0,1}" — R*~! that assigns each individual
x € P a vector that contains the Euclidean distances of the
objective value of x to those of all other individuals in P in
ascending order (breaking ties arbitrarily), which we call the
o-distance of z. We follow the convention of [Zitzler et al.,
2001] and denote for all ¢ € [s — 1] the distance of x to its
i-closest neighbor by o.

In algorithm 1, individuals are removed with respect to the
lexicographic ascending order of their o-distance, breaking
ties uniformly at random, and removing the individuals at the
beginning of this order. In other words, individuals that are
too close to other individuals are removed first. We remark
that the o-distances are updated after each removed individ-
ual.

We note that for OMM, we always have s = p + A, as all
individuals are Pareto-optimal. Moreover, we note that for the
removal based on o-distances, only the relative order matters.
Since OMM has complementary objectives, it is thus suffi-
cient to consider a distance based on a single objective that
has the same monotonicty as the original o-distances. We fo-
cus in our analysis on the first objective, that is, the number
of 1s in an individual, for the o-distances.

Strength-based indicator. We note that the case in which
the SPEA2 relies on the strength-based indicator never oc-
curs on OMM, as all individuals in OMM are Pareto-optimal.
Hence, we do not explain this operation in detail but refer to
the original work by [Zitzler et al., 2001] instead. Roughly,
the strength-based indicator assigns each individual x in the
combined parent and offspring population a natural number
that is the sum over all individuals y that strictly dominate z,
adding the number of individuals that y weakly dominates.

Steady-state variant. If A = 1, we say that the SPEA2
is steady-state. When optimizing OMM, this means that a

Algorithm 1: The strength Pareto evolutionary al-

gorithm 2 [Zitzler et al., 20011 (SPEA2) with parent

population size p1 € N1, and offspring population

size A € N>, maximizing a given bi-objective func-

tion f: {0,1}" — R2.

1t+0;

2 P, + X independent samples from {0, 1}" with
replacement, chosen uniformly at random (u.a.r.);

3 while termination criterion not met do

Qt <— (Z);

for i € [\] do

x < individual in P; chosen u.a.r.;

y < mutate x (see Section 3);

| Qi+ Q:U{yks

9 P; ;1 < non-dominated individuals in P, U Qy;

10 if ‘Pt+1| > then

11 iteratively remove an individual in P;; with

the smallest o-distance until | Py 1| = u;

® 9 & s

2 elseif | P, 1| < p then

13 iteratively add an individual from

(P U Q¢) \ Piyq to Ppyy with the smallest
strength-based indicator until | P4 1| = pu;

14 t+—t+1;

single individual in algorithm 1 is removed, as all individuals
are Pareto-optimal. The case in algorithm 1 is never executed.

3.2 The NSGA-II

Like the SPEA2, the NSGA-II (Algorithm 2) maximizes a
given bi-objective function f: {0,1}" — R? by maintaining
a parent population of N € Ny individuals, from which it
generates [N offspring each iteration, using a mutation op-
erator. Afterward, it selects individuals greedily based on
the number of individuals by which they are strictly domi-
nated, starting with the non-dominated individuals. During
this phase, all individuals with an identical number are se-
lected. The smallest number where this leads to selecting at
least N individuals in total is known as the critical rank. For
OMM, this means that the entire combined parent and off-
spring population (of size 2/NV) is kept, as all individuals are
not strictly dominated, thus all land in the critical rank.
Afterward, the algorithm removes individuals sequentially
from the critical rank based on their crowding distance, un-
til V individuals remain, breaking ties uniformly at random.

Crowding distances. Given a population R, the crowding
distance of an individual = € R is the sum of its crowding dis-
tance per objective. For each objective i € [2], the crowding
distance of x is based on the (normalized) distance to its two
closest neighbors in objective 7. That is, let S; = (y:)ic[|r)]
denote R in ascending order of objective ¢. If = is an extreme
solution, that is, if x = y; or z = Y|R|> then its crowding dis-
tance for objective ¢ is plus infinity. Otherwise, if there is an
i € [2..|R| — 1] such that = y;, then the crowding distance

of 2 for objective i is (f(yit1)—f(vi-1))/ (f (wir)—f(41)).
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Algorithm 2: The non-dominated sorting genetic al-

gorithm II [Deb et al., 2002] (NSGA-II) with popula-

tion size N € N, maximizing a given bi-objective

function.

1t 0;

2 P, + N independent samples of {0, 1}"™ with
replacement, each chosen u.a.r.;

3 while termination criterion not met do

@ < offspring population of P; of size N;

Ry < PUQy

(Fj)je[r ¢ partition of R; w.r.t. non-dom. ranks;

J* ¢ critical rank of (F});e[,s

Pt+1 — UjE[j*] Fj;

9 if|Pt+1| > N then

10 iteratively remove an individual in P;

from F’;» with the smallest crowding distance

in Fj* until |Pt+1| = N,

11 t+—t+1;

® N O s

For OMM, similar to the SPEA2, it is sufficient to only
consider the crowding distance in the first objective, as the
two objectives are complementary to each other (and the sort-
ing for each objective just results in an inverse order, up to
how ties are handled).

We remark that, different from the o-distances in the SP-
EA2, the crowding distance is not recomputed each time an
individual is removed, which is a general flaw in the NSGA-
II, as proven by [Zheng and Doerr, 2024a]. In this article,
we use a stable sorting algorithm for the crowding distance
computation, which is common practice.

Steady-state variant. If the NSGA-II only produces one
offspring each iteration (regardless of V), we say that it is
steady-state. This means that in each iteration, exactly one
individual is removed. Since this effectively recomputes the
crowding distance after each removal of an individual, this
algorithm variant does not have the problems associated with
the classic NSGA-IL

4 The SPEA2 Computes an Optimal Spread
Efficiently

Our main result is Theorem 1, which shows that the steady-
state SPEA2 with 1-bit mutation and ;2 < % computes an op-

timal spread on OMM after O(u?nlog(u) log(n)) expected
function evaluations'. This bound is slower by a factor of
wlog p than the time required to find the extreme objective
values (Theorem 4), which may be an artifact of our analysis.

Theorem 1. Consider the steady-state SPEA2 optimizing
OMM with 1-bit mutation and with p < % Then the ex-
pected number of objective function evaluations for comput-

ing an optimal spread is O(j>n log(u) log(n)).

IThis is asymptotically equal to the number of iterations, as each
iteration generates exactly one offspring in the steady-state variant.

In the following, we start with a high-level overview of the
proof structure. Afterward, we provide more details, until we
prove Theorem 1.

4.1 High-Level Proof Outline for the SPEA2

Due to all individuals being Pareto-optimal for OMM, our
analysis only concerns the case that individuals are removed
due to algorithm 1 in Algorithm 1. For most of our analysis,
we consider the steady-state variant, which implies that ex-
actly one individual is removed. In order to simplify nota-
tion, we only consider the first objective when comparing o-
distances, which is feasible for OMM due to the objectives
being complementary, as we also mention in the section on
o-distances in Section 3.

No duplicate objective values. First, we show that the SP-
EA2 quickly reaches a state in which all individuals in the
parent population have distinct objective values (Theorem 3),
which is possible because the population size p is strictly
smaller than the size n + 1 of the Pareto front. Moreover, we
prove that the parent population quickly includes the extreme
objective values and never loses them (Theorem 4). Once in
such a state, we change perspectives and no longer consider
individuals but instead the empty intervals between the first
objective values of all individuals in the parent population.
From this perspective, an optimal spread is computed once

all intervals are of size | 25 | or [ 25 ].

Useful invariants. We continue by proving that the size of
all minimum length (empty) intervals (of objective values)
never decreases during the run of the algorithm (Lemma 5).
In addition, we show that the number of intervals of mini-
mum length also never decreases (Lemma 6), which in itself
is already a strong property of the o-distances of the SPEA-
2. We show analogously that the size of all maximum-length
intervals (Lemma 6) never increases. These statements are
the foundation of our analysis, as they provide well-defined
states of the algorithm from which it can only improve.

Afterward, we show that once the size of all minimum
length intervals is at least 2, algorithm 1 reduces to the case
that either the offspring or its parent is removed (Lemma 7).
This drastically decreases the complexity of the cases to con-
sider in the remaining analysis. In addition, we show in
Lemma 8 that intervals of minimum length remain at the bor-
ders of the interval [0..n] (until the minimum is increased).
This helps us locate such intervals later in the analysis.

Since the SPEA2 features a lot of useful properties once
the minimum length interval has size at least 2, we prove in
Lemma 9 that such a state is reached quickly. From thereon,
we take a more detailed look about how the minimum length
interval is increased.

Reducing the number of intervals of minimum length.
In order to remove a minimum length interval, it is sufficient
to have it neighbor an interval whose length is at least two
larger. By placing an offspring in between these two intervals
such that it reduces the size of the larger interval, the size of
the minimum length interval increases by one if the parent
is removed. Lemma 10 bounds the expected number of it-
erations it takes to remove one minimum length interval like
this. In a nutshell, the analysis relies on the fact that minimum
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length intervals tend to move to the borders of the objective
space [0..n]. Once there, the minimum distance between a
minimum length interval and one with a length at least two
larger does not increase. This allows eventually to decrease
the number of intervals of minimum length.

Combining everything. We conclude by estimating the
time to remove all minimum length intervals of a certain
size, and by afterward considering all feasible sizes. We note
that our analysis views the progress of the SPEA2 toward
an optimal spread by only considering the intervals of min-
imum length, which is likely a bit pessimistic, as it disregards
progress made with other intervals of sub-optimal length.

4.2 The SPEA2 Computes an Optimal Spread
Efficiently

We provide the formal details for our outline given in Sec-
tion 4.1, following the same structure.

No duplicate objective values. We first show that the SP-
EAZ2 never reduces the amount of Pareto optima it finds. This
is a simple and desirable general property.

Lemma 2. Consider the SPEA2 optimizing a multi-objective
function f, with any parent and offspring population size and
with any mutation operator. Let t € N such that P; only con-
tains Pareto-optimal individuals. Then | f(Py)| < |f(Pix1)|-

For OMM, this leads immediately to the following bound
of objective-function evaluations until each individual has a
unique objective value.

Theorem 3. Consider the SPEA2 optimizing OMM with ei-
ther 1-bit or standard bit mutation and any parent and off-
spring population size. The expected number of OMM eval-
uations until the parent population contains only distinct ob-
Jjective values or all objective values is O (,u + )\%).

Moreover, we prove that the extreme solutions of OMM
are found quickly.

Theorem 4. Consider the SPEA2 optimizing OMM with ei-
ther 1-bit or standard bit mutation and any parent and off-
spring population size. The expected number of OMM eval-
uations until the parent population contains the extreme ob-
jective values is O (p + )\%).

For 1-bit mutation and . < 3, this is asymptotically tight.

Useful invariants. As discussed in Section 4.1, our invari-
ants mostly consider the lengths of intervals between the ob-
jective values in the current population of the SPEA2 with
1 < n. To this end, for each iteration ¢ € N of Algorithm 1,
let (});c[,) denote the individuals from P; (at the beginning
of the while loop) in increasing order of their first OMM
objective, that is, in increasing order of their number of ones.
Moreover, we assume x} = 0" and 17; = 1". Then, for all
i € [p— 1], we denote the length of interval 7 in iteration ¢ by

Lt := OMM; (!, ;) — OMM; (z}). )

In particular, we are interested in the minimum (and the max-
imum) length induced by P, defined as

Xt = minie[ﬂ_l] Li and }/t = maxie[u_l] Lf, (3)

and their quantity, defined as
Ny={ie[p—1]|Li= X;}|and 4)
My ={ie[p—1]| L =Y;}|.

From now on, we focus on the steady-state SPEA2. We
first show that the minimum interval length never decreases.

Lemma 5. Consider the steady-state SPEA2 optimizing
OMM with either 1-bit or standard bit mutation, p € [n), and
the initial population containing 0" and 1™. The sequence
(Xt)ten defined in equation (3) is non-decreasing.

The next result shows that the minimum interval length in-
creases during an iteration or the number of such intervals
does not decrease and that the analogous statement holds for
the maximum interval length, which does not increase.

Lemma 6. Consider the steady-state SPEA2 optimizing
OMM with 1-bit mutation, . € [n], and the initial popu-
lation containing 0™ and 1™. The sequences (— Xy, N¢)ien
and (Yi, My)ien defined by equations (3) and (4) are each
lexicographically non-increasing.

The following result shows that if we consider 1-bit muta-
tion, either the offspring or its parent are removed once the
intervals have a minimum length of at least two.

Lemma 7. Consider the steady-state SPEA2 optimizing
OMM with 1-bit mutation, |, € [n], and the initial population
containing 0™ and 1™. Consider an iteration t € N such that
X; > 1. Last, assume that mutation mutates x into y. Then
during the removal phase, we either remove x or y.

With the next result, we show that intervals of minimum
length at the borders of the interval [0..n] do not move away
from there if neither the minimum length nor the number of
these intervals changes.

Lemma 8. Consider the steady-state SPEA2 optimizing
OMM with 1-bit mutation, . € [n], and the initial popu-
lation containing 0™ and 1". Recall equations (1) to (4).
Consider an iteration t € N such that X; > 1, that
(=Xt Nt) > (=, B), and that (X¢, N¢) = (Xe41, Neg).
Then, if L} = X, it follows that L'** = X,. Similarly, if

Ll =Xy, then LY = X,

Last for this part, we show that the SPEA2 quickly reaches
a state in which the minimum interval length is at least two.

Lemma 9. Consider the steady-state SPEA2 optimizing
OMM with I-bit mutation, |, € [n], and the initial population
containing 0™ and 1™. Recall equation (3), and let t € N. If
X; = 1, then in an expected number p of O(u*n) iterations,
we have Xy < Xy, and/or Yy, < 3.

Reducing the number of intervals of minimum length.
We show that the minimum interval length is quickly in-
creased as long as the SPEA2 did not compute an optimal
spread yet. As outlined in Section 4.1, our proof relies on
the fact that if an interval of minimum length and one whose
length is at least two larger are next to each other, they can be
combined into two new intervals whose length is each larger
than the current minimum length. To this end, it is important
that such two intervals move to each other. We show that this
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happens via a case distinction with respect to whether a min-
imum length interval is at either border of [0..n]. A crucial
building block is Lemma 8, which guarantees that intervals of
minimum length remain at the border of [0..n], once they are
there. We then show that once we have intervals of minimum
length at both borders, then the minimum distance between a
minimum length interval and one whose length is at least two
larger does not increase. Consequently, these intervals even-
tually move closer to each other until they create two new
intervals of a length larger than the minimum.

Our main result following from the discussion above is the
following bound on the number of iterations to increase the
minimum interval length or the number of intervals thereof.

Lemma 10. Consider the steady-state SPEA2 optimizing
OMM with 1-bit mutation, | € [n], and the initial popu-
lation containing 0™ and 1". Recall equations (1) and (3),
and lett € N. If X; > 1 and (— X, Nt) > (—a, B), then

B l)ff(u))

in an expected number p of O( iterations, we have

(=X, Ni) > (= Xi1p, Newp)-

Combining everything. We combine all of our prior argu-
ments in order to prove Theorem 1. We essentially rely on
Lemma 10 to gradually increase the minimum interval length
until it reaches the optimal value « (equation (1)). However,
this requires that the minimum interval length is at least 2. By
Lemma 9, we achieve such a state quickly, but it requires us
to restrict the population size p of the SPEA?2 to at most 3.

Proof of Theorem 1. We first wait until the population does
not contain any duplicate objective values, which takes at
most O(unlogn) iterations by Theorem 3, and contains the
individuals 0™ and 1", which takes the same asymptotic
amount of time by Theorem 4. Note that this means that the
minimum interval length is at least 1. Afterward, we first
wait for the first following iteration ¢* such that X;- > 1 or
Yy« < 3. By Lemma 9, we have t* = O(u?n).

If Yy« < 3, then, recalling equation (1), since o > 3, then
X« = 3. Thus, X3+ = a and Ny« = (B, as we have n =
af + (a+1)(u — 1 — B). This concludes this case.

It is left to consider the case X;» > 1. Lett € Ny«
such that (—X;, N;) > (—a, (), that is, we did not com-
pute an optimal spread yet. Then by Lemma 10, the ex-
pected number of iterations p to achieve either X; < X, or

(—Xt4py Niyp) = (—a, B) is O(%f(“)). Increasing X
requires reducing V; at most p times. Afterward, we sum

over all possible values values of X;, from 1 to a < n, result-
ing in the harmonic series and thus concluding the proof. [

5 The NSGA-II Does Not Compute an
Optimal Spread in Polynomial Time

We show that the steady-state NSGA-II takes with high prob-
ability a super-polynomial time to compute an optimal spread
when starting in an unfavorable state. This is in stark contrast
to the SPEA2, which always computes an optimal spread in
a rather fast polynomial time (Theorem 1). We note that sit-
uations similar to the one we discuss seem to be common, as
evidenced in [Zheng and Doerr, 2024a, Figure 1].

Theorem 11. Let ¢ € Ny be a constant in n, and assume
that 16¢ divides n, and let n' := %. Consider that the steady-
state NSGA-II optimizes OMM with 1-bit mutation and with
N = n/+1. Apply the definition of equation (2) to the NSGA-
11 Assume that for all i € [N —1]\{§n’, $n'}, we have LY =
¢, and that we have L?ﬂ/s =c+ 1land L?ﬂ/4 =c — 1. Then,

with probability at least 1 — e~ the steady-state NSGA-II
does not compute an optimal spread within polynomial time.

Theorem 11 shows that although the steady-state NSGA-II
has computed almost an optimal spread, with only two in-
tervals not being optimal, the algorithm still takes with over-
whelming probability a super-polynomial amount of time to
compute an optimal spread. This behavior is due to the fact
that the removal of an individual in each iteration of the NS-
GA-II only takes into account the two closest neighbors (in
objective values). Thus, empty intervals (of objective val-
ues) that neighbor empty intervals of a length that differs by
one from their own swap their lengths at random with each
other. Due to the shape of the search space of OMM featur-
ing fewer individuals with objective values close to the ex-
treme ones than in the center, this introduces a bias toward
individuals with an equal number of zeros and ones during
mutation, making it more likely to produce offspring closer
to the center. This introduces a bias into how neighboring
intervals swap their lengths.

Our counterexamples feature intervals that require the off-
spring to be placed closer to the extreme objective values
than to the center. This implies that the intervals are more
likely to drift apart from each other rather than getting closer.
Ultimately, this results in an at least super-polynomial run-
time with overwhelming probability until intervals of differ-
ent lengths meet, which is required for an optimal spread.

The SPEA2 does not have this problem as the o-distances
take into consideration more than just the distance to the two
closest neighbors in objective space. It is this additional infor-
mation that allows intervals whose lengths differ by at least
two to get closer to each other and align their lengths better
(which is the essence of the proof of Lemma 10).

In order to prove Theorem 11, we make use of the follow-
ing theorem, which shows that processes that move, within a
certain interval, in expectation away from a target state only
reach their target with a probability exponentially unlikely in
the length of the distance to cover.

Theorem 12 (Negative drift [Kotzing, 2016; Krejca, 2019]).

Let (X¢)ien be random variables over R. Moreover, let Xo <

0, let b € Ry, and let T = inf{t € N | X; > b}. Suppose

that there are values a € R<g, v € (0,b), and e € R such

that for all t € N, we have

(l) E[(Xt+1 *Xt) . 1{Xt Z CL,t < T} ‘ Xt] S E- l{Xt 2

a,t < T}, that

(ll) |Xt —Xt+1| . 1{Xt 2 G/,t < T} < 7v- 1{Xt Z a,t <
T}+1{X; <a,t <T}, and that

(lll) Xt+1 . 1{Xt 2 Cl,t < T} S 0.

Then, for all t € N, we have Pr[T < t] < t2 exp(—%).

Proof of Theorem 11. Note that the only possible changes to

the population are those that change where the intervals of
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length ¢ + 1 or ¢ — 1 are located as well as the change that
averages the two intervals of lengths ¢ + 1 and ¢ — 1 to c.
In the latter case, the algorithm computes an optimal spread.
However, to do so, it is necessary that those two intervals are
next to each other. Before this is the case, they can only move
their interval index by one by swapping their position with a
neighboring interval of length c.

Let T be the first iteration such that the two intervals of
lengths ¢+ 1 and ¢ — 1 are neighbors. We show that the prob-
ability that 7" is polynomial is at most e ~2(") thus proving
the claim. Hence, in the following, we always assume implic-
itly that we only consider iterations ¢ € T such that ¢ < T2

For all t € N, let X; denote the index of the interval of
length ¢ + 1 at the beginning of iteration ¢. (Note that we
omit the case if no such interval exists, as we only consider
iterations less than 7".) Analogously, let Y; denote the index
of the interval of length ¢ — 1 at the beginning of iteration ¢.
Note that both X and Y change by at most 1 in each iteration.

We first consider X and determine its expected change,
aiming to apply Theorem 12. To this end, we only consider
those iterations in which X actually changes (and iteration 0)
and only while X is in [{zn/..sxn/]. Moreover, we assume
that the interval of length ¢ — 1 does not move. Let the result-
ing process be X', and let T}, be the first point in time ¢ € N of
process X' such that X’ > -%n/. Note that X{, = Zn’ by as-
sumption. Furthermore note that for all ¢ € N, if X < %

the same is true for X. Hence, if Y > 1—3671’ until at least T,
then not considering the interval of length ¢ — 1 moving does
not affect the statements about X' at all. We make use of this
observation at the end of this proof.

Since X’ changes in each iteration and it always neigh-
bors an interval of length c during this time (by assumption),
there are only two cases to consider. Let ¢ € N. First, X]
decreases if the steady-state NSGA-II produces an offspring
with ¢(X; — 1) 4+ 1 ones (from the parent with ¢(X] — 1)
ones) and the offspring survives the selection (out of the
parent and the offspring). This amounts to a probability of
((n—c(X]—1))/n) - 3. Note that X/ can decrease since we
omit the case that it is the first interval. Second, X increases
if an offspring with ¢ X ones is created (from the parent with
¢X/{ + 1 ones) and the offspring is selected. This probability
is (cX;4+1/n)-3. Letd == ((n—c(X[—1))/n) 3+ ((cX;+
1)/n) - 4 < 1. Since X' is conditional on X changing and

n,

since we only consider X; < %n/ , we get
—c(X; - 1) cX{+1
EIX! — X! X/:_l_n C(t . t
[ t+1 t| t] 2nd 2nd
_2cX{+c+1-n < 1 1 3 e+l
N 2nd - 2 8 n
1 1
<<z
- 2d — 2
We apply Theorem 12 to (X; — &n)sen witha = — 50/,

b=1n y=1ande = —%. We get for all ¢t € N that

(L16)0'(1/2)\ _ 0 o
S ) = e,

Formally, this requires multiplying each statement with the in-
dicator variable of the event {t < T'}, which we omit.

Pr[T, <] < 2 exp(—

For Y we proceed analogously, defining Y’ in the same
way as X' but only consider iterations where Y is in
[3n/..&&n/]. Moreover, let T, be the first point in time ¢ € N
of process Y’ such that Y} < %n’ . Last, let t € N (less
than 7)) and let &' := ((n — c¥/)/n) - 3 + ((c(Y{ — 1) +

1)/n) - 5 < i. For similar reasons as before, we get

n —cYy Y/ -1)+1

E[Yt/ - }/t/—&-l | Ytl] =-1- nd’ ’ ond'

_ 2¢Y/ —c+1—n i 1_;_c—l

2nd’ -2 8 n
1 1
—— <z,
- 4d T 2

By Theorem 12 applied to (%n’ —Y/)ten, we get for all

t € N that Pr[T,, < #] < 2 exp(— 1202 A/2)y _ y2,-0(n),

Overall, we see that X’ > 13—671’ and Y’/ < %n’ , which is

a necessary condition for the steady-state NSGA-II to com-

pute an optimal spread, occurs for any polynomial number

of iterations only with probability e~2("). Note that since
3

we consider the intersection of the events that X' < En’

and Y/ > %n’ for all iterations less than, respectively, T
and T, it does not matter that we did not consider the other
interval of length not equal to ¢ for the analysis of either pro-
cess. Ultimately, since the original process accounts for even
more iterations than those considered by X’ and Y, the result
follows. O

6 Conclusion

We showed rigorously that the steady-state variant of the
SPEA2, which generates one offspring each iteration, effi-
ciently computes a desired optimal spread of individuals on
the Pareto front of the classic OneMinMax benchmark when
the population size is smaller than the size of the Pareto front
(Theorem 1). Moreover, we proved in the same setting that
the steady-state variant of the NSGA-II can be initialized such
that, with overwhelming probability, it does not compute an
optimal spread within polynomial time (Theorem 11). This
difference in runtime performance is due to the o-distances
used in the SPEA2 for choosing which individual to remove,
in contrast to the crowding distance used by the NSGA-II,
noting that the o-distances are computationally more expen-
sive to compute than the crowding distance.

Our current rigorous upper bound for the expected time of
the SPEA2 to compute an optimal spread is not tight and also
differs from the expected time it takes the algorithm to find
the extreme solutions of the Pareto front. This may be due to
our proof method, which operates in certain progress levels,
only accounting for progress in the worst level, ignoring po-
tential progress elsewhere. Improving this method or showing
that the result is actually tight is an interesting open problem.

Another related problem is to prove a similar expected run-
time for the SPEA2 when using standard bit mutation instead
of 1-bit mutation. The former allows to change individuals
more drastically, making it more challenging to measure the
progress that is being made within a single iteration.
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