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Theoretical Analysis of Evolutionary Algorithms with Quality Diversity for a
Classical Path Planning Problem

Duc-Cuong Dang1 , Aneta Neumann2 , Frank Neumann2 , Andre Opris1 , Dirk Sudholt1
1Chair of Algorithms for Intelligent Systems, University of Passau, Germany

2Optimisation and Logistics, The University of Adelaide, Australia

Abstract
Quality diversity (QD) algorithms, an extension of
evolutionary algorithms, excel at generating diverse
sets of high-quality solutions for complex prob-
lems in robotics, games, and combinatorial optimi-
sation. Despite their success, the underlying mech-
anisms remain poorly understood due to a lack of
a theoretical foundation. We address this gap by
analysing QD algorithms on the all-pairs-shortest-
paths (APSP) problem, a classical planning task
that naturally seeks multiple solutions. Using Map-
Elites, a prominent QD approach, we leverage its
ability to evolve solutions across distinct regions of
a behavioural space, which for APSP corresponds
to all pairs of nodes in the graph.
Our analysis rigorously demonstrates that evo-
lutionary algorithms using Map-Elites efficiently
compute shortest paths for all node pairs in paral-
lel by exploiting synergies in the behavioural space.
By appending edges to an existing shortest path,
mutation can create optimal solutions in other re-
gions of the behavioural space. Crossover is par-
ticularly effective, as it can combine optimal paths
from two regions to produce an optimal path for
a third region simply by concatenating two short-
est paths. Finally, refining the parent selection to
facilitate successful crossovers exhibits significant
speed-ups compared to standard QD approaches.

1 Introduction
In recent years, computing diverse sets of high quality so-
lutions for combinatorial optimisation problems has gained
significant attention in the area of artificial intelligence from
both theoretical [Baste et al., 2022; Baste et al., 2019;
Fomin et al., 2024; Hanaka et al., 2023] and experimental
[Vonásek and Saska, 2018; Ingmar et al., 2020] perspectives.
Prominent examples where diverse sets of high quality solu-
tions are sought come from the area of path planning [Hanaka
et al., 2021; Gao et al., 2022].

Evolutionary algorithms provide a flexible way of generat-
ing diverse sets of high-quality solutions by directly incor-
porating diversity measures into the population. Generat-

ing diverse and high-quality solution sets has gained signif-
icant interest in evolutionary computation, particularly under
the notion of evolutionary diversity optimisation (EDO) [Gao
and Neumann, 2014; Gao et al., 2021; Neumann et al.,
2018] and quality diversity (QD) [Lehman and Stanley, 2011;
Mouret and Clune, 2015; Hagg et al., 2018].

EDO algorithms maintain a fixed population size and fo-
cus on maximising diversity based on a specified diversity
metric by ensuring that all solutions meet a given quality cri-
teria. In contrast, QD algorithms typically utilise a variable
population size to identify optimal solutions across different
niches within a specified behavioural space. Approaches that
use a multidimensional archive of phenotypic elites, called
Map-Elites [Mouret and Clune, 2015], are among the most
commonly used QD algorithms. Both approaches have ini-
tially been applied to design problems [Hagg et al., 2018;
Neumann et al., 2019]. QD algorithms have shown to pro-
duce excellent results for challenging problems in the ar-
eas such as robotics [Miao et al., 2022; Shen et al., 2020],
games [Cully and Demiris, 2018] and combinatorial optimi-
sation [Nikfarjam et al., 2024a]. In fields such as robotics and
gaming, several variants of QD algorithms have been devel-
oped [Pugh et al., 2016; Gravina et al., 2018; Fontaine et al.,
2020; Zardini et al., 2021; Fontaine et al., 2021; Medina et
al., 2023]. Moreover, QD has been used to evolve instances
for the traveling salesperson problem [Bossek and Neumann,
2022], for solving the traveling thief problem [Nikfarjam et
al., 2024a], and in context of time-use optimisation to im-
prove health outcomes [Nikfarjam et al., 2024b].

Despite these empirical success stories, the development
of QD remains in its early stages. It is not well understood
when and why QD is effective, nor how long it takes to evolve
diverse and high-quality solutions for meaningful problems.
Due to the lack of a solid theoretical foundation, fundamental
questions remain unanswered, including which evolutionary
operators are most effective and how to design the most effi-
cient QD algorithms for specific problem classes.

In contrast, for traditional evolutionary algorithms that op-
timise a single objective, a robust theoretical foundation has
been established over the past two decades through run-
time analysis. This approach examines the random time re-
quired to evolve optimal solutions for a wide range of bench-
mark problems and combinatorial optimisation [Neumann
and Witt, 2010; Jansen, 2013; Doerr and Neumann, 2020],
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as well as the benefits of diversity mechanisms [Dang et al.,
2016; Sudholt, 2020; Ren et al., 2024]. However, the goals of
QD go beyond finding a global optimum. The aim is to evolve
a population of diverse solutions and to simultaneously opti-
mise multiple regions of the behavioural space. This is related
to (but not the same as) multimodal optimisation [Friedrich et
al., 2009; Covantes Osuna and Sudholt, 2022].

Rigorous theoretical studies of QD algorithms have only
begun recently. The first runtime analysis was conducted
for the classical knapsack problem [Nikfarjam et al., 2022],
demonstrating that QD can solve the problem in expected
pseudo-polynomial time. Subsequent runtime guarantees
have been established for the computation of minimum span-
ning trees and the optimisation of submodular monotone
functions under cardinality constraints [Bossek and Sudholt,
2024], as well as their generalisation to approximately sub-
modular functions and the classical set cover problems [Qian
et al., 2024]. These studies share a common focus: they aim
to identify a single global optimum (or good approximation,
respectively), while leveraging Map-Elites as a framework to
store intermediate solutions that aid in finding the global op-
timum. The only study to analyse QD algorithms for prob-
lems that genuinely seek multiple solutions was conducted in
[Schmidbauer et al., 2024]. The authors considered mono-
tone submodular functions with artificial Boolean constraints
that defined subproblems, which in turn acted as stepping
stones to address the main optimisation problem.

1.1 Our Contribution
We investigate and demonstrate the effectiveness of QD on
a classical planning problem that is inherently well-suited to
QD, as it naturally involves evolving many diverse solutions.
The all-pairs shortest paths (APSP) problem seeks to find
shortest paths between all pairs of nodes in a graph. From
a QD perspective, the behavioural space is naturally defined
by all pairs of nodes in the graph, where each pair u, v of
nodes corresponds to the task of finding a shortest path be-
tween u and v. Our study examines the performance of QD
algorithms on the APSP problem to gain insights into the fun-
damental working principles of QD. Additionally, we aim to
identify the most effective evolutionary operators and explore
ways to enhance the efficiency of QD algorithms.

The APSP can be solved in polynomial time using classical
algorithms [Floyd, 1962; Johnson, 1977]. The goal of the
investigations of evolutionary computation techniques for this
problem is not to beat these classical algorithms in terms of
runtime, but to provide a theoretical understanding of their
working behaviour for this important fundamental problem.

Our work builds on the previous analysis in [Doerr et al.,
2012] for so-called (≤ µ+1) evolutionary algorithms. It
showed that introducing crossover as an additional opera-
tor can reduce the expected runtime on n-vertex graphs to
O(n3.5

√
log n), compared to a runtime of at least Ω(n4)

when relying solely on mutation. The upper bound was im-
proved to O(n3.25 log1/4 n) in [Doerr and Theile, 2009] with
a more refined analysis (which was also shown to be asymp-
totically tight in the worst case), and later to O(n3 log n)
in [Doerr et al., 2013] using better operators. Similar
speedups through crossover were also obtained for ant colony

optimisation algorithms [Sudholt and Thyssen, 2012]. De-
spite criticism of the (≤ µ+1) scheme at the time, e. g. see
[Corus and Lehre, 2018], we believe such a scheme is natural
in the modern view of QD algorithms because not-yet exist-
ing solutions (those not-yet occupying their slots) in the pop-
ulation are equivalent to empty cells in the archive of a Map-
Elites algorithm. We therefore define and analyse the QD-GA
algorithm, in which a map of n by n is maintained to store the
best-so-far shortest paths between all source-destination pairs
for APSP. In each iteration, crossover or mutation operators
as defined in [Doerr et al., 2012] are exclusively applied from
parents uniformly selected from the cells to create a new off-
spring solution which can be used to update the map. When
only mutation is used, the algorithm is referred to as QD-EA.

Using a similar approach as in previous work, how-
ever with a slightly different tool from [Witt, 2014], we
show that QD-EA using only mutation optimises APSP
in O(n2∆max{ℓ, log n}) fitness evaluations in expectation.
Here ∆ is the maximum degree and ℓ is the diameter of the
graph. We find that mutation can exploit synergies between
different parts of the behavioural space since appending an
edge to an existing shortest path can create shortest paths in
other regions of the behavioural space. Crossover is partic-
ularly effective at exploiting synergies as it can simply con-
catenate two shortest paths to produce an optimal path in a
third region. We prove that QD-GA with a constant proba-
bility of applying crossover guarantees an expected runtime
in O(∆3/4n5/2 log1/4 n). This refines the previous bound of
O(n3.25 log1/4 n) from [Doerr and Theile, 2009] by taking
into account the maximum degree ∆ of the graph and yields
better guarantees for graphs with small maximum degree. For
instance, on graphs with ∆ = O(1) our new runtime bound
is smaller by a factor of order n3/4.

Finally, we prove that if the selection of parent cells is
restricted to only include compatible parents for crossover
from the map, QD only relying on crossover optimises APSP
in O(n3 log n) expected fitness evaluations, and therefore
when combining with mutation, the expected runtime is
O(min{n2∆max{ℓ, log n}, n3 log n}). We refer to this lat-
ter version of QD-GA as the Fast QD-APSP algorithm. Our
runtime bounds hold with high probability and in expectation.
We also provide a worst-case instance and a lower bound
showing that the upper bound of O(n3 log n) expected fitness
evaluations is best possible.

2 Quality Diversity and the APSP
The all-pairs-shortest-path (APSP) problem is a classical
combinatorial optimisation problem. Given a directed
strongly connected graph G(V,E) with n = |V | and a weight
function w : E → N on the edges, the goal is to compute for
any given pair of nodes (s, t) ∈ V ×(V \{s}), a shortest path
(in terms of the weight of the chosen edges) from s to t. If one
only looks for the shortest path between two specific nodes,
the problem is referred as the single-source single-destination
shortest-path problem (SSSDSP). Like in [Doerr et al., 2012],
we assume that G is strongly connected, thus there exists a
path from s to t for any distinct pair (s, t) of nodes.

From a QD perspective, we see solving APSP as evolving
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Algorithm 1: Quality Diversity Genetic Algorithm
(QD-GA) with Crossover Probability pc

Input: graph G = (V,E)
1 Initialise an empty map M ;
2 Set Ms,t = (s, t), ∀(s, t) ∈ E;
3 while termination condition not met do
4 Choose p ∈ [0, 1] uniformly at random;
5 if p ≤ pc then
6 Choose Ist, Iuv ∈M uniformly at random;
7 Generate I ′ from Ist and Iuv by crossover;
8 else
9 Choose an individual Ist ∈M uniformly at

random;
10 Generate I ′ from Ist by mutation;
11 M ← Update(M, I ′);

Algorithm 2: Update Procedure for Minimization
1 if I ′ is a valid path from s to t then
2 if Mst is empty then store I ′ in cell Mst ;
3 else
4 Let I be the search point in cell Mst;
5 if fst(I ′) ≤ fst(I) then replace I by I ′ in

Mst ;

both diverse and high quality solutions of multiple SSSDSP.
Therefore, a valid search point I is a set of chosen edges,
denoted by E(I), that forms a valid path from a starting node
s to a target node t. This path can also be represented by a
sequence of nodes to visit, i. e. I := (s = v0, v1, . . . , vk = t)
such that E(I) := {(vi−1, vi) | i ∈ [k]} ⊆ E where [n]
denotes the set {1, . . . , n} for n ∈ N. By |I| we denote its
cardinality, that is, |I| := |E(I)| = k. Occasionally, to make
the source s and destination t clear, we also write such path I
as Ist. For storage, either the sequence I or the set E(I) can
be stored in memory as either one of these uniquely defines I .
For a given search point I , let

fst(I) =
∑

e∈E(I)

w(e)

be the weight (or length) of I . A shortest path between s
and t is the one that minimises fst, and if this path is the
above path I then Ivivi+j

= (vi, vi+1, . . . , vi+j) for any i ∈
{0, . . . , k − 1} and any j < k − i is also a shortest path
between vi and vi+j .

We use the Quality Diversity Genetic Algorithm (QD-GA)
given in Algorithm 1 for our investigations. The algorithm
works with a 2D map M of dimension n by n excluding the
diagonal. The rows and columns of M are indexed by nodes
of V , and each cell (s, t) ∈ V × (V \ {s}) in the map can
store an individual Ist representing a path that starts at s and
ends in t. Following [Doerr et al., 2012], our map M is ini-
tialised to contain for each cell Mst where (s, t) ∈ E. the
solution I with E(I) = {(s, t)} consisting of the path from
s to t given by the edge (s, t), while the other cells of M are

initially empty. In each iteration, either mutation or crossover
is used to produce a new individual from the individuals of
the current map M . Crossover is carried out in each iteration
with probability pc and chooses two individuals from M uni-
formly at random to produce an offspring I ′. If crossover is
not applied, mutation is performed on an individual chosen
uniformly at random to produce I ′. I ′ is then used to update
the map M using Algorithm 2. If I ′ is a valid path from some
node s to some node t, then I ′ is introduced into the cell Mst

if Mst is currently empty. Otherwise, if Mst is not empty,
then I ′ replaces Ist in Mst iff f(I ′) ≤ f(Ist) holds.

As common in the theoretical analysis of evolutionary al-
gorithms, we measure the runtime of Algorithm 1 by the
number of fitness evaluations. The optimisation time of Al-
gorithm 1 refers to the number of fitness evaluations, un-
til M contains for each pair (s, t) ∈ V × (V \ {s})
a shortest path from s to t. The expected optimisation
time refers to the expectation of this value. This optimi-
sation time can depend on the following characteristics of
the graph: the maximum degree ∆ := maxu∈V |{(v |
(u, v) ∈ E ∨ (v, u) ∈ E}|, and the largest cardinality of
the shortest paths ℓ := max(s,t)∈V×(V \{s}),I∈I(s,t){|I| |
fst(I) is minimised}, where I(s, t) denotes set of all valid
paths from s to t. For unweighted graphs, this parameter ℓ is
known as the diameter.

2.1 Mutation and Crossover
We use the following mutation and crossover operators intro-
duced in [Doerr et al., 2012]. For a given path Ist, starting
at node s and ending at node t, let Est be the set of all edges
incident to s or t. Mutation relies on the elementary operation
of choosing an edge e ∈ Est uniformly at random dependent
on a given individual I ′st. If e is part of I ′, then e is removed
from I ′. Otherwise, e is added I ′ with potentially extends the
path at its start or end node. The offspring I ′ is obtained by
creating a copy of Ist and applying this elementary operation
k + 1 times to I ′ where k is chosen according to a Poisson
distribution Pois(λ) with parameter λ = 1. Note that an el-
ementary operation might create an invalid individual when
adding an outgoing edge to s or an incoming edge to t. Such
invalid individuals are rejected by the algorithm according to
the update procedure given in Algorithm 2.

Our analysis will rely on mutation steps carrying out a sin-
gle valid elementary operation extending a given path. For
crossover, we choose Ist and Iuv uniformly at random from
the current map M . If t = u, the resulting offspring I is
obtained by appending Iuv to Ist and constitutes a path from
s to v. Otherwise, the offspring is invalid and has no effect
during the update procedure of Algorithm 2.

2.2 Analytical Tools
We use the following tail bound from [Witt, 2014] for sum of
geometric variables in our analyses.
Lemma 1 (Theorem 1 in [Witt, 2014]). Let {Xi}i∈[n] be in-
dependent random geometric variables with parameter pi ≥
0, and let X :=

∑n
i=1 Xi, and p := mini∈[n]{pi}. If∑n

i=1 p
−2
i ≤ s ≤ ∞ then for any λ ≥ 0 it holds that

Pr (X ≥ E[X] + λ) ≤ e
− 1

4 min
(

λ2

s ,λp
)
.
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We then have the following corollary for a single variable.

Corollary 2. Let X be a geometric random variable with pa-
rameter p > 0, then for any real number c > 0 and any nat-
ural number n ≥ e1/c, it holds Pr

(
X ≥ c lnn+1

p

)
≤ n−c/4.

Proof. Recall E[X] = 1/p, thus applying Lemma 1 with
λ := c lnn

p and s := 1
p2 gives

Pr

(
X ≥ c lnn+ 1

p

)
≤ e−

min((c lnn)2,c lnn)
4 = n− c

4 .

We will also need the following inequality.

Lemma 3. For any real number x > 0, it holds that 2⌊x⌋ −
⌊(3/2)x⌋+ 1 ≥ ⌈x/2⌉ − 1.

Proof. Applying the well-known inequality ⌊x+y⌋ ≤ ⌊x⌋+
⌊y⌋ + 1 which holds for any real numbers x and y, to
⌊(3/2)x⌋ = ⌊x + x − x/2⌋ twice gives ⌊(3/2)x⌋ ≤ ⌊x⌋ +
⌊x⌋+ ⌊−x/2⌋+ 2 = 2⌊x⌋ − ⌈x/2⌉+ 2. Putting this back to
the original statement concludes the proof.

3 Exploiting Synergies via Mutation
We first consider the optimisation progress achievable
through mutation only. Particularly, we refer to QD-GA (Al-
gorithm 1) with pc = 0 as QD-EA. The following theorem
shows that QD-GA with a constant probability of carrying
out mutation, thus including QD-EA as a special case, solves
APSP efficiently and bounds its optimisation time depending
on the structural parameters ∆ and ℓ of the given input. Note
that the algorithm does not need to know ∆ nor ℓ.

Theorem 4. The optimisation time of QD-GA with pc = 1−
Ω(1), which includes QD-EA, is O(n2∆max{ℓ, log n}) in
expectation and with probability 1− o(1).

The same holds for the time to find shortest paths between
all pairs of nodes whose shortest paths have cardinality at
most k, when replacing ℓ with k.

Proof. We first estimate the number of iterations Tst to opti-
mise an arbitrary cell Mst. Let I = (s = v0, . . . , vk = t) be
any shortest path of this cell, then let Xi be the number of it-
erations in which cell Msvi

is optimised but Msvi+1
is not yet

optimised, for any i ∈ {0, . . . , k − 1}, so Tst =
∑k−1

i=0 Xi.
Since multiple elementary operations are allowed in one mu-
tation, it is possible to optimise longer paths before the shorter
ones, in other words some Xi can take value zero. However,
for an upper bound on the optimisation time it suffices to con-
sider the case where the path is extended by adding only one
correct edge at a time. That is, to optimise Msvi+1

, it suffices
to pick the solution in the optimised cell Msvi

as parent, i. e.
probability 1/(n(n− 1)), note that this solution has an equal
weight to that of the path (v1, . . . , vi). Then the mutation is
applied with only one elementary operation, i. e. with proba-
bility (1− pc)/e for the distribution Pois(1), where the edge
(vi, vi+1) is chosen for adding to the parent, i. e. with prob-
ability at least 1/(2∆). The obtained offspring therefore has
equal weight to that of the shortest path (v0, . . . , vi+1) thus it
is used to update and hence optimise Msvi+1

, and so variable

Xi is stochastically dominated by a geometric random vari-
able Yi with parameter p := (1− pc)/(2en

2∆) regardless of
i and of the target path I . Furthermore,

|I| = k ≤ ℓ ≤ max{ℓ, 5 log n} =: ℓ′

and therefore

Tst =
k−1∑
i=0

Xi ⪯
ℓ′−1∑
i=0

Yi =: Y.

By linearity of expectation E[Y ] = 2en2∆
1−pc

· ℓ′, thus applying

Lemma 1 with λ := 2(6−e)n2∆ℓ′

1−pc
gives

Pr

(
Tst ≥

12n2∆ℓ′

1− pc

)
≤ Pr(Y ≥ E[Y ] + λ)

≤ e
− 1

4 min
(

λ2

(1/p)2ℓ′
,λp

)
.

Note that λp = (6/e − 1)ℓ′ while λ2/((1/p)2ℓ′) = (6/e −
1)2ℓ′ > λp, thus the probability that Mst is not optimised
after 12n2∆ℓ′

1−pc
=: τ iterations is at most e−(6/e−1)ℓ′/4.

We now consider all the n(n − 1) cells. Given ℓ′ ≥
5 log n = 5 lnn/ ln 2, by a union bound the probability that
not all cells are optimised after τ iterations is at most

n(n− 1)e−(6/e−1)ℓ′/4 ≤ n2e−5(6/e−1) lnn/(4 ln 2) < n−1/6

since (30/e − 5)/(4 ln 2) > 1/6. Thus with probability
1 − o(1), all cells are optimised in τ = O(n2∆ℓ′) iterations
since 1 − pc = Ω(1). Particularly this holds regardless of
the initial population, thus the expected optimisation time is
at most (1 + o(1))O(n2∆ℓ′).

The final statement is obvious from the proof.

Note that the running time of QD-EA heavily depends on
the characteristics of the graph. Particularly, for ∆ = Θ(n)
and ℓ = Θ(n) we obtain an upper bound of O(n4) on the
runtime of the algorithm. A matching lower bound of Ω(n4)
can be obtained for ∆ = Θ(n) and ℓ = Θ(n) by consider-
ing the complete directed graph Kn as follows. It is defined
as Kn = (V,E) with V := {v1, . . . , vn}, E := {(u, v) |
u, v ∈ V, u ̸= v}, and weights w(vi, vj) = 1 if j − i = 1
and w(vi, vj) = n otherwise (see [Doerr et al., 2012]). Us-
ing Theorem 11 in [Doerr et al., 2012], we can obtain the
following lower bound.
Theorem 5. The optimisation time of QD-EA on Kn with the
above weight function is Ω(n4) with probability 1− o(1) and
therefore, the expected optimisation time is Θ(n4).

4 The Effectiveness of Crossover
We now consider the case where pc is a constant in (0, 1).
This implies that both crossover and mutation are enabled.
We show that crossover can significantly speed up the con-
struction of shortest paths by concatenating shortest paths.

Following the analysis in [Doerr and Theile, 2009], we ar-
gue that when seeking a shortest path between two vertices u
and v, crossover is efficient in creating optimal sub-paths that
may leave small gaps near u or v, which are then efficiently
filled by mutation.
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Definition 6. For g ∈ N0 a pair of vertices u, v is called
g-near-complete with respect to a search point x if there exists
a shortest path u = v0, v1, . . . , vk = v and integers a, b ≤ g
such that x contains a shortest path for the pair va, vk−b.

The following theorem gives an improved upper bound
compared to Theorem 4 for all graphs with ∆1/4ℓ =

ω(n1/2 log1/4 n). If refines the bound O(n3.25 log1/4 n)
from [Doerr and Theile, 2009] as it takes into account the
maximum degree ∆ of the graph. For graphs with ∆ = O(1)
this is an improvement by a factor of order n3/4.

Theorem 7. The optimisation time of QD-GA with constant
pc ∈ (0, 1) is O(∆3/4n5/2 log1/4 n) in expectation and with
probability 1− o(1).

Proof. When a cell is optimised, it can admit multiple short-
est paths of various cardinalities but with the same optimised
weight. After that Algorithm 2 can still update the cell with
these equivalently optimal solutions. To argue about the op-
timisation time, we therefore consider for each cell one of
its shortest paths with the largest cardinality as the represen-
tative optimal solution (representative for short) of the cell.
Since shortest paths can never be lost, we will exploit the fol-
lowing argument. Throughout the proof, we focus separately
on iterations that either do not execute crossover or do, while
disregarding potential progress made in the other type of it-
eration. We account for the expected waiting times for the
desired type of iteration. Since pc is a constant in (0, 1), the
expected waiting times 1/pc and 1/(1− pc) are constant fac-
tors that can be absorbed in the asymptotic notation.

Let m := ⌊∆−1/4n1/2 log1/4(n)⌋. We divide the run into
⌊log3/2(ℓ/m)⌋+1 ≤ ⌊log3/2(n/m)⌋+1 phases. The goal of
Phase i for i ∈ [0, ⌊log3/2(n/m)⌋] is reached when all cells
with representatives of cardinality at most ⌊m · (3/2)i⌋ have
been optimised. Each Phase i ends after a fixed number Ti of
iterations, where Ti will be specified later. If Phase i does not
achieve its goal within Ti iterations, we speak of a failure and
will bound the failure probability of each phase.

Phase 0. The goal of Phase 0 is to optimise cells with rep-
resentatives of cardinality at most m (which implies that all
shortest paths of cardinality at most m were found). By the
last statement of Theorem 4 with k := m ≥ log n, relying
only on mutation steps, every cell Mst with representative
of cardinality at most m contains a shortest path in expected
time O(∆3/4n5/2 log1/4 n) with probability 1−o(1). There-
fore, Phase 0 lasts only fails in T0 := O(∆3/4n5/2 log1/4(n))
iterations with probability o(1).

Phase i + 1. Consider Phase i + 1 for i ≥ 0 and as-
sume that Phase i has concluded successfully. Then all
cells with representatives of cardinality at most ⌊m · (3/2)i⌋
have been optimised (which implies that all shortest paths
of cardinality at most ⌊m · (3/2)i⌋ have been found),
while the optimisation of those with cardinality k ∈
[⌊m · (3/2)i⌋+ 1, ⌊m · (3/2)i+1⌋] is underway. We refer
to the latter cells as target cells. We divide Phase i + 1
into two subphases: a crossover subphase, followed by a
mutation subphase. In the crossover subphase, we only

rely on iterations with crossover, and the mutation sub-
phase only relies on those that execute mutation. Let gi :=
(3/2)−i/6m/4, then the goal of the crossover subphase is
that all target cells are gi-near-complete. The goal of the
mutation subphase is that all target cells contain complete
shortest paths. We will show that each subphase concludes
within in O(∆3/4n5/2 log1/4(n)(3/2)−i/6) iterations, with
high probability. The total time spent in Phase i + 1 is thus
Ti+1 = O(∆3/4n5/2 log1/4(n)(3/2)−i/6).

Crossover subphase. Consider a target cell that is not yet
gi-near-complete and let I = (v0, . . . , vk) be its representa-
tive solution. Then the following events suffice to make it
gi-near-complete. Crossover is executed (probability pc), a
first parent is chosen from a cell Mvavj

with a ∈ [0, gi] and
j ∈ J := [max{gi, k − ⌊m · (3/2)i⌋},min{k − gi, ⌊m ·
(3/2)i⌋}] (probability (gi + 1)|J |/(2n2) ≥ gi|J |/(2n2))
and a second parent is chosen from a cell Mvjvk−b

with
b ∈ [0, gi] (probability (gi + 1)/n2 ≥ gi/n

2). If these events
all happen, crossover concatenates paths encoded by the two
parents. Since both sub-paths from va to vj and from vj to vb
have cardinality at most m · (3/2)i, the corresponding cells
Mvavj

and Mvjvk−b
are optimised, and thus the concatenated

path from va to vb is a shortest path. This implies that the
original cell becomes gi-near-complete. Note that |J | is non-
increasing in k, thus it is minimised for k = ⌊m(3/2)i+1⌋
where it simplifies to

|J | ≤ |[⌊m(3/2)i+1⌋−⌊m(3/2)i⌋, ⌊m(3/2)i⌋]|−2⌈gi + 1⌉
= 2⌊m(3/2)i⌋ − ⌊m(3/2)i+1⌋+ 1− 2⌈gi + 1⌉
≥ ⌈m(3/2)i⌉ − 1−m/2− 4

by Lemma 3 and using ⌈gi + 1⌉ ≤ m/4 + 2. We conclude
that, in every iteration, the probability of an arbitrary but fixed
target cell becoming gi-near-complete is at least

pcross := pc ·
g2i (⌈m(3/2)i⌉−m/2−5)

2n4
= Ω

(
m3(3/2)

2i
3

n4

)
The probability of any fixed target cell not becoming
gi-near-complete within 3 ln(n)/pcross iterations is at most
(1 − pcross)

3 ln(n)/pcross ≤ e−3 lnn = 1/n3 using 1 + x ≤
ex. By a union bound over at most n2 target cells, the
probability of not all target cells becoming gi-near-complete
in time 3 ln(n)/pcross = O(n4m−3 log(n)(3/2)−2i/3) =

O(∆3/4n5/2 log1/4(n)(3/2)−i/6) is at most 1/n.

Mutation subphase. Consider a target cell that is
gi-near-complete but not yet optimised and let I =
(v0, . . . , vk) be its representative solution. Let a, b ≤ gi be
the smallest values such that the map contains a shortest path
between va and vk−b. If a > 0 then a shortest path between
va−1 and vk−b is created if the following events occur. The al-
gorithm applies mutation (probability 1−pc), picks a solution
of the optimised cell Mvavb

as a parent (probability at least
1/n2), and decides to apply exactly one elementary opera-
tion (probability 1/e = Pois(1)), where the edge (va−1, va)
is added to the parent (probability at least 1/∆). If a = 0
and b > 0 we use symmetric arguments to evolve a shortest
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path between va and vk−b+1. In any case, the probability of
extending optimised subpath of I by one edge in one itera-
tion is at least pmut := (1 − pc)/(∆n2). We need at most
a + b ≤ 2gi such events to optimise the shortest path be-
tween v0 and vk. Thus, the random time for this to happen
is stochastically dominated by Y :=

∑2gj
j=1 Yj where the Yj’s

are independent geometrically distributed random variables
with success probability pmut. Using E[Y ] = 2gi/pmut, we
obtain using Lemma 1 with λ := E[Y ],

Pr(Y ≥ E[Y ] + λ) ≤ e
− 1

4 min

(
λ2

2gi/p
2
mut

,λpmut

)

= e−
1
4 min(2gi,2gi) = e−gi/2.

Since i ≤ ⌊log3/2(n/m)⌋ ≤ log3/2(n) we have gi =

(3/2)−i/6m/4 ≥ n−1/6m/4 = Ω(∆−1/4n1/3 log1/4(n)) =

Ω(n1/12) and thus the failure probability is e−Ω(n1/2), that
is, exponentially small. This still holds when taking a union
bound over at most n2 target cells. Hence, with high prob-
ability the mutation subphase is successful in 2E[Y ] =

O(gi/pmut) = O((3/2)−i/6∆3/4n5/2 log1/4(n)) iterations.
Putting everything together. By a union bound over all
failure probabilities in Phase 0 and all O(log n) Phases i+1,
including both subphases, the probability of all phases being
successful is at least 1−o(1)−O(log n)·(1/n+e−Ω(n1/2)) =
1− o(1). The total time is at most

T :=

⌊log3/2(n/m)⌋∑
i=0

(
3

2

)−i/6

O(∆3/4n5/2 log1/4(n))

which is O(∆3/4n5/2 log1/4 n) as
∑∞

i=0((3/2)
−1/6)i =

1
1−(3/2)−1/6 = O(1). If a phase is unsuccessful, we re-
peat all phases and consider another period of T genera-
tions. Hence, the expected number of iterations to com-
pute all shortest paths is at most (1 + o(1)) = O(T ) =

O(∆3/4n5/2 log1/4(n)).

5 Speed-ups through Improved Selection
The bound from Theorem 7 is O(n3.25 log1/4 n) on graphs
with ∆ = Ω(n). For graphs with large ∆, the runtime can be
improved by adjusting the selection mechanism to only select
feasible parents for crossover, thus eliminating idle steps. The
idea is inspired by [Doerr et al., 2013]. The first parent is
selected from a cell Mst of M chosen uniformly at random.
Then the second parent is selected uniformly at random from
a cell in the row t but excluding column s (and of course
excluding column t). If both cells are non-empty, the paths
are concatenated and always form a valid path. Otherwise,
no valid path is constructed and the algorithm skips directly
to the next iteration.
Theorem 8. The optimisation time of QD-GA with pc =
Ω(1) and using the above improved selection operator is
O(n3 log n) with probability 1− o(1) and in expectation.

Proof. We use the same notion of representative of a cell as
in the proof of Theorem 7. The run of the algorithm is divided

into ⌊log3/2 ℓ⌋ ≤ ⌊log3/2 n⌋ phases and a phase i ends when
all cells with representative solutions of cardinality at most
⌊(3/2)i⌋ have been optimised. Note that phase 1 is completed
at initialisation, thus we only look at phases i + 1 for i ≥ 1.
During such a phase, all cells with representatives of cardinal-
ity at most ⌊(3/2)i⌋ have been optimised while the optimisa-
tion of those with cardinality k ∈ [⌊(3/2)i⌋+ 1, ⌊(3/2)i+1⌋]
is underway, and we refer to the latter cells as target cells.

Consider a target cell that is not yet optimised and let I =
(v0, . . . , vk) be its representative solution. For any integer
j ∈ [k − ⌊(3/2)i⌋, ⌊(3/2)i⌋] the paths Iv0vj

= (v0, . . . , vj)
and Ivjvk

= (vj , . . . , vk) are optimal solutions for cells
Mv0vj

and Mvjvk
respectively. Furthermore, those paths

have the same cardinalities as the corresponding representa-
tives of those cells, because otherwise I is not the represen-
tative of Mv0vk

and this contradicts our assumption. These
imply that Mv0vj and Mvjvk

have already been optimised
since the cardinalities of Iv0vj

and Ivjvk
are at most ⌊(3/2)i⌋.

Thus picking solutions in those cells as parents and applying
crossover (probability pc/(n(n − 1)(n − 2))) optimises the
cell Mv0vk

by creating either solution I or an equivalently op-
timal solution. The number of such pairs of cells (or parents)
is the number of possible integers j, which is at least

⌊(3/2)i⌋ − (k − ⌊(3/2)i⌋) + 1

≥ 2⌊(3/2)i⌋ − ⌊(3/2)i+1⌋+ 1 ≥ ⌈(3/2)i/2⌉ − 1 =: ξi

by Lemma 3. Thus, the number of iterations to optimise an ar-
bitrary target cell in phase i+1 is stochastically dominated by
a geometric random variable with parameter pcξi/n3 =: pi.

Applying Corollary 2 with c = 9 for this variable implies
that with probability at most n−9/4, an arbitrary target cell
is not optimised after τi := (9 lnn + 1)n3/(pcξi) iterations.
By a union bound on at most n(n− 1) target cells, the prob-
ability that the phase is not finished after τi iterations is at
most n(n − 1)n−9/4 = n−1/4. Then by a union bound on
at most ⌊log3/2 n⌋ phases the probability that all phases are

not finished after τ :=
∑⌊log3/2 n⌋

i=1 τi iterations is at most
n−1/4 log3/2 n = o(1). Thus with probability 1 − o(1), all
cells are optimised in time τ , and if this does not happen, we
can repeat the argument, thus the expected running time of
the algorithm is at most (1 + o(1))τ . Note that

τ = O(n3 log n)

⌊log3/2 n⌋∑
i=1

ξ−1
i = O(n3 log n)

since pc = Ω(1) and
∑⌊log3/2 n⌋

i=1 ξ−1
i = O(1), which fol-

lows from ξ−1
i = O(1) for i ≤ 4 and ξi ≥ (3/2)i/2 − 1 ≥

(4/3)i/2 for i ≥ 5, thus
∑∞

i=5 ξ
−1 ≤ 2

1−(3/4) = O(1).

Combining the Theorems 4 and 8 gives the following result
for the so-called fast QD-APSP algorithm.
Theorem 9. QD-GA with constant pc ∈ (0, 1) and with the
improved selection operator, this setting is referred as the fast
QD-APSP algorithm, has optimisation time O(min{∆n2 ·
max{ℓ, log n}, n3 log n}) on the APSP in expectation and
with probability 1− o(1).
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Fast QD-APSP takes the advantage of both operators, for
example on balanced k-ary trees where k = O(1) and ℓ =
O(log n), the expected running time of the algorithm is only
O(n2 log n). However, there also exist graphs where a tight
optimisation time Ω(n3 log n) is required with high probabil-
ity and also in expectation, even on a simple weight function
that only assigns unit weights.

Theorem 10. There is an instance where the Fast QD-APSP
algorithm requires optimisation time Ω(n3 log n) with prob-
ability 1− o(1) and in expectation.

Proof. Let n ≥ 2 be any natural number, we consider the
graph G = (V,E) with |V | = 5n+ 1 which consists of:

• n paths Pi = (ui, ci, vi) of cardinality 2 where i ∈ [n],

• a complete bipartite graph Kn,n with two disjoint sets
of nodes A,B where |A| = |B| = n, and for each pair
(a, b) ∈ A×B, we have (a, b) ∈ E and (b, a) ∈ E,

• a node c, and the remaining edges of E are: (c, ui) and
(vi, c) for each i ∈ [n]; (ci, a), (b, ci) for all i ∈ [n], all
a ∈ A, and all b ∈ B,

and the unit weight function w : E → {1}. Figure 1 shows
an example of this graph for n = 2. It is easy to see that G
is strongly connected, and that its diameter is ℓ = 5 = O(1)
(e. g. the cardinality of the shortest path from node ui to vj
where i ̸= j). The maximum degree is ∆ = 3n = Θ(|V |)
which corresponds to the degree of a node in K2n, but node
ci of any path Pi also has degree 2n+ 2 = Θ(|V |).

The unique shortest path between ui and vi is Pi, therefore
we argue that with high probability Fast QD-APSP requires
Ω(|V |3 log |V |) = Ω(n3 log n) iterations to optimise the n
cells Muivi

where i ∈ [n]. After initialization, none of these
cells are optimised since Pi has cardinality 2. Then in ev-
ery iteration, in order to optimise a cell Muivi by crossover
cells Muici and Mcivi must be selected as parents, and this
occurs with probability pc/((5n + 1)5n(5n − 1)). If muta-
tion is used instead, i. e. with probability 1− pc, either Muici
and Mcivi

cells need to be selected as the parent, i. e. with
probability 2/((5n + 1)5n), then one proper edge needs to
be selected among 2n + 2 of those that are connected to ci

P1u1

c1

v1

P2u2

c2

v2

c

K2,2

A

B

a1

b1

a2

b2

Figure 1: Graph G for n = 2, all edges have weight 1.

in an elementary operation to optimise Muivi , i. e. probabil-
ity at most 1/(2n + 2). Note that it is possible to optimise
Muivi

by first optimising some cell with a shortest path of
larger cardinality and later mutating it back to Muivi

. How-
ever, both shortening a shortest path that contains Pi as a sub-
path (e. g. converting path (ui, ci, vi, c) to Pi) and mutating
a shortest path that contains an edge of Pi (e. g. converting
path (ui, ci, a) to Pi) require at least making the above cor-
rect elementary operation in the first place thus we can ignore
these events. So overall, the probability of optimising Muivi

by either crossover or mutation is at most

2/((5n+ 1)5n(2n+ 2)) ≤ 1/(25n3).

This upper bound holds independently of i as far as the cell
Muivi

has not yet been optimised.
Consider now the first τ := (1/5)(25n3−1) lnn iterations,

the probability that an arbitrary cell Muivi
is not optimised

during these iterations is at least, here using (1− 1/x)x−1 ≥
1/e for x = 25n3,

(
1− 1

25n3

)(1/5)(25n3−1) lnn ≥ n−1/5.
Therefore, the probability that at least a cell among the n cells
Muivi is not optimised after τ = Ω(n3 log n) iterations is at
least 1− (1− n−1/5)n ≥ 1− e−n−1/5·n = 1− o(1). Hence,
Fast QD-APSP requires Ω(n3 log n) fitness evaluations to op-
timise G with probability 1 − o(1) and the expected runtime
is (1− o(1)) · Ω(n3 log n) = Ω(n3 log n).

6 Conclusions
Computing diverse sets of high quality solutions is impor-
tant in various areas of artificial intelligence. Quality diver-
sity algorithms have received a lot of attention in recent years
due to their ability of tackling problems from a wide range
of domains. We contributed to the theoretical understand-
ing of these algorithms by providing the first analysis of a
classical combinatorial optimisation problem that seeks mul-
tiple solutions in a natural behaviour space. Our analysis for
the APSP has revealed several insights into the working be-
haviour of QD and the way that evolutionary operators exploit
synergies between different regions of the behavioural space.
We saw that mutation can extend shortest paths by append-
ing edges, thus creating optimal paths for a different region
of the behavioural space. Crossover exploits synergies much
more effectively, as it concatenates two optimal paths to form
an optimal path for a third region. Based on previous work
by [Doerr and Theile, 2009], we also saw that the combina-
tion of crossover and mutation is particularly effective: while
crossover quickly produces paths that are near-optimal, but
have some gaps at one or both ends of a path, mutation can
then fill these gaps by appending edges. Finally, we showed
that improving the parent selection to always create feasible
offspring during crossover gives a further speed-up on graphs
with a large maximum degree.

Establishing a rigorous theoretical foundation and obtain-
ing a better understanding of QD has the potential to improve
practical applications across various domains. We hope that
this work serves as a stepping stone towards the development
of more efficient quality diversity algorithms and provides
a basis for understanding QD algorithms for more complex
planning problems.
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