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Abstract
This work conducts a first theoretical analysis
studying how well the NSGA-III approximates the
Pareto front when the population size N is less than
the Pareto front size. We show that when N is at
least the number Nr of reference points, then the
approximation quality, measured by the maximum
empty interval (MEI) indicator, on the ONEMIN-
MAX benchmark is such that there is no empty in-
terval longer than ⌈ (5−2

√
2)n

Nr−1 ⌉. This bound is in-
dependent of N , which suggests that further in-
creasing the population size does not increase the
quality of approximation when Nr is fixed. This is
a notable difference to the NSGA-II with sequen-
tial survival selection, where increasing the popu-
lation size improves the quality of the approxima-
tions. We also prove two results indicating approx-
imation difficulties when N < Nr. These theo-
retical results suggest that the best setting to ap-
proximate the Pareto front is Nr = N . In our
experiments, we observe that with this setting the
NSGA-III computes optimal approximations, very
different from the NSGA-II, for which optimal ap-
proximations have not been observed so far.

1 Introduction
The non-dominated sorting genetic algorithm
II (NSGA-II) [Deb et al., 2002] is the most
widely used multi-objective evolutionary algo-
rithm (MOEA). The recent first mathematical run-
time analysis of this algorithm [Zheng et al., 2022;
Zheng and Doerr, 2023] has inspired many theoreti-
cal works on domination-based MOEAs such as the
SPEA2 [Zitzler et al., 2001], the SMS-EMOA [Beume
et al., 2007], and the NSGA-III [Deb and Jain,
2014]. Notable results include [Bian and Qian, 2022;
Doerr and Qu, 2023a; Doerr and Qu, 2023b;
Doerr and Qu, 2023c; Dang et al., 2023; Bian et al., 2023;
Dinot et al., 2023; Wietheger and Doerr, 2023;

∗Corresponding author.

Zheng and Doerr, 2024b; Zheng and Doerr, 2024c;
Zheng et al., 2024; Opris et al., 2024; Ren et al., 2024;
Doerr et al., 2025; Alghouass et al., 2025;
Doerr et al., 2025; Li et al., 2025; Opris, 2025a;
Opris, 2025b]. Interestingly, these results suggest that
the slightly less prominent algorithms SPEA2, SMS-EMOA,
and NSGA-III are more powerful than the NSGA-II, at least
when the number of objectives is three or more. This is the
reason why in this work we concentrate on one of them,
namely the NSGA-III.

The mathematical runtime analysis of evolutionary algo-
rithms [Neumann and Witt, 2010; Auger and Doerr, 2011;
Jansen, 2013; Zhou et al., 2019; Doerr and Neumann, 2020]
so far has almost exclusively regarded the complexity of com-
puting the full Pareto front. In practice, this is often not feasi-
ble, because the Pareto front is too large, and it may also not
be desirable, since ultimately a human decision maker has
to select one of the computed solutions as the solution to be
adopted. For this reason, we shall discuss the approximation
qualities of the NSGA-III in this work.

In the first and only mathematical work discussing the
approximation abilities of one of the above-named algo-
rithms, Zheng and Doerr [2022; 2024a] analyzed how well
the NSGA-II approximates the Pareto front of ONEMINMAX
when its population size N is less than the size of the Pareto
front. They first observed that the classic NSGA-II, which
first computes the crowding distance and then, based on these
numbers, selects the next population, can compute very bad
approximations, creating empty intervals on the Pareto front
by arbitrary factors larger than what an optimal approxima-
tion displays. This can be overcome by using the sequential
NSGA-II proposed in [Kukkonen and Deb, 2006], which re-
moves individuals sequentially, always updating the crowd-
ing distance values after each removal, or the steady-state
NSGA-II [Durillo et al., 2009], which generates only one off-
spring per iteration and hence also removes only one individ-
ual per iteration. For these two variants of the NSGA-II, it
was proven that within an expected number of O(Nn log n)
function evaluations, approximations with largest empty in-
terval size MEI ≤ max{ 2n

N−3 , 1} are computed. Since the
optimal MEI value for ONEMINMAX and population size
N is ⌈ n

N−1⌉, this is essentially a 2-approximation. No such
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results exist for any other domination-based algorithms, in
particular, not for the NSGA-III.

Our contributions: To fill this research gap, this work
will conduct the first analysis of the approximation ability
of the NSGA-III, and will detect some notable differences to
the NSGA-II. Since ONEMINMAX is the only benchmark for
which the approximation abilities of the NSGA-II-type algo-
rithms were studied, in this first approximation work for the
NSGA-III we shall also regard this bi-objective problem. We
are aware of the fact that generally the NSGA-III is seen as
an algorithm for many-objective optimization, but in this first
work our focus is on a comparison with the NSGA-II via the
results obtained in [Zheng and Doerr, 2024a], so for that rea-
son we restrict ourselves to two objectives. From our proofs,
we would conjecture that our findings can be generalized to
more objectives.

The main approximation guarantee we prove is that with
a population size N at least as the number Nr of reference
points, the NSGA-III computes approximations to the Pareto
front of ONEMINMAX with MEI ≤ ⌈ (5−2

√
2)n

Nr−1 ⌉, and this
within an expected number of O(Nnc log n) function eval-
uations, where c = ⌈ 2(2−

√
2)

Nr−1 ⌉. Recalling that the optimal
MEI is MEI = ⌈ n

N−1⌉, we see that also the NSGA-III can
compute constant factor approximations. Our result shows
this factor to be at most 5 − 2

√
2 ≈ 2.17, slightly larger

than the factor of 2 shown for the sequential and steady-state
NSGA-II.

We also prove that when N < Nr, the approximation can
be worse than an optimal one by a factor of Ω(log n). These
results suggest that the number of reference points is best set
to be equal to the population size, that is, Nr = N . This is
consistent with (and thus supports) the suggestion (without
theoretical explanation) to take Nr ≈ N made in the original
NSGA-III paper [Deb and Jain, 2014].

Experiments are conducted to see how the NSGA-III ap-
proximates the Pareto front for ONEMINMAX. The results
show that with Nr = N , the NSGA-III performs better than
the NSGA-II with sequential survival selection, and always
reaches the optimal approximation. This observation sug-
gests that proving a tighter approximation bound is an inter-
esting target for future research. The experiments also con-
sider the case where Nr > N , and show that the approxima-
tion ability of the NSGA-III becomes worse as Nr increases,
and even the extremal points of the population can be lost
(which cannot happen for the NSGA-II as these points have
infinite crowding distance). To verify the generalizability of
the above theoretical findings and experimental observations
on ONEMINMAX, we also conduct experiments for the pop-
ular LOTZ benchmark. We again observe that the setting of
Nr = N results in optimal approximations, and that large
numbers of reference points, that is, Nr > N , lead to worse
approximations.

In summary, our results show that also the NSGA-III can
compute constant-factor approximations of the Pareto front.
Different from the NSGA-II (with sequential survival selec-
tion or in the steady-state mode), the absolute population size
is less important (in particular, increasing the population size

Algorithm 1: NSGA-III
1 Let the initial population P0 be composed of N

individuals chosen independently and uniformly at
random from {0, 1}n;

2 for t = 0, 1, 2, . . . do
3 Generate the offspring population Qt with size N ;
4 Use fast-non-dominated-sort() [Deb et

al., 2002] to divide Rt = Pt ∪Qt into
F1, F2, . . . ;

5 Find i∗ ≥ 1 such that
∑i∗−1

i=1 |Fi| < N and∑i∗

i=1 |Fi| ≥ N ;
6 Zt ←

⋃i∗−1
i=1 Fi;

7 Use Algorithm 3 to select F̃i∗ ⊆ Fi∗ such that
|Zt ∪ F̃i∗ | = N ;

8 Pt+1 ← Zt ∪ F̃i∗ ;

does not give better approximations), but the relation to the
number of reference points is important for the approxima-
tion ability of the NSGA-III. In particular, we observe that
for approximating the Pareto front, it appears best that Nr

and N are very close, in contrast to the existing result for
computing the full Pareto front [Wietheger and Doerr, 2023;
Opris et al., 2024], which all require N to be at least a con-
stant factor larger than Nr.

2 Preliminaries
This section will give a brief introduction on the NSGA-III,
the algorithm to analyze, ONEMINMAX, the benchmark to
optimize, and the approximation metric that we will use.

2.1 NSGA-III
The overall framework of the NSGA-III is presented in Algo-
rithm 1. The NSGA-III, a variant of the NSGA-II designed
for many objectives, was proposed by Deb and Jain [2014],
and its first runtime analysis was conducted by Wietheger and
Doerr [2023]. Same as the NSGA-II, the NSGA-III main-
tains a population Pt of a fixed size N and generates an off-
spring population Qt of the same size in each iteration. Also
the NSGA-III will remove N individuals from the combined
population Rt = Pt ∪ Qt and first uses the non-dominated
sorting [Deb et al., 2002] to divide Rt into F1, F2, . . . . The
NSGA-III only differs in the secondary criterion used in the
critical front Fi∗ for the survival selection. Instead of the
crowding distance in the NSGA-II, the NSGA-III uses the
following reference point mechanism.

Initially, the objective function values are normalized, and
subsequently, the normalized individuals are associated with
reference points for selection. We adopted the structured ref-
erence point placement method used in [Deb and Jain, 2014],
which is based on the systematic approach by [Das and Den-
nis, 1998]. In this approach, these reference points are uni-
formly distributed on the normalized hyperplane, specifically
on a (M − 1)-dimensional simplex, where each axis inter-
cept is set to 1. The total number of reference points Nr for

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

1 1

1

Figure 1: Structured reference points set for a three-objective prob-
lem with p = 4 [Deb and Jain, 2014].

an M -objective problem with p divisions along each objec-
tive is given by Nr =

(
M+p−1

p

)
. Figure 1 shows an exam-

ple with M = 3 and p = 4. For bi-objective problems, we
have Nr = p + 1. Due to the evenly distributed nature of
reference points, the ideal scenario is for different individ-
uals in the offspring population Pt+1 to be associated with
different reference points. The greater the number and the
more uniform the distribution of reference points associated
with individuals in Pt+1 , the higher its diversity. In the se-
lection of the critical front Fi∗ of the NSGA-III, the number
of individuals already selected to Pt+1 and associated with a
reference point r is referred to as the niche count ρr of that
reference point. The algorithm prioritizes selecting individ-
uals associated with the reference point that has the small-
est niche count ρ if such individuals exist. This strategy in-
creases the number of reference points associated with indi-
viduals in Pt+1, thereby enhancing the diversity of the pop-
ulation. Algorithms 2 and 3 present the algorithmic frame-
works for the normalization and selection processes, respec-
tively. For further details, please refer to [Deb and Jain, 2014;
Blank et al., 2019; Wietheger and Doerr, 2023].

2.2 ONEMINMAX and Approximation Metric
As mentioned before, the bi-objective ONEMINMAX [Giel
and Lehre, 2010] is the only benchmark used in the the-
oretical community to analyze the approximation ability
of the NSGA-II-type algorithms [Zheng and Doerr, 2022;
Zheng and Doerr, 2024a]. For a meaningful comparison, this
work also chooses this bi-objective benchmark (and also the
approximation metric used in these works) to analyze the ap-
proximation ability of the NSGA-III. We believe the tech-
niques and the insights obtained in this work will be useful
for analyzing problems with many objectives.

The ONEMINMAX function is defined as follows, and we
consider its maximization.
Definition 1 ([Giel and Lehre, 2010]). For all search points
x the objective function f : {0, 1}n → N× N is defined by

f(x) = (f1(x), f2(x)) =

(
n∑

i=1

xi, n−
n∑

i=1

xi

)
.

In the language of multi-objective optimization, we say
that x weakly dominates y, denoted as x ⪰ y, if f1(x) ≥
f1(y) and f2(x) ≥ f2(y). If at least one of the two in-
equalities is strict, we say that x dominates y, denoted as

Algorithm 2: Normalization
Input: F1, . . . , Fi∗ : non-dominated fronts;

f = (f1, . . . , fM ): objective function;
z∗ ∈ RM : observed min in each objective;
zw ∈ RM : observed max in each objective;
E ⊆ RM : extreme points from previous
iteration (initially {∞}M );

1 for j = 1 to M do
2 ẑ∗j = min{z∗j ,minz∈Z fj(z)};
3 Determine an extreme point e(j) in the jth

objective from Z ∪ E using an achievement
scalarization function;

4 valid← False;
5 if e(1), . . . , e(M) are linearly independent then
6 valid← True;
7 Let H be the hyperplane spanned by

e(1), . . . , e(M);
8 for j = 1 to M do
9 Ij ← the intercept of H with the jth objective

axis;
10 if Ij ≥ ϵnad and Ij ≤ zwj then
11 ẑnadj ← Ij ;

12 else
13 valid← False;
14 break;

15 if valid =False then
16 for j = 1 to M do
17 ẑnadj = maxx∈F1 fj(x);

18 for j = 1 to M do
19 if ẑnadj < ẑ∗j + ϵnad then
20 ẑnadj = maxx∈F1∪···∪Fi∗ fj(x);

21 Define
fn
j (x) = (fj(x)− ẑ∗j )/(ẑ

nad
j − ẑ∗j ), j ∈ [1..M ];

x ≻ y. If x is not dominated by any individual in {0, 1}n,
it is called Pareto optimal, and the set of function values cor-
responding to all Pareto optimal solutions forms the Pareto
front. It is easy to see that the Pareto front of ONEMINMAX
is {(0, n), (1, n− 1), . . . , (n, 0)}, with a size of n+ 1.

As in the NSGA-II’s approximation theory [Zheng and Do-
err, 2022; Zheng and Doerr, 2024a], we will use the maxi-
mum empty interval (MEI) metric (see Definition 2) to eval-
uate how the algorithm approximates the Pareto front w.r.t.
ONEMINMAX. Note that the MEI can be easily transferred
to other commonly used approximation metrics such as ϵ-
dominance [Laumanns et al., 2002] or Hypervolume [Zitzler
and Thiele, 1998], see [Zheng and Doerr, 2024a].

Definition 2 ([Zheng and Doerr, 2022; Zheng and Doerr,
2024a]). Let S = {(s1, n−s1), . . . , (sm, n−sm)} be a sub-
set of Pareto front M of ONEMINMAX. Let j1, j2, . . . , jm
be the sorted list of s1, . . . , sm in the increasing order (ties
broken uniformly at random). We define the maximum empty
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Algorithm 3: Selection based on a set U of reference
points when maximizing the function f

Input: Zt: the multi-set of already selected
individuals; Fi∗ : the multi-set of individuals to
choose from;

1 fn ← Normalize(f, Z = Zt ∪Fi∗) using Algorithm 2;
2 Associate each individual x ∈ Zt ∪ Fi∗ to the

reference point rp(x);
3 For each reference point r ∈ U , let ρr denote the

number of (already selected) individuals in Zt

associated with r;
4 U ′ ← U , F̃i∗ ← ∅;
5 while True do
6 Let rmin ∈ U ′ be such that ρrmin

is minimal (break
ties randomly);

7 Let xrmin
∈ Fi∗ \ F̃i∗ be the individual associated

with rmin that minimizes the distance between
fn(xrmin) and rmin (break ties randomly);

8 if xrmin exists then
9 F̃i∗ ← F̃i∗ ∪ {xrmin

};
10 ρrmin

← ρrmin
+ 1;

11 if |Zt|+ |F̃i∗ | = N then
12 break all and return F̃i∗ ;

13 else
14 U ′ ← U ′ \ {rmin};

interval size of S, denoted by MEI(S), as

max{j1, n− jm, ji+1 − ji | i = 1, . . . ,m− 1}.
For n ∈ N≥2 := {i ≥ 2 | i ∈ N}, we further define
MEIopt(N) := min{MEI(S) | S ⊆ M, |S| ≤ N, (0, n) ∈
S, (n, 0) ∈ S}.

Obviously, this is the smallest MEI that an MOEA with a
fixed population size N can obtain when the extremal points
(0, n) and (n, 0) are covered.

The optimal MEI value is shown in the following. Our
work will obtain the upper bound of the MEI that the
NSGA-III will achieve w.r.t. ONEMINMAX.
Lemma 3 ([Zheng and Doerr, 2022; Zheng and Doerr,
2024a]). For all N ∈ N≥2, we have MEIopt(N) = ⌈ n

N−1⌉.

3 Approximation Guarantee when Nr ≤ N
In this section, we will theoretically prove that when the num-
ber of reference points Nr ≤ N , the NSGA-III can effec-
tively approximate the Pareto front of ONEMINMAX.

3.1 Reach Extremal Points
To ease the discussion, here we call any optimal solution of
one objective in a multi-objective problem an extremal point.
Note that it is not the same as the extreme point/vector used
to determine the hyperplane, see Algorithm 2. For ONEM-
INMAX, 0n and 1n are the only extremal points. We will
consider whether the two extremal points 0n and 1n can be
reached.

To achieve this, the following lemma will first show that
for Nr ≤ N , the maximal and minimal objective values in
the combined population survives. The key point is that af-
ter the normalization, such values will be mapped to (1, 0) or
(0, 1). Note that (1, 0) and (0, 1) are reference points. Hence,
the above values is closest to such reference points. Since
Nr ≤ N and all solutions are in F1, we know that to select
N individuals in the survival selection in Algorithm 3, the
final ρrmin must be greater than or equal to 1. Thus, before
ρrmin > 1, at least one individual with the maximal or min-
imal objective value (normalized to (1, 0) or (0, 1)) will be
selected into the next generation. Due to the page limit, all
proofs are included in the full version [Deng et al., 2025].
Lemma 4. Consider using the NSGA-III with population size
N to optimize ONEMINMAX with problem size n and sup-
pose that ϵnad ≥ n. Let N < n + 1 and Nr ≤ N . Let
zmin
1 := min{f1(x) | x ∈ Rt} and zmax

1 := max{f1(x) |
x ∈ Rt}, where Rt = Pt ∪ Qt is the combined parent and
offspring population. Then Pt+1 will contain two individuals
x, y such that f1(x) = zmin

1 and f1(y) = zmax
1 .

Note that the offspring generation operator (see Step 3 in
Algorithm 1) will not increase zmin

1 or decrease zmax
1 . Then

Lemma 4 shows that the minimal value of any objective will
not increase and the maximal value of any objective will not
decrease for all generations. Hence, the extremal points 0n

and 1n will not be removed once they are reached. Thus, we
focus on the time to decrease the minimal value of f1 to 0 to
reach 0n, and the time to increase the maximal value of f1
to n to reach 1n. Lemma 5 provides an upper bound on the
runtime for the population to cover these two extremal points.
Lemma 5. Consider using the NSGA-III with population size
N to optimize ONEMINMAX with problem size n and sup-
pose that ϵnad ≥ n. Let N < n + 1 and Nr ≤ N . Then
within an expected number of O(n log n) iterations, that is,
an expected number of O(Nn log n) fitness evaluations, the
two extremal points 0n and 1n will be reached for the first
time, and both points will be kept in all future populations.

3.2 Good Approximation Guarantee
Lemma 5 shows that the population will always contain 0n

and 1n once they are reached for the first time. From basic
calculations based on Algorithm 2, we obtain the following
clear form for the normalized function value when the popu-
lation contains both 0n and 1n.
Lemma 6. Consider using the NSGA-III with population size
N to optimize ONEMINMAX with problem size n and sup-
pose that ϵnad ≥ n. Let N < n + 1 and Nr ≤ N . Assume
that the two extremal points 0n and 1n are included in the
population. Then for any individual x in the population, its
function value f(x) is normalized to fn(x) = 1

nf(x).
With the clear form of the normalized function value ob-

tained in Lemma 6, we easily map the function values to the
normalized space so that we obtain the upper bound of the
distance between the normalized function value and the asso-
ciated reference point in Lemma 7 below.
Lemma 7. Consider using the NSGA-III with population size
N to optimize ONEMINMAX with problem size n and sup-
pose that ϵnad ≥ n. Let N < n + 1, Nr ≤ N , and let
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individual x be associated with reference point r = (r1, r2).
Assume that the two extremal points 0n and 1n are included in
the population. Normalize f(x) to fn(x) = (fn

1 (x), f
n
2 (x)).

Then fn(x) is located in the non-negative region of the refer-
ence point plane and |fn

1 (x)− r1| ≤ 2−
√
2

Nr−1 .

Since 0n and 1n are included in the population, Lemma 7
indicates a good mapping between the evenly distributed ref-
erence points Nr and the desired good approximation of the
evenly distributed function values. It will be our key proof
idea for our approximation guarantee in Theorem 11.

For better description, we call a reference point active or
activated if it has at least one associated individual in the
combined parent and offspring population before the survival
selection. Now we first show in Lemma 8 that once a refer-
ence point is active, it will remain active forever. The key to
the proof is that in Algorithm 3, each reference point will be
selected at least once. Hence, at least one individual associ-
ated with the active reference point is retained.

Lemma 8. Consider using the NSGA-III with population size
N to optimize ONEMINMAX with problem size n and sup-
pose that ϵnad ≥ n. Let N < n + 1 and Nr ≤ N . Assume
that the two extremal points 0n and 1n are included in the
population. Then, if a reference point r has individuals as-
sociated with it, there will always be at least one individual
associated with it in future generations.

As active reference points will remain active, we now cal-
culate the time to activate all reference points, that is, to reach
a status when all reference points have their associated indi-
viduals. From Lemma 7 we have the estimate between the
active reference point and its associated individual’s normal-
ized function value. Then we use the waiting time argument
to estimate the time from an active reference point to gen-
erate a neighbor non-activated reference point. Hence, the
overall time for activating all reference points is obtained in
Lemma 9.

Lemma 9. Consider using the NSGA-III with population size
N to optimize ONEMINMAX with problem size n and sup-
pose that ϵnad ≥ n. Let N < n + 1 and Nr ≤ N . Let
c := ⌈ 2(2−

√
2)n

Nr−1 ⌉. Assume that the two extremal points 0n

and 1n are included in the population. Then after an ex-
pected number of O(nc log n) iterations, that is, an expected
number of O(Nnc log n) fitness evaluations, each reference
point r has at least one individual x associated with it and
this property will be kept for all future time.

Although Lemma 9 estimates the runtime for activating all
reference points, the individuals associated with the same ref-
erence point do not necessarily share the same normalized
function value. Hence, we now use Lemma 7 to estimate the
distance between individuals associated to neighboring refer-
ence points, and then obtain an upper bound on MEI (see the
following lemma).

Lemma 10. Consider using the NSGA-III with population
size N to optimize ONEMINMAX with problem size n and
suppose that ϵnad ≥ n. Let N < n + 1, Nr ≤ N , and let
t0 be the first generation such that the two extremal points
0nand 1n are included in the population. Assume that each

reference point r has at least one individual x associated with
it. Then for any t ≥ t0, we have MEI ≤ ⌈ (5−2

√
2)n

Nr−1 ⌉.
Hence, from Lemmas 5, 9 and 10, we obtain the following

theorem regarding the approximation ability of NSGA-III.

Theorem 11. Consider using the NSGA-III with population
size N to optimize ONEMINMAX with problem size n and
suppose that ϵnad ≥ n. Let N < n+1 and Nr ≤ N . Let c :=
⌈ 2(2−

√
2)n

Nr−1 ⌉. Then after an expected number of O(Nnc log n)
fitness evaluations, a population containing the two extremal
points 0n and 1n and with MEI ≤ ⌈ (5−2

√
2)n

Nr−1 ⌉ is reached
and both properties will be kept for all future time.

From Theorem 11, we see both the upper bound of the MEI
value and the runtime to reach such upper bound heavily de-
pend on Nr, the number of reference points. It is quite dif-
ferent from the NSGA-II (with sequential survival selection)
whose upper bound MEI ≤ max{ 2n

N−3 , 1} [Zheng and Do-
err, 2024a] merely relies on N , the population size. Note that
the optimal MEI = ⌈ n

N−1⌉ merely depends on N , the num-
ber of points, as well. Besides, Theorem 11 shows that the
minimal MEI upper bound of ⌈ (5−2

√
2)n

N−1 ⌉ that the NSGA-III
can reach happens when Nr = N . Although this upper bound
is slightly worse than the one for the NSGA-II with sequential
survival selection discussed before, our experiments in Sec-
tion 5 shows the NSGA-III always reaches the optimal MEI,
and performs better than the NSGA-II.

4 Possible Difficulty for Large Nr > N

In contrast to the approximation guarantee in the previous
section, this section will show that NSGA-III may lose ex-
tremal points and yield poor approximation quality when Nr

is sufficiently large. It is quite different from the existing
theoretical results [Wietheger and Doerr, 2023; Opris et al.,
2024] that require the large enough Nr for their analyses.

4.1 NSGA-III Can Lose Extremal Points
Recall the definition of the extremal pointed in the above sec-
tion. For ONEMINMAX, 0n and 1n are the only extremal
points. Being the optima of single objectives, extremal points
are particularly important and should therefore not be re-
moved from the population. In the NSGA-II, for the multi-
set of any extremal point, at least one of the repetitions will
have infinite crowding distance and will survive to the next
generation if the population size is large enough, say at least
3 for ONEMINMAX. However, the NSGA-III has no such a
special treatment to ensure the extremal points survive to the
next generation. Instead, the removal is determined by the
numbers of already chosen individuals associated to the ref-
erence points, and the extremal points have the chance to be
removed. The following lemma gives an example where the
extremal point can be removed.

Lemma 12. Consider using the NSGA-III with population
size N to optimize ONEMINMAX with problem size n and
suppose that ϵnad ≥ n. Let N ≤ (n + 1)/2 and Nr ≥ 2N .
Assume that before the survival selection, in the combined
parent and offspring population Rt that contains 0n and 1n,
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each reference point has at most one associated individual.
Then after the survival selection, the probabilities to remove
one specific extremal point, to remove at least one specific
extremal point, and to remove both extremal points are 1

2 ,
3
4+

1
4(2N−1) , and 1

4 −
1

4(2N−1) respectively.

The above lemma shows that with a good probability, the
survival selection will lose extremal points for this example.

4.2 Possible Bad Approximation Quality
In addition to the above example that the extremal points can
be removed, here we discuss an example where the survival
selection of the NSGA-III can lead to a quite bad approxima-
tion from a very promising situation. This situation is essen-
tially similar to the one used to show the possible difficulty of
the traditional NSGA-II in [Zheng and Doerr, 2024a].
Lemma 13. Consider using the NSGA-III with problem size
N to optimize ONEMINMAX with problem size n and sup-
pose that ϵnad ≥ n. Let n be odd and N = (n + 1)/2 and
Nr = 2N . Assume that the combined parent and offspring
population Rt covers the full Pareto front. Then the next pop-
ulation has the expected MEI value of Ω(log n).

The optimal MEI value of N = (n+ 1)/2 is ⌈ n
N−1⌉ ≤ 4.

The above lemma shows that even from the above optimal-
looking combined population Rt, the MEI value becomes
Ω(log n) in expectation. Due to the complicated process of
the NSGA-III, we currently do not know how often the above
situation happens. However, our experiments in Section 5
show that the difficulties of the NSGA-III with large number
of reference points exist indeed.

As mentioned before, this work focuses on the approxima-
tion ability of the original NSGA-III. Hence, here we will not
discuss the strategies to overcome the above difficulty stem-
ming from losing extremal points, but leave it as interesting
future research.

5 Experiments
Previous sections gave theoretical approximation results for
the NSGA-III on ONEMINMAX. This section conducts ex-
tensive experiments to address the following three research
questions.

(1) The impact of the number of reference points Nr.
Our theorem shows that the best approximation ability of the
NSGA-III on ONEMINMAX happens when Nr = N . We
will see whether it is experimentally true for ONEMINMAX.
Besides, Section 4 proved the difficulties of the NSGA-III
with Nr > N on special cases. It remains unknown whether
it actually happens.

(2) The actual approximation ability. The upper bound
of the MEI approximation metric obtained in Theorem 11
for ONEMINMAX is a factor of 5 − 2

√
2 larger than the op-

timal value, and is slightly worse than the theoretical bound
for the NSGA-II (with sequential survival selection). We will
see how well the NSGA-III experimentally approximates, to-
gether with its comparison with the NSGA-II.

(3) The verification of the above findings beyond ONE-
MINMAX. The above two concerns are for the verification
on ONEMINMAX as in our theoretical results. A natural

Generations [1..100] [3001..3100]
NSGA-II’ (11,12,12) (11,12,12)
Nr = ⌈N/4⌉ (33,33,33) (33,33,33.25)
Nr = ⌈N/2⌉ (17,17,17) (17,17,17)
Nr = N (9,9,9) (9,9,9)
Nr = 2N (187,194,203) (186,194,203)
Nr = 4N (229,237,244) (236,240,245)
Nr = 8N (228,234,240) (229,240,248)

Table 1: The 1st, 2nd, and 3rd quartiles (displayed in the format
of (·, ·, ·)) for the MEI within 100 generations and 20 independent
runs. Generations [1..100] and [3001..3100] after Tstart on ONEM-
INMAX with n = 601 and N = 76 are regarded separately. Here,
Tstart is the generation number when the population contains both
extremal points for the first time. For the case of losing extremal
points for Nr > N , it is set to be Tmax, the maximal value of Tstart

reported for the algorithm with the settings Nr ≤ N in 20 indepen-
dent runs. Note that MEIopt = ⌈n/(N − 1)⌉ = 9.

question is about the behaviors of the NSGA-III on other
problems.

5.1 Experimental Settings
To address the first two concerns w.r.t. ONEMINMAX,
we adopt the same settings in the only theoretical approx-
imation works of the NSGA-II [Zheng and Doerr, 2022;
Zheng and Doerr, 2024a]. That is, we consider the prob-
lem size n = 601 and population sizes N = 301, 151, 76
(N = ⌈(n + 1)/2⌉, ⌈(n + 1)/4⌉, ⌈(n + 1)/8⌉) in these
works for the easy comparison to the NSGA-II (with se-
quential survival selection, denoted as NSGA-II’ in the fol-
lowing). We set the number of reference points Nr =
⌈N/4⌉, ⌈N/2⌉, N, 2N, 4N, 8N , with the first three for Nr ≤
N discussed in Section 3 and the last three for Nr > N dis-
cussed in Section 4.

To tackle the last concern, we experimentally consider an-
other popular benchmark, LOTZ, and the optimal MEI =
⌈ n
N−1⌉. We set the problem size n = 120, the setting

used in [Zheng and Doerr, 2023], and the population size
N = ⌈(n+1)/2⌉, ⌈(n+1)/4⌉, ⌈(n+1)/8⌉ and the number of
reference points Nr = ⌈N/4⌉, ⌈N/2⌉, N, 2N, 4N, 8N , same
settings as for ONEMINMAX.
20 independent runs are conducted. We regard these num-

bers are enough as the collected data are quite concentrated.

5.2 Experimental Results
Due to the limited space, here we only report the results for
N = ⌈(n + 1)/8⌉ (that is, N = 76 for ONEMINMAX and
N = 16 for the LOTZ), while the results for other population
sizes are included in the full version [Deng et al., 2025]. Note
that experimental findings obtained for this setting of N also
similarly hold for other N .

The Impact of Nr

From the stable MEI values reported in Table 1 for 20 runs
and Figure 2 for one exemplary run, we see that Nr = N
achieves the best MEI value, compared with other settings of
Nr. We also see that small values of Nr < N leads to sig-
nificantly better approximation quality against large values of
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Nr = ⌈N/4⌉
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Nr = 2N
Nr = 4N
Nr = 8N

Figure 2: The MEI for generations [1..100] and [3001..3100] after
Tstart, in one exemplary run on ONEMINMAX with n = 601 and
N = 76.

Nr > N . Furthermore, in the experiments, we observed that
the algorithm terminates only when Tmax is reached, which
shows that the difficulty to have both 0n and 1n exists and ver-
ifies the possible difficulty of the NSGA-III with large enough
number of reference points discussed in Section 4.

The Actual Approximation Ability
Note that for n = 601 and N = 76 reported in Table 1,
the optimal MEI = ⌈ n

N−1⌉ = 9. Hence, for the best set-
ting of Nr = N , we see all three quartiles reach this opti-
mal value. Together with one exemplary one plotted in Fig-
ure 2 and all data in generations [3001..3100]), we know that
the NSGA-III will reach the optimal MEI for ONEMINMAX,
while the NSGA-II’ (the sequential version of the NSGA-II
analyzed in [Zheng and Doerr, 2024a]) cannot. This result
shows that the upper bound ⌈ (5−2

√
2)n

N−1 ⌉ (with Nr = N ) ob-
tained in Theorem 11 is not tight, and this is left as an inter-
esting question for future research.

The Approximation Ability of the NSGA-III on LOTZ
Analogous to Table 1 and Figure 2 for ONEMINMAX, Ta-
ble 2 (20 runs) and Figure 3 (one exemplary run) are for the
LOTZ problem. We see that Nr = N is the best setting for
the approximation ability of the NSGA-III on LOTZ, and this
best setting results in the optimal MEI value of 8 (note that
the Pareto front for LOTZ is {(0, n), (1, n− 1), . . . , (n, 0)},
which is the same for ONEMINMAX. Hence, the optimal
MEI value is MEI = ⌈ n

N−1⌉ = 8 for n = 120 and N = 16).

6 Conclusion
This paper conducted the first theoretical analysis for the ap-
proximation performance of the NSGA-III. We showed that
the number of reference points plays an essential role for
the approximation quality of the NSGA-III, considering the
ONEMINMAX benchmark.

In detail, we proved that when the population size N is
smaller than the size of the Pareto front, the NSGA-III can
achieve an MEI approximation value of ⌈ (5−2

√
2)n

Nr−1 ⌉ on ONE-
MINMAX within an expected O(Nnc log n) function evalu-
ations, where Nr ≤ N is the number of reference points and

Generations After T ′
start

Nr = ⌈N/4⌉ (40,40,40)
Nr = ⌈N/2⌉ (18,18,18)
Nr = N (8,8,8)
Nr = 2N (19,22,24)
Nr = 4N (41,50,61)
Nr = 8N (45,52,63)

Table 2: The 1st, 2nd, and 3rd quartiles (displayed in the format
of (·, ·, ·)) for the MEI within 1000 generations after T ′

start in 20
independent runs on LOTZ with n = 120 and N = 16. Here,
T ′
start is the generation number when the population contains both

extremal points and has MEI = ⌈ n
Nr−1

⌉ for the first time. For the
case of losing extremal points for Nr > N , it is set to be T ′

max, the
maximal value of T ′

start reported for the algorithm with the settings
Nr ≤ N in 20 independent runs. Note that MEIopt = ⌈n/(N −
1)⌉ = 8.

0 200 400 600 800 1000
Generations after T 0start
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20
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M
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n=120, N=16
Nr = ⌈N/4⌉
Nr = ⌈N/2⌉
Nr =N
Nr = 2N
Nr = 4N
Nr = 8N

Figure 3: The MEI for generations [1..1000] after T ′
start, in one

exemplary run on the LOTZ problem with n = 120 and N = 16.

c = ⌈ 2(2−
√
2)n

Nr−1 ⌉. Then the best upper bound of the approxi-
mation quality (only a constant factor of 5− 2

√
2 larger than

the optimal MEI) is witnessed for Nr = N . However, when
Nr > N , we proved the possible approximation difficulties
of the NSGA-III for some examples.

Our experiments verified the above findings, say the good
approximation ability of the NSGA-III with Nr ≤ N and
its bad approximation ability for Nr > N . Our experiments
also showed that the NSGA-III with Nr = N can reach the
optimal MEI for approximation, which will guide us to de-
rive a tighter approximation bound as our future interesting
research topic.

We note the differences compared to the existing the-
oretical works. For the approximation ability of the
NSGA-II [Zheng and Doerr, 2024a], the population size in-
fluences the upper bound of the MEI value. However, there
the number of reference points has the essential influence.
Besides, different from the existing theory works [Wietheger
and Doerr, 2023; Opris et al., 2024], a large enough number
of the reference points are required to establish the runtime
theory for the full coverage of the Pareto front. This work
shows that a large number of reference points can be harmful
for the approximation.
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