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Abstract

The bulk of the literature on opinion optimization in
social networks adopts the Friedkin—Johnsen (FJ)
opinion dynamics model, in which the innate opin-
ions of all nodes are known: this is an unrealis-
tic assumption. In this paper, we study opinion
optimization under the FJ model without the full
knowledge of innate opinions. Specifically, we bor-
row from the literature a series of objective func-
tions, aimed at minimizing polarization and/or dis-
agreement, and we tackle the budgeted optimiza-
tion problem, where we can query the innate opin-
ions of only a limited number of nodes. Given the
complexity of our problem, we propose a frame-
work based on three steps: (1) select the limited
number of nodes we query, (2) reconstruct the in-
nate opinions of all nodes based on those queried,
and (3) optimize the objective function with the re-
constructed opinions. For each step of the frame-
work, we present and systematically evaluate sev-
eral effective strategies. A key contribution of our
work is a rigorous error propagation analysis that
quantifies how reconstruction errors in innate opin-
ions impact the quality of the final solutions. Our
experiments on various synthetic and real-world
datasets show that we can effectively minimize po-
larization and disagreement even if we have quite
limited information about innate opinions.

1 Introduction

The synergetic effect of natural homophily and the algorithms
employed by social media platforms, e.g., who-to-follow rec-
ommender systems and “feed” content rankers, largely con-
stitutes the information diet of social media users, aligning
it with their own opinions. This, together with the natu-
ral tendency to confirmation bias [Del Vicario et al., 20171,
leads to the so-called “echo-chamber” effect [Quattrocioc-
chi et al., 2016; Cinus et al., 2022], where individuals with
similar mindsets reciprocally reinforce their pre-existing be-
liefs, which in turn leads to polarization [Nikolov et al., 2015;
Pariser, 2011]. The rising awareness of the societal risks
of extreme polarization driven by social media has spurred
a great deal of research on algorithmic interventions aimed

at mitigating these harmful effects [Hartman et al., 2022;
Garimella et al., 2018; Aslay et al., 2018; Garimella et al.,
2017; Tu et al., 2020]. While the bulk of this literature fo-
cuses on a static setting, a growing body of work takes into
consideration the dynamic nature of the underlying opinion-
formation process [Musco et al., 2018; Cinus et al., 2023;
Chen et al., 2018; Zhu et al., 2021; Xu et al., 2021], in
particular adopting the widely used Friedkin—Johnsen (FJ)
opinion-dynamics model [Friedkin and Johnsen, 1990].

Background and Related Work. In the FJ model, social
media users are depicted as nodes in a network and social
ties are represented by edges. Each individual has an innate
opinion, which may differ from their expressed opinion on
social media, due to various factors, such as social pressure
or fear of judgement. The model operates through an itera-
tive process where users adjust their expressed opinions by
taking a weighted average of their own innate opinion and
the expressed opinions of their connected peers. It is well
known that the equilibrium state of expressed opinions has
an analytic form based on the Laplacian of the network and
the innate opinions [Musco et al., 2018]. Due to its linear
algebraic nature, the model has inspired several optimiza-
tion problems involving susceptibility [Abebe er al., 2021;
Marumo et al., 2021], stubbornness [Xu et al., 2022], expo-
sure timelines [Zhou et al., 20241, and adversarial attacks [Tu
et al., 2023]. Additionally, the model has led to some
generalizations such as randomized interactions [Fotakis et
al., 2016], dynamic social pressure [Ferraioli and Ventre,
20171, and discrete opinion settings [Chierichetti et al., 2013;
Auletta et al., 2016].

In the literature on optimization problems under the FJ
model, the seminal work of [Musco et al., 2018] introduced
the problem of minimizing the sum of polarization and dis-
agreement by intervening the weights of edges, and designed
a polynomial-time approximation scheme based on the con-
vexity of the objective function. Specifically, they inves-
tigated two problems: the first problem requires to find a
weighted undirected graph that optimizes the objective func-
tion, given a total edge-weight budget and without consider-
ing a specific input network, while the second aims to op-
timize users’ innate opinions. Following up on this work,
several modeling and intervention strategies have been ex-
plored [Chen et al., 2018; Abebe et al., 2021; Zhu et al., 2021,
Cinus et al., 2023; Zhou et al., 2024; Xu et al., 2021].
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Most relevant to our work, [Cinus er al., 2023] recently
extended the problem of [Musco et al., 2018] to general di-
rected networks, where the intervention is on the weights of
out-going edges of each node, i.e., rebalancing the relative
importance of the accounts that the user follows, so as to cali-
brate the frequency with which the contents produced by var-
ious accounts are shown in the social feed of the user.

Our Contributions. All of this body of work on opinion op-
timization under the FJ model assumes that the innate opin-
ions of the nodes are all known and given as input. However,
in practical scenarios, obtaining such information is a task
inherently imprecise and expensive. For example, analyzing
user opinions on a controversial topic (e.g., COVID-19 vacci-
nation or Brexit) on a social media platform would require ei-
ther large-scale surveys or extensive behavioral analysis (e.g.,
posts, reposts, and likes on platforms like X). Furthermore,
even in scenarios in which one is able to reconstruct all the
opinions, how the inherent error in such opinion reconstruc-
tion influences the performance in the opinion optimization
task, has not been addressed in the literature.

In this paper, to fill this gap, we consider a series of opin-
ion optimization problems without the full knowledge of in-
nate opinions, and tackling the budgeted optimization prob-
lems, where we can query the innate opinions of only a lim-
ited number of nodes. As objective functions to be min-
imized, following [Chen et al., 2018; Musco et al., 2018;
Zhu et al., 2021; Cinus et al., 2023], we consider polariza-
tion, disagreement, and the sum of the two in both directed
and undirected networks, for a total of six different objec-
tives. As an intervention mechanism, following [Cinus er al.,
20231, we consider re-weighting the relative importance of
the accounts that each user follows.

A crucial step our solution is to effectively reconstruct the
innate opinions of nodes that we did not query. [Neumann et
al., 2024] studies opinion estimation in the FJ model. Their
estimation approach is not directly applicable to our set of
opinion optimization problems, which require gradient de-
scent methods [Musco et al., 2018; Cinus et al., 2023]. A
(non-trivial) adaptation of their algorithm would require nu-
merous evaluations of both the objective values and the gradi-
ents across different solutions, resulting in a significant com-
putational cost. Finally, [Neumann er al., 2024] assumes to
have access to an oracle for the expressed opinions (which we
do not have) and consider only undirected networks, while we
study the optimization problems also on directed graphs.

Roadmap. In §2, we provide the necessary background and
introduce the six objective functions we consider. In §3, we
propose a pipeline that integrates innate opinion reconstruc-
tion with opinion optimization and theoretically characterize
the objectives in terms of convexity and Lipschitz continuity,
deriving their solvability and an upper bound on optimization
error based on opinion reconstruction error. In §4, we present
methods for selecting nodes to query their innate opinions and
reconstructing the opinions of unqueried nodes. For node se-
lection, we use heuristics based on centrality measures. For
opinion reconstruction, motivated by the strong homophily of
innate opinions in real-world networks, we apply strategies
including label propagation [Zhu and Ghahramani, 2002],

graph neural networks [Kipf and Welling, 20171, and graph
signal processing [Lorenzo et al., 2018]. Finally, in §5, we
present experiments on synthetic and real-world datasets with
up to 1.6 million edges. Our key finding is that opinions can
be effectively optimized even with limited information about
innate opinions, using appropriate combinations of node se-
lection strategies and opinion reconstruction methods.

2 Problem Definition

In this section, we first revisit the Friedkin—Johnsen (FJ)
model [Friedkin and Johnsen, 1990], followed by six objec-
tive functions from the literature, i.e., polarization, disagree-
ment, and their combination, in directed networks [Cinus
et al., 2023] and undirected networks [Musco et al., 2018;
Chen et al., 2018; Xu et al., 2021]. Finally, we define the
problem to be addressed in this paper.

Although the FJ model is typically presented in the undi-
rected case, we here focus on the more general and interest-
ing case of directed graphs, following the treatment of [Cinus
et al., 2023]. We thus consider an edge-weighted directed
graph G = (V, E), with n = |V| nodes and m = |E| edges,
where each node ¢ € V corresponds to a user, and each di-
rected edge (4, j) € E indicates that i “follows” j or, in other
words, that j can influence the opinion of 7. For each edge
(i,7) € E, the edge weight a;; quantifies the strength of in-
fluence that user j exerts on user ¢, for example, based on
how frequently content produced by j appears in the social
feed of <. We assume that a;; > 0if (¢,5) € E and a;; =0
if (i,7) ¢ E and we represent all the weights as a matrix A,
ie., Afi,j] = a;;. In the FJ model, each node i € V has
an innate opinion s; about one topic, which may differ from
their expressed opinion z; on social media about the same
topic, due to various factors, such as social pressure or fear
of judgement. The sets of innate and expressed opinions, for
all nodes in the network, are represented by vectors s € R"
and z € R"”, respectively. The nodes update their expressed
opinions, based on the expressed opinions of their neighbors
and their own innate opinions. Specifically, for each node
1 € V, its expressed opinion z; at time ¢ + 1 is given by the
average of the expressed opinions of its neighbors at time ¢
and its own innate opinion, weighted by the strength of their
influence. If we denote by D°"* the diagonal matrix whose
i-th diagonal entry is the weighted out-degree of node 1, i.e.,
D[, i] = 37,y Ali, j], and by z® the vector of the ex-
pressed opinions at time ¢, the opinion-update rule can be
written in matrix notation as

20 = (DO + 1)1 (Az® +s). (1)

By iterating Eq. (1) and using the matrix convergence the-
orems [Burden et al., 2015, Theorem 7.17 and Lemma 7.18],
we can find the equilibrium of the system, where the opinions
of all nodes have converged to a steady state. Specifically, the
equilibrium is given by

zt = (I1+L)" s, )
where L = D°% — A is the Laplacian matrix of G [Cinus
et al., 2023]. Eq. (2) shows that the equilibrium opinions

depend only on the innate opinions and the structure of the
social network.
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Following the literature [Cinus et al., 2023], we assume
that the adjacency matrix A of the directed graph G is row-
stochastic, i.e., A1 = 1, where 1 denotes the all-ones vector.
This assumption allows for a straightforward interpretation
that the total amount of influence each node receives sums to
1. In this case, the Laplacian L is given by L = D% — A =
I — A. Thus, the equilibrium opinion is written as

zt=(21-A)'s.
Finally, as in the literature [Musco et al., 2018; Cinus et al.,
2023], we assume that all opinions are mean-centered, i.e.,
ZueV Z’Z =0.

We are now ready to introduce the six objective functions.
Definition 1 (Polarization for directed graphs (P-DIR)). The
polarization for the equilibrium opinion vector z* is defined
to be the deviation of the opinions of nodes from the aver-
age opinion [Musco et al., 2018]. As the opinions are mean-
centered, the polarization at the equilibrium is defined as
Y uev 252 = 2*"2*. Following [Cinus et al., 2023], the
objective function of P-Dir is given by

fs,L=I-A):=s"(2L-A)" T2l - A)"'s. (3)
Definition 2 (Disagreement for directed graphs (D-DIR)).
Following [Cinus et al., 2023], the disagreement for the
equilibrium opinion vector z* is defined to be the de-
gree of difference of neighboring opinions on G given by
2 (uwyer Qun (2 — 2)?2 = %Z*T(I + DIt — 2A)z*, where
D" is the in-degree counterpart of D, Then, the objective
function of D-Dir is

f(s,L=I—-A):= %ST(2IfA)’T(I+Di“72A)(2IfA)’1s.
)

Definition 3 (Polarization plus Disagreement for directed
graphs (PD-D1R)). We define polarization plus disagreement
as the sum of polarization (3) and disagreement (4), as in [ Ci-
nus et al., 2023]:

f(s,L=I-A):= %ST (2I—-A)~ T (2I4+D™®—2A)(2I-A) " 's.

®)
The Undirected Case. Next, we consider the undirected
version of the three objective functions above. Undirected
graphs are useful to model social networks in which each link
represents a bidirectional “friendship” relation. The formal-
ization used so far applies straightforwardly to the undirected
case by considering any undirected edge {u, v} as the two
directed edges (u,v) and (v,w). In the undirected case, we
can use the symmetry of A and L to simplify the notation.
Following [Musco et al., 20181, the objective functions for
undirected graphs are then defined as follows:

Definition 4 (Polarization for undirected graphs (P-UNDIR)).

f(s,L):=s" (I+L) 3s. (6)

Definition 5 (Disagreement for undirected graphs

(D-UNDIR)).
f(s,L):=s"(I+L)'LOI+L) 's. @)
Definition 6 (Polarization plus Disagreement for undirected
graphs (PD-UNDIR)).
f(s,L):=s"(I+L) 's. ®)

2.1 Our Problem

Given a graph G and influence weights A along its edges, our
goal is to adjust the edge weights A so as to minimize one of
the six objective functions above. As discussed in Introduc-
tion, our intervention corresponds to re-weighting the rela-
tive importance of the accounts that each user follows, so as
to calibrate the frequency with which the contents produced
by various accounts are shown to the user. Earlier works
have studied similar tasks on undirected [Chen et al., 2018;
Musco et al., 2018] and directed graphs [Cinus et al., 2023].
However, the problem we consider is much more complex,
as we assume that we have no prior knowledge of the in-
nate opinions s, and instead, we are given a budget b € Z~
that represents the number of nodes we can query their innate
opinions. We assume that if we query the innate opinion s,
for v € V, we can obtain the exact value of s,.

Following [Cinus et al., 2023], we restrict the feasible set
of solutions to adjacency matrices where the set of edges is a
subset of the edges in the input graph and the out-degree of
each node is preserved. By doing so, we are asked to use only
pre-existing links and preserve the total engagement of each
user in the social network. Formally, given the adjacency ma-
trix A for a directed graph G, we define the convex set of
feasible solutions as follows:

C(A) ={X eRI" | X1=A1A[;,j] =0 = X[i,j] =0}.
In the case of undirected graphs, the feasible set is
C(L) ={X e L" | Tr(X) = Tr(L), L3, j] = 0 = X[i, j] = 0}

where L is the set of Laplacians for graphs with n nodes.

Here we adopt the approach of [Musco et al., 2018], where

the weighted degree of the nodes is not necessarily preserved.
We are now ready to define the problem.

Problem 1. We are given an edge-weighted directed (resp.
undirected) graph G = (V, E) with the unknown innate opin-
ion vector s € R". We are also given a budget b € Z~. The
goal is to find a new adjacency matrix A* € C(A) (resp.
Laplacian L* € C(L)) that minimizes the specified objective
function among Egs. (3)—(5) (resp. Eps. (6)—(8)) defined for
the unknown innate opinion vector s, under the assumption
that we can query the innate opinions of at most b nodes.

3 Characterization

Given the complexity of our problem, we propose a frame-
work based on three steps (which we will detail in Section 4):
(1) select b nodes and observe their innate opinions, (2) recon-
struct the innate opinions of all nodes, using the b observed
opinions and the network structure, and (3) optimize the ob-
jective function with the reconstructed opinions.

In this section, to characterize the importance of steps (1)
and (2), we quantify how the reconstruction error of innate
opinions affects the final quality of solutions. The main result
of our analysis is presented in Theorem 1, revealing how the
reconstruction error together with the Lipschitz constant of
the objective function bound the error of optimization. To
complete the analysis, we then derive the Lipschitz constant
of each objective function with respect to the opinion vectors.

All proofs are deferred to the Supplementary Material'.

'https://github.com/FedericoCinus/Query-MinPD
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Objective Convex  Gradient w.r.t. s K

P-DIR X 2021 - A)"T(2I - A)" s 2

D-DIR X (2I-A)"TI+D™ -2A)21 - A)7's  1+A(G)
PD-DIR X (21— A)"T@2I+D™ - 2A)(2I - A)"'s 2+ A(G)
P-UNDIR X 2(I+L)%s 2
D-UNDIR X 2(I+ L) 'LI+L)"'s 2A(G)
PD-UNDIR ¢ 2(I+L)"'s 2

Table 1: Summary of the six objectives functions, convexity w.r.t.
the Laplacian matrix L, gradients w.r.t. the opinion vector s, and
their corresponding Lipschitz constants K.

3.1 Hardness

First, we discuss the hardness of the node selection problem
for opinion reconstruction and the non-convexity of most ob-
jectives. These results build a taxonomy of objective func-
tions related to the FJ model, as summarized in Table 1.

Node Selection for Opinion Reconstruction. In general,
selecting an optimal subset of nodes to query, which min-
imizes the error of some estimate, is a well-known prob-
lem in optimal design [Pukelsheim, 2006]. This involves
choosing a subset of b sample locations to recover the un-
known parameter s. When experiments are selected inte-
grally, as in our problem, standard criteria such as A-optimal
design, D-optimal design, and E-optimal design are known
to be NP-hard, even in the simplest cases like linear experi-
ments [Madan et al., 2019]. This implies the potential diffi-
culty of node selection in our problem.

Non-Convexity of Objective Functions. We next state the
non-convexity of our objectives, except for PD-UNDIR being
convex, related to the solvability of the problems.

Proposition 1. The objectives (3)—(7) are not matrix-convex.

Proposition 2. The objective (8) is matrix-convex.

3.2 Error Analysis

Let s and S be the true innate opinions and the reconstructed
innate opinions, respectively. We define the reconstruction
error of § to be ||s —$§||. In general, a function f on R"™ is said
to be K-Lipschitz continuous if there exists a constant K such
that for all x,y in its domain, |f(x) — f(y)| < K||x — y|,
where the parameter K is called a Lipschitz constant. The fol-
lowing theorem shows how the reconstruction error together
with the Lipschitz constant of the objective function bound
the error of optimization.

Theorem 1. Let L* and L be optimal solutions, which min-
imize f(s,L) and f(S,L) in Egs. (3)—(8), respectively, over
the feasible set defined. Suppose that f is K-Lipschitz con-
tinuous with respect to the first argument. Then, it holds that

f(s,L) = f(s,L*) < 2K]|s — 3.

This implies the following multiplicative approximation:
Corollary 1. Under the assumptions of Theorem 1 together
with f(s,L*) # 0, it holds that

fL)

fls, %) —

2K ||s — 8|
f(s,1L7)

The right-hand-side represents an approximation ratio of L
with respect to the true innate opinions s. From Proposition 1,
we know that most of the objectives are non-convex, and for
those objectives, no exact algorithm is known in the literature.
However, for the objective PD-UNDIR, we can apply Corol-
lary 1, due to the convexity of the objective (Proposition 2).

Finally, we provide Lipschitz constants for each objective
function in Egs. (3)-(8). Along with Theorem 1 and Corol-
lary 1, this establishes an upper bound on the optimization
error associated with the reconstruction error.

Proposition 3. The objective functions in Egs. (3)—(8) are
Lipschitz continuous on the space R™ with the following Lip-
schitz constants: for P-DIR, K = 2; for D-DIR, K =
1+ A(G); for PD-DIR, K = 2 + A(G); for P-UNDIR,
K = 2; for D-UNDIR, K = 2A(G); and for PD-UNDIR,
K = 2; where A(G) is the maximum (in-)degree of G (di-
rected or undirected).

The proof proceeds as follows: First, we derive the gradient
of the objective function with respect to the opinion vector to
express the Lipschitz constant in its infinitesimal form. Next,
we relate the Lipschitz constant to the spectral norm of the
gradient matrix, which can then be bounded.

4 Methods

Here, we outline the three steps of our proposed framework,
with detailed explanations, pseudocodes, and time complex-
ity analyses provided in the Supplementary Material.

4.1 Node Selection Strategies

To mitigate computational bottlenecks, we employ three
heuristic approaches based on centrality measures, which se-
lect the top-b nodes with respect to the following: Degree
Centrality, which represents the sum of a node’s in-degree
and out-degree; Closeness Centrality [Bavelas, 1950], which
is inversely proportional to the total shortest path distances
from a node to all others; and PageRank [Page et al., 1999]
with a damping factor of 0.85.

As a baseline, we also include a random uniform strategy
for node selection, which selects b nodes uniformly at random
without leveraging any structural properties of the network.

4.2 Opinion Reconstruction Methods

Based on the innate opinions of the b selected nodes, we aim
to reconstruct the innate opinions of the remaining nodes as
accurately as possible. To this end, we consider three types
of reconstruction methods: Label Propagation-based, GNN-
based, and Graph Signal Processing-based algorithms.

Label Propagation (LP). We extended LP [Zhu and Ghahra-
mani, 2002] to handle continuous values by initializing all
node values to zero, setting selected nodes to their true values,
and iteratively updating the remaining nodes to the average of
their neighbors over a fixed number of iterations.

Graph Neural Networks (GNN). We use a GCN [Kipf and
Welling, 2017] to reconstruct unknown opinions by propa-
gating known opinions from selected nodes, initializing node
features with these values (or zero if unavailable), and train-
ing with an MSE loss.
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Dataset Statistics

n m Opinion Distribution
Referendum 2,479 154,831 ,I L
Brexit 7281 530607  _mMmmBllla_
VaxNoVax 11,632 1,599,220 el
directed/moreno-highschool 70 366 -III-III_-
directed/wiki-talk-ht 82 154 - -II.I-,_
directed/moreno-innovation 108 510 --.I..III-
directed/moreno-oz 216 2,667 —annlilnn._
directed/librec-filmtrust-trust 425 1,363 ,_-llI.-_
directed/dnc-temporalGraph 949 4,029 —nlllln.
directed/librec-ciaodvd-trust 1,309 27,239 ,-IIII.I_
directed/moreno-health 2,298 11,999 e | .
undirected/ucidata-zachary 34 78 __--I _____
undirected/moreno-beach 43 336 — ,_I-__
undirected/moreno-train 64 243 _-I__
undirected/out.mit 9% 2,539 . |
undirected/dimacs10-football 115 613 _-Illlll__

Table 2: Statistics of our datasets. We plot the distribution of the
standardized innate opinions (i.e., average opinion is zero). The first
three datasets contain direct follow networks on X and real opinions.
The other networks obtained from KONECT [Kunegis, 2013] are
associated with opinions sampled from Gaussian distributions.

Graph Signal Processing (GSP). We use GSP to reconstruct
opinions, assuming the graph signal f : V' — R (opinions
in our case) is bandlimited and can be expressed as a linear
combination of a limited number of the Laplacian eigenvec-
tors. Using mild assumptions for perfect recovery and noise
from [Lorenzo et al., 2018], we apply the best linear unbiased
estimator (BLUE) [Winer et al., 1971] to infer opinions from
sampled nodes.

4.3 Optimization

In directed graphs, the objective functions (3)—(5) are non-
convex, and no approximation algorithm is known in the lit-
erature. To address these computational challenges, we em-
ploy a constrained gradient-descent approach as in [Cinus et
al., 2023]. In the case of undirected graphs, we formulated
the problem with PD-UNDIR as a semidefinite programming
(SDP) with CVX as in [Musco et al., 2018]. For the other ob-
jectives and constraint, we apply the projection steps in [Ci-
nus et al., 2023]. We compute a local minimum, using the
reconstructed opinions as input.

5 Experimental Evaluation

In this section, we asses our framework and the impact of
the reconstruction error on solution quality, compared to the
ground-truth opinions. We present experiments on 16 net-
works with up to 1.6 million edges, considering both real
opinions and synthetic opinions generated with varying distri-
butions and polarization levels. Dataset statistics are provided
in Table 2. Additional experiments on opinion distribution
variations, runtime analysis, sensitivity studies, and baselines
comparison are provided in the Supplementary Material.

Evaluation. We evaluate the accuracy of an algorithm as fol-
lows. Let Larg and L;;  be the solutions obtained by the
algorithm with the reconstructed innate opinions and the true
innate opinions, respectively. Note that we can only com-
pute L o1, when the true innate opinions are unavailable, but
L ;,c is also computed in experiments for evaluation. Then
f(s;Larc)

f (S7LZLG) ’
refer to as the multiplicative error. As the denominator is

(even beyond) the best possible achievable by the algorithm,
the multiplicative error can be interpreted as a measure of
how far the solution’s quality deviates from this benchmark.
Therefore, the smaller the multiplicative error is, the better
the solution’s quality.

the quality of solution is measured by which we

Reproducibility. Experimental settings are in the Supple-
mentary Material. Our code is available at https://github.com/
FedericoCinus/Query-MinPD.

5.1 Results

Real-world Datasets (Directed Graphs). Results are pre-
sented in Table 3. We use the three real-world datasets from
X, as shown in Table 2, and validate performance across the
three objectives for directed graphs in Table 1. Our frame-
work tests three reconstruction methodologies — LP, GNN,
and GSP, from Section 4, using reconstructed opinions from
b = 0.2|V] selected nodes, with this choice validated in Fig-
ure 2. Nodes for opinion reconstruction were selected based
on Degree Centrality. Other selections of node sizes and
strategies are tested in subsequent experiments.

The results show that LP, despite being the most compu-
tationally efficient, consistently achieves the lowest errors
across all objectives and datasets, with multiplicative errors
ranging from 1.16 to 2.08. For the P-DIR objective, LP re-
duces the error by up to 1.13 compared to GSP, even though
this strategy has been optimized for undirected graphs. For
the D-DIR objective, the maximum difference between the
multiplicative errors reduces to 0.65, but it is even greater
than that in PD-DIR (with a maximum difference of 0.42).
The general trend suggests that the D-DIR objective appears
to be the most challenging to optimize, with a maximum mul-
tiplicative error exceeding 2. This could be due to a depen-
dence between network size and the error bound, as indicated
by Proposition 3, where the function f is shown to be Lips-
chitz continuous with a constant related to A(G).

Semi-Synthetic Datasets (Directed Graphs). Results are
presented in Table 4. We consider the 8 real-world directed
networks in Table 2 and a polarized opinion distribution that
reflects community structures.

In general, our framework yields multiplicative errors be-
low 2. The GNN reconstruction methodology consistently
achieves multiplicative errors below this value. Nevertheless,
LP, while the fastest method, provides the lowest multiplica-
tive errors, except for “ciaodvd-trust” and “wiki talk ht” net-
works, where it consistently shows higher multiplicative er-
rors across all three objectives. P-DIR, at this scale, consis-
tently exhibits the highest errors across all methods and net-
works. The maximum multiplicative errors for the least per-
forming methods in this objective function reach up to 2.74.
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Multiplicative Error
Rec Method | GNN  GSP LP
Objective Network

P-DIR Referendum | 1.33 2.35 1.22
Brexit 2.09 232 1.76
VaxNoVax 1.85 236 141
D-DIR Referendum | 1.99 2.07 1.42
Brexit 2.66 2.53 2.08
VaxNoVax | 2.16 1.96 1.44
PD-DIR  Referendum | 1.19 1.58 1.16
Brexit 1.31 133 1.19
VaxNoVax 1.33 1.39 1.16

Table 3: Multiplicative errors for the three objectives (D-DIR, P-
DIR, PD-DIR) for 3 real-world directed graphs with different sizes
(n). Opinions are derived from the average stance of tweets users
retweeted.

Similar trends are observed with uniformly distributed
opinions (Table 8 in the Supplementary Material): LP outper-
forms the other methods except for “wiki talk ht” and “dnc-
temporal” networks.

Semi-Synthetic Datasets (Undirected Graphs). Results are
presented in Table 5. We consider the 5 real-world undirected
networks in Table 2 with a polarized opinion distribution that
reflects community structures. Network sizes are limited to
approximately 100 nodes to avoid the computational bottle-
neck inherent in the SDP approach for finding an optimal so-
lution. We test the performance of our framework in mini-
mization of PD-UNDIR. This problem is well-studied in the
literature and includes a standard projection step onto the set
of SD matrices [Musco et al., 2018]. For P-UNDIR and D-
UNDIR, no projection step is known in the literature.

Multiplicative errors show greater variability across dif-
ferent graphs in undirected settings compared to directed
ones. This would be because the current optimization prob-
lem (PD-UNDIR minimization) allows the algorithm to find
a global optimum, resulting in a relatively small value of the
denominator in the multiplicative error calculation.

Bounds on the multiplicative error are presented as aver-
ages, following Corollary 1 and Proposition 3. These bounds
are sensitive to the numerical value of the global minimum of
the objective. When the minimum is quite small, it can lead
to very large bounds that are not practically useful. This oc-
curred in 2 out of 5 instances in our experiments, specifically
with the “beach” and “mit” networks. As a result, the bounds
are larger than the actual error, indicating that, in practice, the
problem is less challenging than theoretically predicted, and a
tighter bound likely exists at this graph size scale. The bounds
on the optimization error are proportional to the reconstruc-
tion errors, meaning that better performance is closely linked
to improved reconstruction accuracy. For instance, the GNN
strategy consistently achieves lower multiplicative errors (up
to 1.7 times lower) compared to the GSP method. The LP
method is comparable to GNN, except for “football” network,
where it outperforms the others with a multiplicative error be-
low 2.

Effect of Node Selection Strategies. The results are pre-
sented in Table 6. We consider real-world datasets to com-
pare different node selection strategies to select b = 0.2|V|
nodes for reconstruction with the LP method.

Multiplicative Error
Rec Method GNN GSP LP
Objective Network

P-DIR highschool 1.87+040 1.97+030 1.68+0.28
wiki talk ht 1.28+£0.18 1.25+0.13 1.34+£0.27
innovation 1.98 +0.22 2.06£0.25 1.80+0.21
oz 1.83+0.17 2.74+0.22 1.78+0.17
film-trust 1.28+0.06 1.474+0.09 1.27+0.06
dnc-temporal | 1.30+£0.14  1.36 £0.08 1.25+0.14
ciaodvd-trust | 1.56 +£0.07 2.50+0.14 2.54+0.14
health 1.75+£0.07 1.924+0.07 1.57+0.06
D-DIrR highschool 1.48+0.20 1.48+0.17 1.42+0.15
wiki talk ht 1.244+0.18 1.21+0.14 1.34+0.17
innovation 1.69+0.17 1.71+0.15 1.51+0.15
oz 1.57+0.15 193+£0.12 1.47+0.14
film-trust 1.23+£0.05 1.244+0.06 1.22+0.05
dnc-temporal | 1.30+0.13 1.25+0.11 1.35+0.11
ciaodvd-trust | 1.45+0.04 1.53+0.06 1.52+0.03
health 1.45+£0.06 1.50+0.05 1.36=+0.04
PD-DIR highschool 1.43+0.15 1.424+0.12 1.32+0.09
wiki talk ht 1.23+0.18 1.20+0.12 1.28+0.23
innovation 1.43+0.11 1.39+0.12 1.35+0.10
oz 1.39+0.09 159+0.09 1.40+0.09
film-trust 1.16+£0.04 1.244+0.05 1.15+0.03
dnc-temporal | 1.19+£0.12  1.22+0.08 1.16+0.12
ciaodvd-trust | 1.19 £0.05 1.46+£0.07 1.56+0.05
health 1.37+0.02 1.37+0.02 1.29+0.02

Table 4: Average multiplicative errors for the three objectives (D-
DIR, P-DIR, PD-DIR) for 8 real-world directed graphs with differ-
ent sizes (|[V|). Opinions are Gaussian distributed around a mean
corresponding to one of the assigned communities. This opinions
are reconstructed with b = 0.20|V'| sampled nodes.

Multiplicative Error (Bound)
Rec Method GNN GSP LP
Network
zachary 1.69+0.29 (7) 2.40 +0.36 (9) 1.70 £ 0.24 (8)
beach 2.22+0.16 (67) 4.03+0.70 (94) 2.27£0.20 (70)
train 1.46 +£0.13 (4) 2.69 +0.41 (7) 1.82+0.26 (6)
mit 1.07£0.11 (9,540) 1.07£0.11 (12,067) 1.09+0.15 (9,071)
football 2.11+0.53 (3) 2.57+£0.72 (4) 1.93 +£0.44 (3)

Table 5: Average multiplicative errors in PD-UNDIR minimization
in undirected graphs.

On average, PageRank proves to be the most effective strat-
egy for selecting nodes, while Degree Centrality shows con-
sistently strong performance compared to the random strat-
egy. For P-DIR, using Degree Centrality and PageRank can
reduce the multiplicative error by up to 0.2 and 0.24, respec-
tively, compared to random selection. For D-DIR, using De-
gree Centrality can reduce the multiplicative error by up to
0.3 compared to random selection; 0.33 for PageRank. For
PD-DIR, using Degree Centrality can reduce the multiplica-
tive error by up to 0.12 compared to random selection; 0.15
for PageRank. Closeness Centrality yields comparable re-
sults, although it performs less consistently, particularly on
the “Referendum” network. Results for real directed net-
works with synthetic opinions are presented in Table 10 in
the Supplementary Material. These results are consistent,
showing the superiority of Degree Centrality and PageRank,
except for “ciaodvd trust” network where the random strat-
egy outperforms the others. It is worth noting that selecting
nodes uniformly at random tends to cover diverse parts of the
network, and given the fact that the innate opinions in real-
world networks have a strong homophily, the random strategy
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Multiplicative Error
Sel Method | Closeness centrality Degree PageRank Random
Objective Network
P-DIR  Referendum 1.44 1.22 1.21 1.27
Brexit 1.74 1.76 1.75 1.87
VaxNoVax 1.37 1.41 1.37 1.61
D-DIrR Referendum 1.57 1.42 1.44 1.52
Brexit 2.06 2.08 2.04 2.35
VaxNoVax 141 1.44 1.41 1.74
PD-DIR  Referendum 1.23 1.16 1.17 1.22
Brexit 1.18 1.19 1.18 1.28
VaxNoVax 1.14 1.16 1.13 1.28

Table 6: Multiplicative errors for the three objectives (P-DIR, D-
DIR, PD-DIR) for different node selection strategies in real-world
datasets.
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Figure 1: Average multiplicative errors vs. number of nodes in (left)
Erd6s Rényi graph with p = 0.25, and polarized distribution of
opinions; (right) Barabdsi Albert graph with m = 5, and polarized
distribution of opinions.

would be reasonable and sometimes better than sophisticated
ones. Despite the strong performance of PageRank, Degree
Centrality strikes a better balance among quality, consistency,
and computational efficiency. As such, we use Degree Cen-
trality as the default strategy in subsequent experiments.

Effect of Network Size. The results are depicted in Figure 1.
We consider two synthetic directed networks with sizes rang-
ing from 100 to 5,000 nodes. We create a polarized opinion
distribution reflecting communities and test the capabilities
of our framework using the LP strategy. We measure the per-
formance in minimizing the three objectives, P-DIR, D-DIR,
and PD-DIR, with respect to the number of nodes. We use
Degree Centrality to select 20% of nodes in each instance for
opinion reconstruction.

Except for D-DIR, multiplicative errors are generally con-
stant, with higher volatility observed in the Barabasi-Albert
graph. At this range of network sizes, D-DIR shows an in-
creasing error with respect to the number of nodes, followed
by a plateau, suggesting that non-constant error is introduced
by some network structures. These observations align with
our upper bounds and underscore the importance of character-
izing the inter-dependence between networks and the objec-
tives. This is the first necessary step toward understanding the
minimization of such known objectives in an unknown opin-
ion setting, necessitating further analysis and experiments.

Effect of the number of selected nodes. The results are de-
picted in Figure 2. We consider the “Referendum” dataset to
compare different node selection sizes, ranging from 100 up
to the size of the network (2,479 nodes).

As expected, the multiplicative error in each objective de-
creases as the number of selected nodes increases, but dif-

GNN GSP LP
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Figure 2: Multiplicative error vs. number of sampled nodes in the
Referedum dataset.

ferent patterns emerge. D-DIR shows the slowest rate of de-
crease compared to the other objectives across reconstruction
strategies. In particular, the GNN strategy exhibits a plateau
in the error curve, while LP displays a monotonically decreas-
ing behavior. This is why LP has been chosen as the main
reconstruction strategy in other experiments, in addition to its
computational efficiency. The significant drop in multiplica-
tive errors occurs between 15-20% of the node size. The 20%
threshold, indicated in black, represents the selected node size
used in all other experiments. In GSP, the number of selected
nodes is linked to the number of frequencies, which is always
smaller than the number of selected nodes. A sensitivity anal-
ysis is presented in Figure 3 in the Supplementary Material.

6 Conclusions

This paper contributes to the literature on opinion optimiza-
tion in social networks under the Friedkin—Johnsen (FJ)
model, which assumes innate opinions are fully known. We
address the novel problem of opinion optimization under a
budget constraint, where the goal is to minimize polarization
and/or disagreement by querying a limited number of nodes
for their innate opinions. To tackle this, we propose a frame-
work integrating node selection, opinion reconstruction, and
optimization, systematically evaluating alternative strategies
for each component and identifying the most effective ap-
proaches. Our results demonstrate the framework’s practical-
ity, achieving multiplicative errors consistently below 2 and
as low as 1.1. Additionally, our error propagation analysis
quantifies how reconstruction errors in innate opinions im-
pact the quality of final solutions, offering guidelines for re-
searchers and practitioners, particularly for objectives involv-
ing disagreement, whose bounds scale with network size.

Although our experiments scale to networks with up to
1.6 million edges, larger real-world networks require more
scalable methods. Techniques like GraphSAGE [Hamilton et
al., 2017] could address this challenge, while active learn-
ing strategies adapted to graph structures may improve node
selection efficiency. Robustness in heterophilic networks,
where dissimilar nodes connect, remains an open challenge,
and developing heuristics for such cases is a key avenue for
future work. From a theoretical perspective, tighter bounds
leveraging network structures that constrain Laplacian eigen-
values could provide stronger guarantees for optimization
performance. Finally, real-world deployment must account
for platform-specific constraints, which can be addressed by
adapting the solution space accordingly.
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Ethics Statement

Societal Impact. Our work proposes a framework for opin-
ion optimization under the Friedkin—Johnsen model to mit-
igate polarization while addressing the challenge of incom-
plete information. By leveraging the interplay between net-
work structure, innate opinions, and opinion dynamics, this
research contributes to efforts aimed at designing interven-
tions that reduce polarization and promote healthier discourse
in online environments.

Ethical Aspects. Although this work is grounded in theoret-
ical models and analysis, it carries significant ethical impli-
cations. Our experiments are conducted using anonymized
datasets to ensure that no personally identifiable information
is used or exposed. Nonetheless, methods for inferring opin-
ions inherently carry risks, such as enabling the targeting of
individuals based on their inferred opinions. Furthermore, the
framework and analysis presented here could, in principle, be
repurposed to maximize polarization rather than mitigating it,
simply by changing the sign of the objective function.

We acknowledge these risks and emphasize that our work
aims to advance ethical and privacy-conscious machine learn-
ing. By prioritizing the minimization of polarization and pro-
moting responsible approaches to opinion dynamics, we seek
to contribute to societal challenges constructively. Balancing
these potential harms, we hope our research sets an example
for the development of fairer, more transparent, and ethically
grounded interventions in opinion optimization.
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