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Abstract
MULTIWINNER ELECTIONS have emerged as a
prominent area of research with numerous prac-
tical applications. Given a set of candidates, C,
a set of voters, V , approving a subset of candi-
dates (called approval set of a voter), and an in-
teger k, we consider the problem of selecting a
“good” committee using Thiele rules. This prob-
lem is computationally challenging for most Thiele
rules with monotone submodular satisfaction func-
tions, as there is no (1 − 1

e − ϵ)-approximation al-
gorithm in f(k)(|C| + |V|)o(k) time for any fixed
ϵ > 0 and any computable function f , and no
PTAS even when the length of approval set is two.
Skowron designed an approximation scheme run-
ning in FPT time parameterized by the combined
parameter, size of the approval set and k. In this
paper, we consider a parameter d + k (no d vot-
ers approve the same set of d candidates), where
d is upper bounded by the size of the approval
set (thus, can be much smaller). With respect to
this parameter, we design parameterized approxi-
mation schemes, a lossy polynomial-time prepro-
cessing method, and show that an extra commit-
tee member suffices to achieve the desired score
(i.e., 1-additive approximation). Additionally, we
resolve an open question by Yang and Wang regard-
ing the fixed-parameter tractability of the problem
under the PAV rule with the total score as the pa-
rameter, demonstrating that it admits an FPT algo-
rithm.

1 Introduction
MULTIWINNER ELECTION is one of the well-studied prob-
lems in computational social choice theory [Ballotpedia,
2024; Faliszewski et al., 2017; Elkind et al., 2017; Pier-
czynski and Skowron, 2019]; and the most extensively stud-
ied and commonly implemented in practice is the approval-
based model of election [Skowron and Faliszewski, 2015;
Skowron and Faliszewski, 2017; Skowron, 2017; Lackner
and Skowron, 2021; Lackner and Skowron, 2023; Do et al.,
2022]. In general, a multi-winner election with approval pref-
erences consists of a set of m candidates (C), a set of n voters

(V), each providing a set of approved candidates Av ⊆ C,
a satisfaction (or scoring) function sco : 2C → Q≥0, and
an integer k. The set of approval list of all voters is called
the approval profile denoted by A = {Av : v ∈ V}. The
goal here is to select a subset (called a committee) S of k
candidates that maximizes the value sco(S). In the decision
version the goal is to check if sco(S) ≥ t for a given value
t. The definition of the sco(·) function depends on the vot-
ing rule we employ. In this article, we consider a subclass
of approval-based voting rules (known as the ABC voting
rules). An important class of ABC rules is the one defined by
Thiele [Lackner and Skowron, 2023] (also known as gener-
alised approval procedures). Some of the well-known Thiele
rules are approval voting, Chamberlin-Courant, and propor-
tional approval voting(PAV) [Chamberlin and Courant, 1983;
Janson, 2016]. A Thiele rule is given by a function f : N ∪
{0} → Q≥0 where f(0) = 0. For example, under the
Chamberlin-Courant rule, f(i) = 1 for each i > 0, while for
the Proportional Approval Voting (PAV) rule, f(i) =

∑i
j=1

1
j

for each i > 0. Given a profile A, the score of a committee
S ⊆ C is defined by sco(S) =

∑
v∈V f(|S ∩ Av|). Since

our paper deals with different functions, as well as different
approval profiles, for the sake of clarity, we denote the score
function as scof (A,S) =

∑
v∈V f(|S ∩ Av|). We leave f

and A from the notation if it is clear from the context.

Context of Our Results. In general, the MULTIWINNER
ELECTION problem, aka the COMMITTEE SELECTION prob-
lem, is NP-hard. In fact, the problem is also intractable in the
realm of parameterized complexity, W[2]-hard with respect
to k, the size of the committee. That is, we do not expect
an algorithm with running time h(k)(n + m)O(1). In fact,
these intractability results carry over even for special cases.
In particular, given a Thiele function f : N ∪ {0} → Q+,
for each voter v ∈ V , we can associate a satisfaction func-
tion with each committee, defined as fv : 2C → Q+ where
fv(S) = f(|S ∩ Av|). In this notation, the score of S is
given by scof (A,S) =

∑
v∈V fv(S). When the function

fv is monotone and submodular, for each voter v ∈ V , we
call the problem SUBMODULAR MULTIWINNER ELECTION
(SM-MWE). It is known that SM-MWE is NP-hard as well
as W[2]-hard with respect to parameter k [Aziz et al., 2015;
Yang and Wang, 2023]. Aziz et el. [2015] shows that the
problem under PAV rule remains W[2]-hard even for the
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special case where each voter approves at most two candi-
dates. A similar hardness for the Chamberlin-Courant rule
was shown by [Yang and Wang, 2023]. They also show that
the problem for both Chamberlin-Courant rule and PAV re-
mains W[1]-hard when parameterized by (|C| − k) = m− k
even when every voter approves two candidates. They also
show that under Chamberlin-Courant rule the problem admits
an FPT algorithm parameterized by t, i.e., the threshold value
in the decision version of the problem. However, they state
that the FPT membership of the problem under the PAV rule
with respect to t as an open question. We answer this by pro-
viding an FPT algorithm parameterized by t, k for SM-MWE
and parameterized by t under the PAV rule. We use color
coding techniques introduced by [Alon et al., 1995].(Detailed
proof in full version)

In the world of approximation algorithms, due to [Manu-
rangsi, 2020] we know that we cannot hope to find a k-sized
committee with score at least (1 − 1

e − ϵ)OPT even in time
f(k)(|C|+ |V|)o(k). Here, OPT denotes the maximum score
of a committee of size k. To mitigate these intractability re-
sults Skowron [2017] considers special cases of this problem.
In particular, he looks at the case where the approval list is
bounded by an integer δ, that is, every voter approves at most
δ candidates. It was already known that even for δ = 2,
SM-MWE is NP-hard and W[1]-hard [Aziz et al., 2015;
Betzler et al., 2013]. This led Skowron to consider the exis-
tence of parameterized approximation that is, an approxima-
tion algorithm that runs in time h(k, δ)(n+m)O(1) where h
is any computable function. In particular, he observed that the
problem admits a (1− 1

e )-factor approximation in polynomial
time. In addition, for each ϵ > 0, he presented, an approxima-
tion scheme that runs in time h(k, d, ϵ)(n+m)O(1) and pro-
duces a k-sized subset S such that scof (A,S) ≥ (1−ϵ)OPT.
We call such an approximation scheme an FPT-AS and is the
starting point of this work.

It is known that even when ∆C = 3 (maximum number of
voters approving the same candidate) and δ = 2 (maximum
number of candidates approved by the same voter) SM-MWE
is NP-hard [Procaccia et al., 2007; Aziz et al., 2015]. We
show that SM-MWE is FPT when parameterised by k+∆C

(Proof can be found in the full version).

Our Results and Overview. For our study of parameter-
ized approximation algorithms, we consider a parameter d
smaller than δ as well as ∆C . Here, d denotes the smallest
number such that that no d voters approve the same set of d
candidates. Clearly, d ≤ δ as well as d ≤ ∆C . Since it is
a smaller parameter, it is worth considering. There are re-
alistic scenarios where d is indeed much smaller than δ and
∆C . Consider a university election of a 10-member commit-
tee from 200 candidates, with 5,000 students voting, where
the votes are presumably based on personal connections and
shared interests. The large diverse student body makes it un-
likely for any d students to approve the same d candidates,
thereby resulting in unique voting patterns.

For the ease of exposition, we consider the profile graph
of approval-based elections. It is a bipartite graph G =
(C,V, E), where V (G) = C ⊎ V , and E is the edge set. Note
that C is the set of candidates, V is the set of voters. For a

candidate c ∈ C and a voter v ∈ V , we add an edge cv if the
voter v approves the candidate c, i.e c ∈ Av . In profile graph
the approval list of voter v,Av is the set {c ∈ C : vc ∈ E(G)}.
Given a graph G and a function fv for every v ∈ V , the ob-
jective function is same as above, i.e., find a subset S ⊆ C
of size k that maximises scof (G,S) =

∑
v∈V fv(|S ∩ Av|).

The graph G is Kd,d-free (i.e., it does not contain a complete
bipartite graph with d vertices on each side as an induced sub-
graph).

Jain et al. [2023] consider the MAXIMUM COVERAGE
problem (which is equivalent to Chamberlin-Courant based
MWE) and give an FPT-AS with respect to the parame-
ter k + d when the profile graph is Kd,d-free. Manuran-
gasi [2025] designed a polynomial-time lossy kernel for the
same problem.

Similar to the results of Jain et al. [2023] for MAXIMUM
COVERAGE we obtain the following set of results for SM-
MWE, when profile graph of the given instance is Kd,d-free.
In the following a solution refers to a k-sized committee.

• We present an FPT-AS parameterized by k. That is we
give an algorithm that given 0 < ϵ < 1, runs in time
(dkϵ )

O(d2k)(n +m)O(1), and outputs a solution whose
score is at least (1 − ϵ) fraction of the optimum, Theo-
rem 1.

• We complement FPT-AS, by designing a polynomial
time lossy kernel with respect to k for SM-MWE. (Ob-
serve that a normal “lossless” kernel is not possible with
respect to k, since the problem is W[1]-hard, and thus
no FPT algorithm and equivalently a kernel, may exist.)
In other words, we present a polynomial-time algorithm
that produces a graph G′ of size polynomial in k + ϵ
from which we can find a solution that attains a (1 − ϵ)
fraction of the optimal score in the original instance,
Theorem 2. Observe that in most practical scenarios, k
is some fixed small constant and thus searching for the
desired committee in the reduced instance is quite ef-
ficient. Moreover, we also note that G′ represents the
reality that only a small subset of voters and candidates
actually matter!
The starting point of our lossy kernel is the result of [Ma-
nurangsi, 2024]. In particular, the kernelization algo-
rithm involves the following steps: it assesses the poten-
tial value of the score, and if this value is upper-bounded
by a polynomial function of k and ϵ, we can then con-
struct a lossless kernel. Else, we first define a notion that
leads to a reduction rule for identifying candidates who
are similar in terms of approximating the optimal score.
Exhaustive application allows us to reduce the size of
the candidate set to a polynomial function of k and ϵ.
Finally, by applying another reduction rule that identi-
fies distinct approval lists, we can reduce the number of
voters, resulting in the desired lossy kernel.

• We also present an FPT approximation algorithm pa-
rameterized by k, d that outputs a k+1-sized committee
whose score is the same as the optimal solution of size
k, Theorem 3.

In fact, our algorithm works even when we have different
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Thiele functions hv for each voter v. Then the associated
satisfaction function fv : 2C → Q+ can be represented as
fv(S) = hv(|S ∩ Av|). This strictly generalizes the known
model as for each v, hv is the same. Our results build on
existing algorithms for MAX COVERAGE and MAXIMIZING
SUBMODULAR FUNCTIONS. However, due to the inherent
generality of our problems, both in terms of the scoring func-
tion and the class of profiles, we must deviate significantly
from known approaches in several crucial and key aspects.

2 Our Problem in OWA Framework
We will reformulate our problem within the Ordered
Weighted Average (OWA) framework to align with existing
results in the literature. We refer to Section 4.1 in the arti-
cle of Skowron [Skowron, 2017] for further details. Given
a set of candidates C, a set of voters V and the approval
list Av of every voter v ∈ V , and a Thiele rule given by a
non-decreasing function f : N ∪ {0} → Q+ with f(0) = 0,
we define an OWA vector λ as follows. For every i ≥ 1,
λi = f(i) − f(i − 1). Then, we have f(|S ∩ Av|) =∑|S∩Av|
j=1 λj . Thus, the scoring function can also be expressed

as scoG(S) =
∑
v∈V

∑|S∩Av|
j=1 λj . Hence, every Thiele rule

like CC, PAV can be expressed by an OWA vector. Now, we
make the following claim.

Lemma 1. (♣)1 The functions fv , v ∈ V , is monotone and
submodular if and only if the corresponding OWA vector λ
is non-increasing. Here, fv is the satisfaction function corre-
sponding to the voter v derived from f .

We design our algorithms for the scenario where each voter
has their own Thiele function2. Thus, instead of a single
OWA vector, we work with a family Λ = {λv | v ∈ V} of
OWA vectors. Throughout this paper, we assume that for any
given non-increasing OWA vector λv = (λv1, λ

v
2, . . . , λ

v
|Av|)

we have λv1 ≤ 1 for any v ∈ V . Suppose not, then we
can divide every λvi by λmax = max{λv1 | v ∈ V} and
change t to t

λmax
where t corresponds to total score and is de-

scribed in problem definition below. Given a bipartite graph
G = (C,V, E) and a set Λ of OWA vectors, λv , for every
v ∈ V , we define a restriction operation ΛS for every S ⊆ C.

Definition 2. For any j ∈ [|Av|], we use λv−j to denote the
(shortened) OWA vector obtained by deleting the j-sized pre-
fix of λv . That is, λv−j = (λvj+1, λ

v
j+2, . . . , λ

v
|Av|).

For the set of OWA vectors Λ and a subset of candidates
S ⊆ C, we define ΛS = {λv−j : v ∈ V and j = |N(v)3∩S|}.
In other words, ΛS is obtained by removing the |N(v) ∩ S|-
sized prefix from λv , if v ∈ N(S); else we retain λv intact.

Let λmin denote min{λv1 | v ∈ V}

1Proofs of results marked with (♣)can be found in the full ver-
sion at http://arxiv.org/abs/2505.12699.

2Note that we are presenting algorithms for the general model,
however, this is the first work even when the Thiele function is the
same for every voter.

3N(·) denotes the neighborhood

Algorithm 1 Apx-MwE: An FPT-approximation scheme for
SM-MWE
Input: A bipartite graph G = (C,V, E), a set Λ = {λv : v ∈
V}, integers k, t, and ϵ > 0
Output: A k-sized subset S ⊆ C such that scoG(S) ≥ (1−
ϵ)t.

Let r = 4dk
ϵλmin

+ k.

1: if t ≤ 2krd(d−1)
(r−k)ϵ then

2: Apply Reduction Rule 1 exhaustively to get G′ =
(C′,V).

3: Search all k-sized subsets of C′. Let S ⊆ C′ that
achieves the maximum sco.

4: if scoG(S) ≥ t then return S.
5: else return no-instance.
6: if t > 2krd(d−1)

(r−k)ϵ then
7: Let Cr denote the ⌈r⌉ vertices of C with the highest

sco(·)-value.
8: Let S denote the k-sized subset of Cr with maximum

scoG(·) value.
9: if scoG(S) ≥ (1− ϵ)t then return S.

10: else return no-instance.

When Λ, G are clear from the context, we will use sco(S)
or scoG(S) instead of scoΛG(S). For a set O and a singleton
set {x} we sometimes omit the braces during set operations.
For example, O\{x} and O\x represent the same set.

3 FPT-AS for SM-MWE
For clarity, we state the problem here.

SM-MWE Parameter: k
Input: A bipartite graph G = (C,V, E), a set Λ of
non-increasing vectors λv = (λv1, λ

v
2, . . . , λ

v
|Av|) for

all v ∈ V , and positive integers k and t.
Question: Does there exist S ⊆ C such that
|S| ≤ k and scoΛG(S) =

∑
v∈V fG,v(S) ≥ t where

fG,v(S) =
∑|NG(v)∩S|
j=1 λvj ?

Overview of the algorithm. We derive our algorithm by
considering two cases: ”low” threshold (value of t) and
”high” threshold. For ”low” threshold, we use a sunflower
lemma-based reduction rule to reduce candidates. For ”high”
threshold, we discard all but a sufficiently large number of
candidates with the highest sco(·) value. The formal descrip-
tion is presented in Algorithm 1.

Next, we will define a sunflower that is used in our proof.
In a bipartite graph G(C,V, E), a subset S ⊆ C is said to
form a sunflower ifNG(x)∩NG(x′) (i.e the “approving set”)
are the same for all distinct candidates x, x′ ∈ S. For a given
sunflower S, we will refer to the common intersection of the
neighborhood, ∩x∈SN(x) as Co(S).

Proposition 3. [Manurangsi, 2024][Ka,b-free sunflower]
For any w, l ∈ N, let G((C,V), E) be a Ka,b-free bipar-
tite graph such that every vertex in C has degree at most ℓ
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and |C| ≥ a((w − 1)ℓ)b. Then, G has a sunflower of size w.
Moreover, a sunflower can be found in polynomial time.

Theorem 1. There exists an algorithm running in time
(dkϵ )

O(d2k)nO(1) that given an instance of SM-MWE, where
the input graph is Kd,d-free, outputs a solution S such that
scoΛG(S) ≥ (1− ϵ)t.

Proof. We will design and run two different algorithms for
two possible cases, based on the value of t (we call it thresh-
old). A brief description of FPT-AS that combines both
cases is given in Algorithm 1. Recall that we defined λmin =
min{λv1 | v ∈ V}. Let r = 4dk

ϵλmin
+ k.

Case 1: The threshold t ≤ 2krd(d−1)
(r−k)ϵ

Case 2: The threshold t > 2krd(d−1)
(r−k)ϵ

Analysis of Case 1. In this case, we will apply a modified
sunflower lemma to reduce the number of candidates and then
find an optimal solution using exhaustive search. Thus, for
this case, we solve the problem optimally.

We begin by observing that if there exists a vertex v ∈ C
with deg(v) ≥ 2krd(d−1)

(r−k)ϵλmin
, then {v} itself is a solution since

t ≤ 2krd(d−1)
(r−k)ϵλmin

λmin. This is because each of the neighbors of
v contribute at least λmin to scoG({v}). Hence, scoG({v}) ≥
2krd(d−1)
(r−k)ϵλmin

λmin ≥ t. Thus, we may assume that for each

v ∈ C, deg(v) < 2krd(d−1)
(r−k)ϵλmin

.

Let W = 2krd(d−1)
(r−k)ϵλmin

, the maximum degree of a vertex
in C. We apply the following reduction rule to the instance
I = (G = (C,V, E), k, t,Λ) exhaustively.

Reduction Rule 1. Use Proposition 3 on G, where a = b =
d and ℓ = W . If a sunflower of size at least w = Wk + 1
is found, then delete the vertex (candidate), say u, with the
lowest scoΛG({u}) value in the sunflower (ties are broken ar-
bitrarily). Return instance I ′ = (G′ = (C\{u},V), k, t,Λ).

Lemma 4 proves the correctness of our reduction rule.

Lemma 4. I is a yes-instance iff I ′ is a yes-instance.

Proof. If I ′ is a yes-instance, then clearly I is a yes-instance
as well because for any solution S in I ′ we have scoG(S) =
scoG′(S).

Next, for the other direction suppose that I = (G, k, t,Λ)
is a yes-instance. Let S denote a solution to I. Let u denote
the vertex in the sunflower T that is deleted by the reduction
rule. If u ∈ C \S, then S is a solution in I ′.

Suppose that u ∈ S. We will show that there is an-
other candidate that can replace u to yield a solution in I ′.
Formally, we argue as follows. Since |S| ≤ k, we have
|N(S)| ≤ Wk. For each candidate x ∈ T , we call the set
N(x) \Co(T ) the petal of x. Since |T | = Wk + 1, there are
Wk + 1 petals in V . The voters in N(S) can be present in
at most Wk petals. Thus, there is at least one petal, corre-
sponding to some candidate v ∈ T , that does not contain any
vertex in N(S). That is, (N(v) \Co(T ))∩N(S) = ∅. Using
this candidate v, we define the set S′ = S ∪ {v} \{u}. We

will next prove that scoG′(S′) ≥ scoG(S). Consequently, it
follows that S′ is a solution in I ′.

We begin the argument by noting that the petal of v,
N(v) \Co(T ) ⊆ N(T ) \N(S) and the contribution of the
voters in the petal to S′ is

∑
x∈N(v)\Co(T ) λ

x
1 . The score of

S′ consists of the score given by voters in V \(N(u)∪N(v))
whose contribution is unchanged between S and S′, as are the
contributions of the voters in Co(T ). The voters who experi-
ence a change are in N(u) \Co(T ) who have one fewer rep-
resentative in S′, and those in N(v) \Co(T ), who contribute∑
x∈N(v)\Co(T ) λ

x
1 . Following claim completes the proof.

Claim 1. (♣) We show that scoG′(S′) ≥ scoG(S)

Hence, the lemma is proved.

Exhaustive application of Reduction Rule 1 yields an in-
stance I ′ in which a sunflower of size Wk+1 does not exist.
Then, according to Proposition 3, |C′| < d(W 2k)d where
a = b = d, ℓ =W and w =Wk + 1.

Claim 2. (♣) The quantity
(|C′|
k

)
≤ (dkϵ )

O(d2k).

Notice that Reduction Rule 1 can be implemented in time
polynomial in |I|, and the number of times it can be applied is
also polynomial in |I|. Hence, the running time in this case is(|C′|
k

)
nO(1) =

(
dk
ϵ

)O(d2k)
nO(1). This completes the analysis

for Case 1. Next, we will analyze Case 2.

Analysis of Case 2. We prove the existence of an approx-
imate solution by showing that starting from an optimal so-
lution, we can create our solution Oℓ in a step-by-step fash-
ion. Claim 3 allows us to bound for the ith step, the num-
ber of voters a top r-candidate may share with the candidates
in Oi. This in turn implies that we can replace candidate
xi by someone in Cr \Oi without too much loss in score.
Claim 4 allows us to give a counting argument that yields that
the difference sco(O) − sco(Oℓ) =

∑ℓ
i=1 αi ≤ ϵ · sco(O).

Let O denote a solution for an instance I of SM-MWE, i.e.,
sco(O) ≥ t. Recall that Cr is defined to be the set of ⌈r⌉
candidates in C with the highest sco (·) value. If O ⊆ Cr,
then the exhaustive search of Line 8 will yield the solution
O. Therefore, without loss of generality, we may assume that
O \Cr ̸= ∅. Let O\Cr = {x1, . . . , xℓ}, where ℓ ∈ [k].
We define O1 = (O\{x1}) ∪ {y1} where y1 ∈ Cr\O such
that y1 minimizes the value sco(O)− sco(O1). Similarly, for
any i ∈ [ℓ], we define Oi = (Oi−1 \{xi}) ∪ {yi} where
yi ∈ Cr \Oi−1 such that sco(Oi−1) − sco(Oi) is minimum.
For each i ∈ [ℓ− 1], we define αi = sco(Oi)− sco(Oi+1).

Claim 3. (♣)Let p be any candidate in Cr \Oi. Then, for any
i ∈ [ℓ], we have |N(Oi) ∩N(p)| ≥ αi−1.

Claim 4. (♣) |N(O ∪Oℓ)| ≤ 2·scoG(O)
λmin

Now consider the graph G induced on Cr\Oℓ and N(O ∪
Oℓ). The number of edges incident on Cr\Oℓ is at least
(|Cr| − k)αi because for every p ∈ Cr\Oℓ, we have |N(O ∪
Oℓ)∩N(p)| ≥ αi due to Claim 3. The number of edges inci-
dent onN(O∪Oℓ) is at most 2d·sco(O)/λmin+|Cr|d(d−1),
Claim 4. This is because vertices with degrees at most d

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

can contribute 2d · sco(O)/λmin. Since the input graph
is Kd,d-free, the remaining vertices can contribute at most(|Cr|
d

)
(d−1) to the total number of incident edges. Using this

inequality we prove the following claim.

Claim 5. (♣) sco(O)− sco(Oℓ) =
∑ℓ
i=1 αi < ϵ · sco(O)

Thus, we have shown that there exists Oℓ ⊆ Cr that is a
(1− ϵ)-approximate solution which proves the correctness of
our algorithm. Moreover, we get the following result.

Claim 6. If t > 2krd(d−1)
(r−k)ϵ , where r = 4dk

ϵλmin
+ k, then the

set of ⌈r⌉ vertices in C with highest sco(·) contains a solution
with sco(·) at least (1− ϵ)t.

The running time in this case is atmost
(⌈r⌉
k

)
nO(1) =

(dk/ϵ)O(k)nO(1). Thus, we have the desired FPT-AS.

4 Lossy Kernel for SM-MWE
In this section, we give a kernel for our problem when the
profile graph is Kd,d-free. Towards this, we first define the
optimization version of SM-MWE below.

MAX SUBMOD-MWE Parameter: k
Input: A bipartite graph G = (C,V), an inte-
ger k, and a set Λ of non-increasing vectors λv =
(λv1, λ

v
2, . . . , λ

v
|Av|) for every v ∈ V .

Question: Find S ⊆ C such that |S| ≤ k and
scoΛG(S) =

∑
v∈V fG,v(S) is maximized, where

fG,v(S) =
∑|NG(v)∩S|
j=1 λvj .

Here C represents the set of candidates and V represents
the set of voters. For v ∈ V , the set N(v) represents the ap-
proval list Av of voter v. Let Ŝ ⊆ C and |Ŝ| ≤ k such that
scoΛG(Ŝ) is maximum. Then, OPTG,k,Λ = scoΛG(Ŝ). We also
assume without loss of generality that all the voters have a
nonzero OWA vector. Otherwise, if the vector corresponding
to a voter is (0, 0, . . . 0), we can safely delete the vertex corre-
sponding to that voter. By Iden, we denote an algorithm that
outputs the input itself. We next describe some terminology.

Definition 5. [Lokshtanov et al., 2017][α-APPA] Let α, β ∈
(0, 1). An α-approximate polynomial-time pre-processing al-
gorithm (α-APPA) for a parameterized optimization problem
Π is a pair of polynomial-time algorithms A and B called
the reduction algorithm and solution lifting algorithm respec-
tively such that the following holds:

1. given any instance (I, k) of Π, A outputs an instance
(I ′, k′) of Π, and

2. given any β-approximate solution of (I ′, k′), B outputs
an αβ-approximate solution of (I, k).

Definition 6. [Lokshtanov et al., 2017][α-approximate ker-
nel] Let α ∈ (0, 1). An α-approximate kernel is an α-APPA
such that the output size |I ′| + k′ is bounded by some com-
putable function of k.

Definition 7. [Manurangsi, 2024][(α, γ)-APPA ] Let α, γ ∈
(0, 1). An (α, γ)-approximate polynomial-time preprocess-
ing algorithm((α, γ)-APPA) for a parameterized optimiza-
tion problem Π is a pair of polynomial-time algorithms A
and B called the reduction algorithm and solution lifting al-
gorithm respectively such that the following holds:

1. given any instance (I, k) of Π, A outputs an instance
(I ′, k′) of Π, and

2. given any β-approximate solution of (I ′, k′), B outputs
an (αβ − γ)-approximate solution of (I, k).

Proposition 8. [Manurangsi, 2024] For any ϵ1, ϵ2, c ∈ (0, 1),
suppose that a maximization problem admits a polynomial-
time c-approximation algorithm and a (1 − ϵ1, ϵ2)-APPA.
Then, it admits a (1 − ϵ1 − ϵ2/c)-APPA with the same re-
duction algorithm.

Due to [Nemhauser et al., 1978], we know that the greedy
algorithm for maximizing submodular functions is a (1− 1

e )-
approximate algorithm. The satisfaction function fG,v(·)
of each voter, v, is a non-decreasing submodular function
[Skowron and Faliszewski, 2015]. Since the sum of submod-
ular functions is also submodular, we have the following.
Lemma 9. There is a polynomial-time (1− 1

e )-approximation
algorithm for MAX SUBMOD-MWE.

We will split the kernel construction into two parts: first we
will describe the analysis that allows us to reduce the number
of candidates followed by the analysis that allows us to reduce
the number of voters.
Reducing the Number of Candidates
Lemma 10. (♣) Suppose that A is a parameter-preserving
reduction algorithm for MAX SUBMOD-MWE that on input
I = (G, k,Λ) just deletes a subset of candidates resulting
in the instance I ′ = (G′, k,Λ). If OPTG′,k,Λ ≥ (1 − δ) ·
OPTG,k,Λ for some δ ∈ (0, 1), then (A, Iden) is a (1 − δ)-
APPA.
Lemma 11. For any ϵ ∈ (0, 1), there is a parameter-
preserving (1−ϵ)-APPA for MAX SUBMOD-MWE when the
profile graph is Kd,d-free, such that the output has (dkϵ )

O(d2)

candidates.

Proof. We apply the polynomial time (1− 1
e )-approximation

algorithm from Lemma 9. Let ApxOPT denote the sco of the
returned solution and r = 4dk

ϵλmin
+ k. We have the following

two cases:

Case 1: ApxOPT > 2krd(d−1)
(r−k)ϵ . In this case, we delete all

but the r highest degree vertices in C. We will show that
OPTG′,k,Λ ≥ (1 − ϵ)OPTG,k,Λ, then, by Lemma 10 it fol-
lows that we have a (1 − ϵ)-APPA. We have OPTG,k,Λ ≥
ApxOPT > 2krd(d−1)

(r−k)ϵ . Next, using Claim 6, we have
OPTG′,k,Λ > (1− ϵ)OPTG,k,Λ and we are done.

Case 2: ApxOPT ≤ 2krd(d−1)
(r−k)ϵ . In this case, we have

OPTG,k,Λ ≤ e
e−1ApxOPT ≤ e

e−1
2krd(d−1)
(r−k)ϵ . Let ψ =

⌈ e
e−1

2krd(d−1)
(r−k)ϵ ⌉. We have for each v ∈ C, deg(v) < ψ/λmin;

otherwise, v itself is a solution. We apply Reduction Rule 1
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exhaustively with Wk + 1 = (ψ/λmin)k + 1. Let the final
graph be G′ = (C′,V ′) where V ′ is obtained by deleting
all the isolated vertices. By Proposition 3, we know that
there are at most d((ψ/λmin)2k)d = (dkϵ )

O(d2) vertices in
C′. Now, we need to show that this is a (1 − ϵ)-APPA. By
Lemma 4, we know that the application of Reduction Rule 1
does not change the optimum sco(·) value. Thus, we have
OPTG′,k,Λ ≥ OPTG,k,Λ, which together with Lemma 10,
implies that the reduction algorithm in Case 2 is also a (1−ϵ)-
APPA.

This completes the proof of the lemma.

Reducing the Number of Voters
Lemma 12. (♣) Suppose that A is a parameter-preserving
reduction algorithm for MAX SUBMOD-MWE that also pre-
serves the set of candidates and OWA vectors, i.e, on in-
put I = (G = (C,V), k,Λ), it produces I ′ = (G′ =
(C,V ′), k,Λ). If there exists δ, h ≥ 0 and s > 0 (where h
and s can depend on I) s.t. the following holds for any k-
sized subset X ⊆ C:

|scoG(X)− s · scoG′(X)− h| ≤ δ · OPTI ,

then, (A, Iden) is a (1, 2δ)-APPA.

Lemma 13. For any ϵ ∈ (0, 1), there is a parameter-
preserving (1 − ϵ)-APPA for MAX SUBMOD-MWE when
the profile graph is Kd,d-free, such that the output graph has
the same set of candidates and O(k · d · nd+1/ϵ) voters.

Proof. We abuse the notation and assume that we have (1, ϵ)-
APPA. Here, 1 denotes a constant that is close but strictly less
than one. This is done to derive the result in a cleaner manner.
Then due to Proposition 8 and Lemma 9 we have (1− ϵ

(1− 1
e )
)-

APPA which is (1−ϵ′)-APPA for ϵ′ = ϵ
(1− 1

e )
. Thus, to prove

this lemma, it is sufficient to give an (1, ϵ)-APPA. On input
I = (G, k,Λ), the reduction algorithm works as follows.

1. Use Lemma 9 to compute ApxOPT such that OPTI ≥
ApxOPT ≥ (1− 1

e )OPTI . Let s = ϵApxOPT
k·10dnd .

2. Let Vset denote the subset of vertices in V with distinct
neighborhoods, i.e., the set of voters with distinct ap-
proval list.

3. We start with V ′ being an empty multiset. For each v ∈
Vset, let mv denote the number of occurrences of v in
V . We add ⌈mv/s⌉ copies of v to V ′. We define graph
G′ = (C,V ′).

4. We output I ′ = (G′, k,Λ).

Since the degree of every vertex in C is at most OPTI/λmin, we
have |V| ≤ nOPTI/λmin. Thus, by definition of V ′,

|V ′| ≤ |V|
s

≤
(

10 · OPTI

ApxOPTλmin

)
kdnd+1

ϵ
= O

(
kdnd+1

ϵ

)
We claim that for every k-sized subset Y ⊆ C, we have

|scoG(Y )− s · scoG′(Y )| ≤ ϵ
2OPTI . This, with Lemma 12

yields that (A, Iden) is a (1, ϵ)-APPA as desired.

To see that the claim holds, we observe that

|scoG(Y )− s · scoG′(Y )| ≤
∑
v∈Vset

k
∣∣∣mv − s ·

⌈mv

s

⌉∣∣∣λv1
≤ ks · |Vset|, since λv1 ≤ 1, for each v ∈ V .

Since G is Kd,d-free, therefore for every d-sized subset in C
there can be at most d common neighbors in V . Thus the
number of vertices in V with degree at least d is at most dnd.
The number of vertices with unique neighborhood and with
degree at most d is nd. Thus, we have

|scoG(Y )−s · scoG′(Y )| ≤ ks · |Vset| ≤ ks(dnd + nd)

= k

(
ϵApxOPT

10kdnd

)
(d+ 1)nd ≤ ϵ(d+ 1)OPTI

10d
≤ ϵ

2
OPTI

Towards the Kernel. On input (G, k,Λ), the reduction al-
gorithm works as follows.

1. Apply (1 − ϵ
2 )-APPA reduction from Lemma 11 to re-

duce the number of candidates.
2. Apply (1 − ϵ

2 )-APPA reduction from Lemma 13 to re-
duce the number of voters.

The two steps ensure we get (1 − ϵ
2 )

2-APPA. Since (1 −
ϵ
2 )

2 ≥ (1− ϵ), we have (1− ϵ)-APPA. The first step reduces
the number of candidates to (dkϵ )

O(d2). In the second step,
the number of voters reduces to (dkϵ )

O(d3). Consequently, we
obtain the following result.
Theorem 2. For any d ∈ N and ϵ ∈ (0, 1), there is a
parameter preserving (1 − ϵ)-approximate kernel for MAX
SUBMOD-MWE when the profile graph is Kd,d-free with
(dkϵ )

O(d2) candidates and (dkϵ )
O(d3) voters.

5 Additive Parameterized Approximation
In this section, we design a one-additive parameterized ap-
proximation algorithm. In particular, we achieve the follow-
ing: given a yes-instance I = (G, k, t,Λ) of SM-MWE,
where G is a Kd,d-free graph, we output a committee of size
k + 1 whose score is at least t, in time FPT in k + d + ϵ.
Note that, we may return a (k + 1)-sized committee even for
a no-instance. But, if the algorithm returns no, then I is a
no-instance of SM-MWE.

We first give an intuitive description of the algorithm. If
the candidate set C is bounded by g(k, d), then we can try
all possible subsets to obtain a solution to I. If t is bounded
by f(k, d), then observe that the degree of every vertex in
C is bounded by f(k,d)/λmin, where λmin ≤ 1 is a constant;
otherwise, a vertex of the highest degree is a solution to I.
So, we apply Reduction Rule 1 with appropriately chosenW
and bound the size of C by another function of k + d, and
now again we can try all possible subsets of C. When none
of the above cases hold, we either correctly return no or for
a yes-instance, we find a committee of size k, say S′, us-
ing Apx-MwE (Algorithm 1) for ϵ = λmin/4k (the choice of ϵ
will be clear later). Recall that Apx-MwE returns a (1 − ϵ)-
approximate solution, thus, scoΛG(S

′) ≥ (1 − ϵ)t. We con-
struct a large enough set of candidates (bounded by a function
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Algorithm 2 Add-Apx-MwE: An FPT algorithm for one-
additive approximation of MAX SUBMOD-MWE
Input: A bipartite graph G = (C,V, E), a set Λ = {λv : v ∈
V}, and non-negative integers k and t.
Output: Either a set S ⊆ C s.t. |S| ≤ k+1 and scoΛG(S) ≥ t,
or “no ”.

1: if k = 0, t ≤ 0 then return an empty set.
2: if k = 0, t > 0 then return no
3: if |C| ≤ k(d− 1)(4k2)d−1 + 1 then
4: if there exists a k-sized set S ⊆ C s.t. scoΛG(S) ≥ t

then return S
5: else return no
6: if t ≤ 8k4dλmin then
7: apply Reduction Rule 1 exhaustively with W =

t
λmin

,
8: if there exists a set S ⊆ C s.t. scoΛG(S) ≥ t then

return S
9: else return no

10: if Apx-MwE (G, k, t, ϵ = λmin

4k ,Λ) returns a set S′ then
11: Let H ⊆ C be a set of k(d − 1)(4k2λmin)

d−1 + 1
candidates of highest score.

12: if there exists x ∈ H such that scoΛG({x} ∪ S′) ≥ t
then return S′ ∪ {x}

13: else
14: for y ∈ H do
15: let Gy = (G \{y}) \(V0 ∪ V∅)
16: if Add-Apx-MwE (Gy, k − 1, t − scoΛG(y),Λy)

returns a set S then return S ∪ {y}

of (k, d)) of high score, say H , and argue that, given a yes-
instance, either every solution to I contains a vertex from H ,
or there is a vertex x in H such that scoΛG(S

′ ∪ {x}) ≥ t.
Algorithm 2 describes the procedure formally. For x ∈

C, let us recall the definition of Λx. Firstly, for any
OWA vector λv = {λv1, λv2, . . . , λv|Av|}, where v ∈ V ,
let λv−1 denote the OWA vector starting from the sec-
ond entry, i.e., {λv2, λv3, . . . , λv|Av|}. Then Λx is the set
∪v∈N(x){λv−1} ∪v∈B\N(x) {λv}, i.e., we delete the first en-
try of the OWA vectors of neighbors of x, and rest remains
the same. Also, let V0 and V∅ denote the voters with all-zero
vectors and empty vectors, respectively. We assume that our
input instance does not contain any such voters.

We prove the correctness of Algorithm 2 in the following
lemma.

Lemma 14. (♣) Given a yes-instance (G,Λ, k, t) of SM-
MWE, Algorithm 2 returns a Thiele Committee of size at
most k + 1 whose score is at least t.

For proving Lemma 14, we establish a crucial result (in
Lemma 17) that forms the core of our algorithm. Towards
this, we first define a notion of High Degree Set as follows.

Definition 15. [Jain et al., 2023][β-High Degree Set] Given
a bipartite graph G = (A,B,E), a set X ⊆ B, and a posi-
tive integer β > 1, the β-High Degree Set, is defined as:

HDGβ (X) = {v : v ∈ A, |N(v)| ≥ d, |N(v) ∩X| ≥ |X|
β }

Interestingly, the size of β-High Degree Set is bounded for
Kd,d-free bipartite graphs as shown by the following.
Proposition 16. [Jain et al., 2023] For all d and for all β > 1

with |X|
2β > d, where X ⊆ B, if G = (A,B,E) is Kd,d-free,

then |HDGβ (X)| ≤ f(β, d) = (d− 1)(2β)d−1.
Next, we move towards proving the core result for our al-

gorithm.
Lemma 17. (♣) Let (G,Λ, k, t) be an instance of SM-
MWE, where G is a Kd,d-free graph with V (G) = C ⊎ V .
Let ℓ ≤ k and t′ ≤ t be two positive integers. Let S′ ⊆ C
be an ℓ-sized set such that scoΛG(S

′) ≥ t′(1 − λmin

4ℓ ), where
t′ ≥ 8ℓ4dλmin, and H be a set of ℓ(d− 1)(4ℓ2λmin)

d−1 + 1
highest score candidates in C. For any S ⊆ C of size ℓ with
scoΛG(S) ≥ t′, either S ∩H ̸= ∅ or there exists a candidate
x ∈ H such that scoΛG({x} ∪ S′) ≥ t′. If there exists a vertex
v of degree at least t′

λmin
, then S′ = {v}.

Running Time: The running time of the algorithm is gov-
erned by the following recurrence relation

1. T (k) ≤ (k(d − 1)(4k2λmin)
d−1 + 1) · T (k − 1) +

(kd)O(kd) + (k(d − 1)(4k2λmin)
d−1 + 1)k+1nO(1) +(

dk
ϵ

)O(d2k)
nO(1) (where ϵ = λmin

4k ).

2. T (0) = nO(1).
This is because in the first three cases the algorithm takes
time (kd)O(kd), (k(d− 1)(4k2λmin)

d−1 + 1)k+1nO(1), and
(dk)O(d2k)nO(1) respectively. Solving the recurrence, we get
T (k) ≤ (dk)O(d2k)nO(1).
Theorem 3. There exists an algorithm for SM-MWE that
runs in time (dk)O(d2k)nO(1), and returns a set S ⊆ A of
size at most k + 1 such that scoG(S) ≥ t.

6 Outlook
In this paper, we modeled the MULTIWINNER ELECTION
problem as a graph-theoretic problem which enables us to ad-
dress the problem in theKd,d-free graph class. This approach
captures a broader range of profiles than that of [Skowron,
2017]. Specifically, it generalizes the class of bounded ap-
proval sets, a class that admits tractable results. For SM-
MWE, we developed an FPT-AS and a lossy polynomial-
time preprocessing procedure. To the best of our knowledge,
our additive approximation algorithm and lossy preprocess-
ing method represent novel technical contributions to the field
of computational social choice theory.

Our work is just a starting point in this area, with several
potential extensions. In our algorithm, we assumed that the
functions are both monotone and submodular. A natural ques-
tion is what happens if we relax one of these constraints. Ad-
ditionally, while we focused on the approval model of elec-
tions, the next logical step is to extend our investigations to
ordinal or cardinal elections. Another direction would be
to incorporate fairness or matroid constraints into the voting
profiles, as explored in [Inamdar et al., 2024]. Also consider-
ing diversity constraints on selected committee as studied in
[Bredereck et al., 2018] could be another direction of future
work.
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