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Abstract

Proactive scheduling creates robust offline sched-
ules that optimize resource utilization and mini-
mize job flow times. This work addresses schedul-
ing challenges in business processes, often encoun-
tered in service systems, which differ from tradi-
tional applications like manufacturing due to in-
herent uncertainties in activity durations, and hu-
man resource availability. We model the busi-
ness process scheduling problem (BPSP) as a
variation of stochastic resource-constrained multi-
project scheduling (RCMPSP), and apply process
mining to infer unknown parameter values from
historical event data. To overcome the randomness
in activity durations, we transform the problem into
its deterministic counterpart, and prove that the lat-
ter provides a lower bound on the Makespan of
the stochastic problem. Our approach integrates
data-driven Monte Carlo simulation with constraint
programming to generate proactive schedules. We
evaluate our approach using synthetic datasets with
varying levels of uncertainty and size. In addition,
we apply the approach to a real-world dataset from
an outpatient cancer hospital, demonstrating its ef-
fectiveness in optimizing the process Makespan by
an average of 5% to 14%.

1 Introduction

We address the challenge of scheduling business processes
in service domains such as finance (e.g., purchasing, order
fulfillment), healthcare (e.g., patient flow management, ap-
pointment scheduling), and retail (e.g., order processing, sup-
ply chain coordination). Business processes are structured
sets of activities that organizations execute to achieve vari-
ous objectives, such as completing a sale, providing a ser-
vice, or managing a supply chain [Dumas et al., 2018]. Un-
like processes in manufacturing facilities, which typically in-
volve predictable durations, and stable resource availability,
business processes exhibit significant uncertainty and vari-
ability [Shoush and Dumas, 2022; Xu et al., 2016]. Specif-

ically, scheduling business processes is notoriously com-
plex due to the stochastic nature of activity durations caused
by human behavior, as well as the time-varying availability
of resources influenced by factors such as part-time sched-
ules, overlapping responsibilities, and vacations. These chal-
lenges make traditional deterministic scheduling methods in-
adequate [Pinedo, 2012].

In response to this limitation, proactive scheduling tech-
niques generate robust offline schedules [Beck and Wilson,
2007, Chaari et al., 2014]. These methods explicitly ac-
count for the stochastic nature of activity durations and aim
to compute a proactive optimal solution that achieves a pre-
defined confidence level [Beck and Wilson, 2007]. For ex-
ample, a solution with a confidence level of 1 — « ensures
that the returned Makespan remains below an optimal thresh-
old in at least (1 — ) of cases. While proactive schedul-
ing has made significant progress in addressing variability
through probabilistic activity durations [Satic et al., 2022;
Liu and Xu, 2020; Hauder et al., 2020; Chen et al., 2019;
Beck and Wilson, 2007], critical gaps remain. Notably, the
challenge of planned resource unavailability is seldom ad-
dressed. Although studies incorporate the planned unavail-
ability of resources, some overlook the uncertainty of dura-
tion [Kreter et al., 2018], while others fail to handle the com-
plexity and variability typical of business processes [Yang et
al., 2020; Winklehner and Hauder, 2022].

Beyond methodological gaps, many real-world business
processes face an additional practical challenge: the lack of
readily available data on key scheduling parameters. Infor-
mation such as activity durations, their probabilistic distri-
butions, and resource availability calendars is often incom-
plete or missing. Without access to this data, even advanced
scheduling techniques struggle to perform effectively in real-
world settings. To bridge this gap, we employ process mining,
a data-driven approach designed to extract knowledge and in-
sights from event logs [van der Aalst, 2016]. Event logs are
datasets that document process executions, capturing details
such as activity types, start and end times, and the resources
assigned to each activity.

Building on this foundation, we formulate the Business
Process Scheduling Problem (BPSP) and establish its re-
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lationship to the well-known Resource-Constrained Project
Scheduling Problems (RCPSP). Our approach leverages
both process mining and proactive scheduling methods to
tackle both the inherent uncertainty in business processes,
and lack of knowledge of the problem. Specifically, we
develop a framework that combines data-driven simula-
tion [Meneghello er al., 2025], and constraint program-
ming [Kreter ef al., 2018]: we construct a constraint pro-
gramming model that generates deterministic schedules for
the BPSP, verify them using the simulator, and select the best
performing schedules. These schedules are evaluated and op-
timized to minimize the uncertain Makespan while achieving
a pre-specified confidence level, ensuring robustness against
variability and resource constraints.

We evaluate our approach in two phases to demonstrate
both its effectiveness and applicability. In the first phase,
we conduct experiments using synthetic data, allowing us to
systematically test the framework’s ability to handle vary-
ing levels of uncertainty while accounting for resource cal-
endars. This controlled environment ensures that the method
can adapt to diverse scheduling scenarios and reliably opti-
mize outcomes under uncertainty. In the second phase, we
validate the applicability of our approach by applying it to
real-world event logs from a healthcare process, achieving an
optimization of the process Makespan by an average of 5%
to 14%. Using process mining techniques, we extract BPSP
parameters from the logs and employ our framework to gen-
erate optimal schedules. This highlights the practical value of
our method, showcasing its ability to address complex, data-
driven scheduling challenges in a real-world domain.

2 Business Process Scheduling

In this part, we first motivate our work with a real-life hospi-
tal example. Then, we proceed to define the business process
scheduling problem (BPSP), and lastly, discuss the use of pro-
cess mining for inference of BPSP parameters from data.

2.1 Motivating Example

We are motivated by a hospital process that provides a se-
quence of treatments to cancer patients. The resources in-
volved in the process, nurses (N), physicians (P), and infusion
nurses (IN), are shared among patients and must be scheduled
ahead of time. The duration of treatments varies significantly
based on patient-specific context (e.g., patient complexity).
Furthermore, the resources involved are not always available,
as they follow specific shift schedules and may go on planned
vacations. For instance, nurses work 8 hours a day, 5 days
a week, either in the morning or in the afternoon. Physician
calendars are highly variable, and depend on exogenous fac-
tors (e.g., physicians serving in multiple hospitals).

The hospital process is depicted in Figure la, which il-
lustrates possible patient pathways. The activities are repre-
sented by white rectangles, and the time required to complete
each activity is defined by probability distribution functions.
The process begins with the Blood Draw activity, performed
by a nurse (N), and continues with the parallel execution of
the Vitals (for vital signs) and Examination activities, per-
formed by a nurse and a physician (P), respectively. Finally,

based on previous activities, the physician decides whether to
proceed with Chemo. Infusion.

To complement the picture, Figure 1b illustrates resource
shifts for a typical day. Nurses have various shifts, which
overlap for only two hours, between 11 am and 2 pm, while
the physician has a two-hour break during which no exami-
nation activity can be performed. The hospital processes ap-
proximately 1000 patients per day, involving over 5000 activ-
ities. The goal is to find a proactive schedule that probabilis-
tically minimizes the global Makespan, e.g., the time that the
last patient leaves cannot exceed 6PM with probability of at
least 0.95.

2.2 Problem Definition

Referring to the definition in [Sdnchez er al., 2023], a case
in a business process corresponds to a project, and the activi-
ties within the case map to the jobs that comprise the project.
Business process scheduling problems (BPSPs) can therefore
be represented using the following parameters!:

* T is the set of cases enumerated by i € {1,2,....|Z|},

* A; = {a1,...,ap4,)} is the set of activities comprising
case 7, where a;, a;, may correspond to the same activity
type (e.g., examination), and may repeat within a case,

» Ais the set of all possible activity types, and ¢ is a map-
ping from activities to their types, ¢(a;) € A,

e Il C A; represents activities that precede activity
a; € A;, i.e., their completion precedes the start of a;,

* R is the set of resources involved in the process, with
r € {1,2,...|R|}, and C, being the capacity of r,

* R;4; C R are the resources required to perform activity
ajin case i, and p(a;) = R; 4, is a function that returns
the set of resources required by an activity,

« T ={0,1,...,T} isaset of time periods (e.g., minutes)
during a scheduling horizon of length T',

* Dia; ~ Pig(a;).p(a;) is the number of time periods re-
quired to perform activity a; in case 4, which follows the
probability distribution P that depends on case i, activ-
ity type ¢(a;) and set of resources p(a;).>

* Upt € {0, 1} is the resource availability calendar, which
is 1 if resource 7 is available at time period ¢ € 7.

It is worth mentioning that the BPSP is a variation of the
RCPSP that, to the best of our knowledge, has not yet been
addressed in the scheduling literature [Sénchez et al., 2023].

Scheduling the business process is to assign each activ-
itya; € A;, i =1,...,|Z], j = 1,...,|A;| with a start
time. Resource assignment is defined based on the activity
requirement R; o, where non-interchangeable resources are
treated as distinct. Optimal scheduling in our setting is to
find a schedule such that the latest completion time among all
cases, i.e., the global Makespan M, is minimized.

'RCMPSP notation taken from [Sénchez et al., 2023].
’The only stochastic components of BPSP are activity durations.
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Figure 1: Running example of hospital process
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Caseld Activity type Start Complete Resources
1 Blood Draw 08:00 08:06 N
2 Blood Draw 08:01 08:07 N
3 Blood Draw 08:01 08:05 N
3 Vitals 08:05 08:11 N
2 Examination 08:07 08:14 P
2 Vitals 08:10 08:14 N
3 Examination 08:10 08:25 PN
1 Vitals 08:11 08:14 N
1 Examination  08:11 08:30 PN
2 Chemo. Infusion 08:20 09:10 IN
1 Chemo. Infusion 08:30 09:40 IN

Table 1: Example of a simple event log.

2.3 Learning BPSP Parameters From Event Logs

If all parameters of the BPSP are at hand, one can immedi-
ately switch to solving the underlying problem. However, if
this is not the case, one can use historical data to infer these
parameters with the use of process mining methods.

Process Mining [van der Aalst, 2016] integrates data sci-
ence with business process analysis to extract insights from
event logs recorded by enterprise information systems, such
as EPIC in healthcare [Johnson, 2016]. Event logs (see Ta-
ble 1) provide a valuable source of data for learning the pa-
rameters required for scheduling problems. An event log
consists of multiple cases, where each case is a sequence of
events corresponding to the execution of a case, e.g., a sin-
gle journey of a patient in a hospital. Each event in the se-
quence is a measurement of an activity and its characteristics.
Specifically, events capture the type of activity, the resources
involved and the start and end timestamps that define the du-
ration of the activity.

Learning Activities and Precedence. Activity types,
which represent categories of activities performed in the pro-
cess, are determined from the labels of activities recorded
in the event log. Mapping these observed activities to pre-
defined types involves grouping activities based on domain
knowledge or textual similarity. The durations of activities
can be derived from the start and end timestamps recorded
in the event log. By analyzing these timestamps, probability
distributions can be fitted to the observed durations of each
activity type, such as normal or log-normal distributions, de-
pending on the observed data, c.f., [Camargo et al., 2020].

Precedence constraints can be inferred by examining the se-
quential order of activities in traces, identifying dependen-
cies between activities where the completion of one activity
consistently precedes the start of another [Senderovich et al.,
2019].

Inferring Resources and Capacities. Resource capaci-
ties can be inferred by analyzing the frequency of resource
usage over time, leveraging approaches such as Sched-
Miner [Senderovich et al., 2015]. The effective capacity is
estimated by considering the maximum resource utilization
observed in the event log. This estimate often serves as a
tight lower bound, as there remains a small probability that
some resources were available but never utilized.

Resource availability calendars can be constructed by ana-
lyzing the distribution of timestamps associated with resource
usage, identifying periodic patterns such as daily or weekly
schedules, which can be assumed constant over extended pe-
riods. Resource requirements for activities can be extracted
from the resource identifiers associated with events in the log.

Threats to Validity. The application of process mining
techniques relies on several assumptions. It is assumed that
logs are complete, capturing all resources and activities in-
volved in the process, and that activities are non-preemptive,
meaning they run to completion once started. Resource ca-
pacities are assumed to remain fixed over time, with resources
becoming available immediately after completing an activity,
unless they are absent according to their calendar. Addition-
ally, activity durations are assumed to follow a known dis-
tribution, and resource calendars are considered periodic and
consistent over the given time horizon. All of these assump-
tions may be violated in practice.

A first step in addressing threats to validity in process min-
ing is to use representative event logs, i.e., logs that cover
a time period meaningful to the process life-cycle and min-
imize the variability caused by seasonal behaviors. Vari-
ability in resource capacities and behaviors can be mitigated
by estimating the capacity of pools of resources performing
shared activities. Hence, resource pools reflect average per-
formances and are not influenced by the behavior of individ-
ual resources. Finally, with respect to the time perspective of
the process, many state-of-the-art approaches replace prede-
fined distributions with advanced statistical or machine learn-
ing models to more accurately capture process dynamics.
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Figure 2: Our approach to Proactive Business Process Scheduling.

3 Proactive BPSP

Figure 2 illustrates the steps of our method. First, we define
the BPSP based on either prior knowledge or by estimating
its parameters from data. To manage the stochastic activity
durations, we convert the stochastic BPSP into its determin-
istic counterpart by employing the transformation proposed
in [Beck and Wilson, 2007], which is described in the next
Section. Next, once the problem becomes deterministic, we
construct a Constraint Programming (CP) model, and a CP
solver is employed to obtain solutions that iteratively min-
imize the global Makespan M until either an optimal deter-
ministic solution is found, or a time limit is reached. Once CP
solutions are obtained, we first select the fop- K solutions. Fi-
nally we employ Monte-Carlo simulation to identify the best
solution. Below, we detail the different steps, and justify our
design choices.

3.1 From Stochastic to Deterministic BPSP

The activity durations in a BPSP are random. Therefore,
minimizing the Makespan implies finding the smallest pos-
sible value of M such that a solution exists with a random
Makespan that, with high probability, 1 — « is less than M.
We refer to M as the probabilistically minimum Makespan.

To transform the BPSP into a deterministic problem, we
use the approach proposed by [Beck and Wilson, 20071,
which associates a deterministic problem with the probabilis-
tic one by transforming each random duration into the sum of
its mean value and a buffer that depends on its standard devia-
tion. More formally, for activity a; in case ¢, the deterministic
duration that is associated with it is,

ey

with p; o, being the mean duration of the activity, o; , being
its standard deviation and ¢ > 0 being an uncertainty coef-
ficient that provides a buffer for the mean value.®> If ¢ = 0,
the mean value is used as activity duration across the board.
All other components of the problem are deterministic, and
remain unchanged. The challenge with the transformation
defined in (1) is the identification of the value of a value of
g such that the makespan M, of the deterministic problem

dia; = Mia; T4 Tiay,

*Note that we assume the existence of the first two moments of
the distribution for activity durations.

serves as a lower bound for the makespan M, of the stochas-
tic problem. In the remaining of the Section we provide some
details on the solution proposed in [Beck and Wilson, 2007]
and summarized the value of ¢ defined in (2).

Lower-Bound Guarantees for BPSP
The work in [Beck and Wilson, 2007] shows that for
Resource-Constrained Project Scheduling Problem (RCPSP),
a lower bound for the probabilistic Makespan M} is provided
by the makespan My, given by the solution of the determin-
istic problem obtained using the transformation (1) with the
value of ¢ set to
11— a)
\/[7 )
where ®~! is the inverse of the standard normal cumulative
distribution function (CDF), and U represents an upper bound
on the number of uncertain activities along the deterministic
critical path (e.g., U can be set to the total number of activ-
ities). Furthermore, the authors in [Beck and Wilson, 20071
demonstrate that this lower bound can be tightened by select-
ing different values for ¢ when additional assumptions are
satisfied. The lower bound result is critical to efficiently se-
lect models using Monte Carlo simulation.

However, to apply the result in the BPSP case, we must
overcome three violations of the classical RCPSP assump-
tions, namely multiple cases, potentially inter-dependent ac-
tivity durations, and planned resource unavailability. The first
two violations are straightforward to address. Since we con-
sider the Makespan with respect to the latest activity regard-
less of the case, one can view BPSP as a single-case schedul-
ing problem [Sénchez et al., 2023]. Moreover, when condi-
tioning on the case, the resources, and the activity being pro-
cessed, activity durations become independent of each other.
This property, referred to as conditional independence, en-
sures that the result from [Beck and Wilson, 2007] applies, as
we assume the case identifier and activity information (i.e.,
its type and required resource set) are known.

The only significant limitation that remains unresolved
relates to resource calendars. To prove that qy indeed
yields a lower-bound we must first define so-called posi-
tive precedence expressions. The set E is a set of prece-
dence constraints between activities a; and a; specified as
before(i, ), i.e., the constraint that activity a; cannot start

2

qu =
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earlier than the completion of a;. We are now ready to define
positive precedence expressions (PPEs).

Definition 1 (Positive Precedence Expressions (PPE)). The
set E is referred to as a positive precedence expressions over
a set of activities A if it is the smallest set satisfying:

1. Va;,aj,before(i, j) € E.
2. lfé, 0 € E, then A € Eand oV o € E.

In [Beck and Wilson, 2007] it is shown that for schedul-
ing problems that can be written as a conjunction of PPEs,
the proposed transformation that uses gy (as above) provides
a lower-bound on the stochastic problem. Therefore, what
remains to be shown is that BPSP can be expressed by a con-
junction of PPEs.

Proposition 1. Selecting ¢ = qu yields a lower-bound solu-
tion to the stochastic BPSP.

Proof. We build the proof on the result of [Beck and Wil-
son, 2007], who established a lower bound for RCPSPs that
do not account for resource unavailability. We will treat re-
source ‘vacations’ as dummy activities that we must schedule
in addition to the other activities. The core argument relies on
the ability to represent RCPSP constraints as Positive Prece-
dence Expressions (PPEs). Specifically, the constraints of an
RCPSP can be expressed as a conjunction of PPEs ([Beck and
Wilson, 2007]):

1. Precedence Constraints (¢): Precedence relationships
between activities a; and a; are represented as primitive
precedence expressions before(i, 7). Let ¢ denote the
conjunction of all such precedence constraints.

2. Resource Constraints (i)): Resource constraints can
be represented using forbidden sets. A forbidden set
H C A consists of activities whose simultaneous execu-
tion exceeds the capacity of a resource 7, C,.. Resource
constraints are satisfied if, for all H € F, there exist
two activities a;, a; € H such that before(, j) holds.
This is expressed as:

v=A

HEF a;,a; EH,i#j

before(i,j).

Combining these, the constraints of an RCPSP are repre-
sented as ¢ A 1, which is a conjunction of PPEs. In BPSP, re-
source unavailability introduces additional constraints: each
resource 1 has an availability calendar v, ;, where v,; = 1
if r is available at time ¢, and O otherwise. To incorporate
resource unavailability, we redefine and extend the notion of
forbidden sets:

1. Capacity forbidden sets H are defined as in RCPSPs,
representing sets of activities whose simultaneous exe-
cution exceeds the capacity of a resource r.

2. For resource unavailability, we extend H with addi-
tional constraints for each resource r and time ¢ where
vr; = 0. The extended forbidden sets, denoted ’ en-
sure that no activities requiring r overlap during unavail-
able periods.

The resource constraints with unavailability can then be ex-
pressed as:

b= NV

H'€F' a;,a;€H' i#j

before(i,j),

where F” is the extended set of forbidden sets that includes
both capacity constraints and unavailability constraints.

The combined constraints for BPSP, including resource un-
availability, can now be expressed as:

G N thu,

where ¢ represents precedence constraints, and 1), represents
resource constraints, including unavailability. Each compo-
nent is a conjunction of PPEs, ensuring that the overall prob-
lem retains the PPE structure.

Since BPSP constraints can be expressed as a conjunction
of PPEs, the results from [Beck and Wilson, 2007] apply, and
qu provides a lower bound on the stochastic Makespan.

O

3.2 Solving Deterministic BPSP with CP

In this section, we present a CP model of the determin-
istic BPSP. We use the general CP model proposed by
[Senderovich et al., 2019], and extend it with the planned
unavailability [Hauder et al., 2020].

In particular, we employ the optional interval variable,
var, to effectively represent the activities in our deterministic
BPSP. The presence, start time, and duration are represented
by Pres(var), Start(var) and Length(var), respectively, with
Pres(var) = 0 indicating its absence in the constraint model.
For each activity, a; € A;, to be executed in a case ¢
we define an interval variable x; o, where Start(z;q,) > 0
and Pres(z;q;) = 1. The precedence relations between
the activities in ¢ are guaranteed by the form EndBefor-
eStart (2,4, Zi,a;) Yar € Il;4;, ensuring that Start(z; q;)
> Start(x; q,) + Length(z; 4, ). To represent the resources
assignments we define,

Xaj = {ji,aj,R : di,ajaR - R}a

as set of optional interval variables, where T; 4 ; g represents
the activity a; € A; assigned to a set of resources R C R
with duration Length(Z; o, r)= di,,,,j defined as (1).

Alternative(w; 4, , X,;) ensures that only one interval vari-
able from X, is present, and it starts and ends together with
Ty q;- Unavailable(T; q; r, vr¢) guarantees that the start and
end times of the activity overlap with an available period in
the resource calendar, v,.;. Finally, to ensure that the total
number of present and executing activity interval variables
assigned to a resource does not exceed its capacity, we define
Cumulative({T;,q;,» : a5 € A}, Cy), Vr € R and Vi € Z.

The goal is to minimize the global Makespan, i.e., the max-
imum end time across all activities.

Makespan = max

Start(x; . Length(x; .
i€T,a;€A; (s ])+ gth(z, J)
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3.3 Solution Selection & Monte Carlo Simulation

In this phase, we apply a CP solver* to collect feasible solu-
tions that iteratively minimize the global Makespan until ei-
ther the optimal solution is found or a pre-defined time limit is
reached. To evaluate the solutions returned by the CP solver
and we employ Monte Carlo Simulation to select, M7, the
one that yields the probabilistic minimum Makespan. M is
defined as the M} = ming,cg M. where M. represents the
100(1—a)th percentlle of Makespan values computed over N
Monte Carlo simulations of a solution s; returned by the CP
solver. Each Makespan value, corresponds to the maximum
end time across all activities in the simulation

Firstly, we select a subset of k-solutions from those re-
turned by the solver, leveraging the well-established correla-
tion between deterministic and probabilistic solutions [Bon-
fietti et al., 2014].5 Then, we iteratively evaluate selected
solutions by performing a large number of independent simu-
lations using the original stochastic activity durations to iden-
tify M.

4 Evaluation

In this section, we first outline the experimental settings, fol-
lowed by a detailed description of the synthetic and real-
world datasets used in our evaluation framework and their
results. For synthetic experiments, we do not introduce other
competitive methods, as the aim of these experiments is to
test our framework under different uncertainty levels, prob-
lem sizes, and the presence or absence of resource calendars.
For the real-world dataset, we do not compare our approach
with other works due to their limitations, such as the absence
of planned resource unavailability, the inability to account
for uncertainty in activity durations, or scalability issues with
large BPSP problems (see Section 5), which would lead to
unfair comparisons.

4.1 Experimental Setting

Success Metrics. To assess the effectiveness of the pro-
posed approach, we use two different metrics: the Normal-
ized Probabilistic Makespan (N PM) and the Percentage of
Improvement (PI). The N PM evaluates the ratio between
the minimum probabilistic Makespan (M) and the minimum
deterministic Makespan (M) obtained on synthetic experi-
ments. It is computed as NPM = M} /ME.

For the real-world dataset, we compute the PI metric to
measure the improvement between the M obtained from the
optimized schedule and M, obtained from the actual sched-
ule. It is calculated as PT = (M} — Mye)/Maer) x 100.

Experimental Procedure. To transform the BPSP prob-
lems into deterministic ones, we need to define the ¢ value
for each of them. Instead of using g7, we leverage the Monte
Carlo simulation to obtain a more accurate estimation of the
critical path compared to the one provided in the gy def-
inition (2). To do that we employ RIMS [Meneghello et

“We use the Python version of Google OR-Tools (v9.11.4210) as
our CP solver.

The evaluation section provides a detailed explanation of the
k-solutions selection process.

al., 2025], a state-of-the-art business process simulator ca-
pable to accurately represent the complexity of business pro-
cesses. Specifically, we simulate the BPSP problem 1, 000
times using stochastic activity durations and identify the max-
imum critical path, 7. In this way, we obtain a deterministic
Makespan that is closer to the probabilistic one, as we will
show in Figure 3. This higher correlation between determin-
istic and stochastic Makespan allows us to accelerate the con-
vergence to the minimal probabilistic Makespan M*.5 The
qgc is then defined as follows ([Beck and Wilson, 20071)

(1 —a) \/Mean{oij tA; en}
V7l Mean{o?; : Aj e}’

where | 7| is the number of activities in 7.

After collecting all the solutions returned by the solver, we
select the top k-solutions to be evaluated with RIMS. These
k-solutions are identified based on the last significant im-
provement’, which tends to remain consistent in subsequent
solutions. For instance, in Figure 3b, the last significant im-
provement is observed between solutions 42 and 43, marked
by a notable step on the M line, followed by a plateau.

A 3-minute time limit is set for the CP solver, and the eval-
uation with RIMS, thanks to the k-solution selection, takes
an average of 5 minutes, with a maximum of 15 minutes for
the largest problem in the DayHospital experiment. The ex-
periments are conducted on a PC with 16 GB of RAM and an
M2 processor.

qc =

4.2 Synthetic Data Experiment

The Data. As synthetic data we use three problems from
a set of publicly available JSP beanchmarks of different size
small (10 x 10), medium (20 x 20), big (50 x 20) [Reijnen et
al., 202318, where with 10 x 10 we indicate a problem with 10
cases with 10 activities for each case. For each of the prob-
lems, we set three levels of uncertainty v € {0.1,0.5,1} to
define the standard deviation of each activity a; ; as a ran-
dom number within the interval o; ; = [0, u * y; ;]. For each
resource involved, we generate the corresponding calendars,
assuming a working week of 5 days and 8 hours per day.

Results. Table 2 presents the normalized probabilistic
Makespans (N PM), showing that in the first set of experi-
ments, the presence or absence of calendars does not signif-
icantly impact performance, except for the Big size at uncer-
tainty levels 0.1 and 1.0. From an empirical analysis of the
experiments with the presence of resource calendars, we note

®In the repository https:/github.com/francescameneghello/
IJCAI2025-Proactive- DataDriven- Scheduling- Business-Process
provides further evidence of the differences between applying qu
and gc. The latter allows finding M}, closer to M¢ and, within the
same solver time limit, achieves a smaller M, with fewer solutions,
as shown in Figure 3. The downside is that using gc, we cannot
guarantee the lower bound property proved in Proposition 1.

7A significant improvement in the ordered list of deterministic
solutions is defined as a A; = (Mc,; — Mc,;)/Mc,; > 0.20 where
solution j precedes solution .

8In the repository https://github.com/francescameneghello/
IJCAI2025-Proactive-DataDriven-Scheduling- Business-Process,
three other problems of different sizes are reported.
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Figure 3: Comparison of all M¢ solutions returned by the CP solver, along with their corresponding M., values and the Mean computed over
1,000 simulations, for the synthetic medium problem with calendars and with an uncertainty level of 0.5.

that a go with respect to gy allows for representing activity
durations closer to real times, enabling it to effectively lever-
age the planned availability and unavailability of resources
to optimize the schedule. Figure 3b shows that the average
Makespans overlap with M¢, and M, is slightly higher. In
contrast, qy, as shown in Figure 3a, guarantees the lower
bound (Section 3.1), but results in a worse solution compared
to qo. Variance in ¢ may lead to a significant difference be-
tween the deterministic and the corresponding probabilisti-
cally minimal Makespans, even if their correlation remains.

4.3 DayHospital Experiment

The Data. In this experiment, we apply our approach to
a real-world BPSP problem. Specifically, we use an entire
year (2021) of data from DayHospital to learn the BPSP pa-
rameters and minimize the Makespan for the subsequent five
months (January-May 2022), which serve as the test set. The
event log includes timestamped activities along with their
designated resources as shown in Table 1. This allows us to
identify the activities, the precedence relationships, and the
resources, including their capacities and calendars, to define
the BPSP problem. Between 50 and 1,000 patients are treated
every day in the hospital, depending on whether it is a week-
day or a weekend, with over 1,600 activities taking place on
the busiest days. To properly evaluate our approach, we com-
pare the Makespan given from the simulation of the actual
schedule and the M found with our approach.

Results. Table 3 reports the results achieved on the hospital
dataset. We divided the days into small, medium, and big cat-
egories based on the number of activities treated in a day. For
medium and big days, we observe, on average, a significant
reduction in the global Makespan, up to 14%, which corre-
sponds to a reduction of approximately 4 hours. In the case
of small, the scope for improvement is limited, yet we still
observe improvements, even if at a slightly lower percentage.

4.4 Discussion & Limitations

From the synthetic data evaluation, we verify the capability
of our approach to optimize schedules for BPSP problems in

Un. Level\ 0.1 0.1 ‘ 0.5 0.5 ‘ 1 1
Calendar | x v o ox v | ox v

Small | 1.00 1.00 | 1.03 1.00 | 1.13 1.13
Medium | 099 1.00 | 1.03 1.00 | 1.10 1.10
Bg |1.09 1.00]1.07 107|112 118

Table 2: The NPM metrics are presented for each size, with and
without the resource calendars.

Av. Av. Av. Av. Max Av.

Days #Cas.es #Act. #Res. % Imp. % Imp. Imp.
Small 98 136 33 -12% -6% -14min
Medium 717 1242 237 -48% -12% -69min
Big 848 1505 266 -59% -14% -87min

Table 3: The days are divided into 3 groups based on 33rd and 67th
percentiles.

the presence of various levels of uncertainty and planned re-
source unavailability. We define the k selection allowing us
to save time and achieve improved M of the problem. As
for resource calendars, we observe the importance of select-
ing a g, that leads to producing M closer to the correspond-
ing deterministic ones, thereby optimizing the utilization of
available slots for the CP solver. The DayHospital experi-
ment shows promising performance despite the limited clin-
ical patient information available in the data (e.g., diagnosis,
complexity, medical history). The use of RIMS [Meneghello
et al., 2025] can potentially leverage such information to sig-
nificantly improve the estimation of activity durations.
Below, we list several additional limitations of our work.
As mentioned earlier, several simplified assumptions were
necessary to apply process mining techniques and infer the
BPSP problem from event logs. Additionally, comparisons
with other methods addressing job duration uncertainty, if ex-
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tended to incorporate planned resource unavailability, remain
unexplored. Alternative job scheduling solvers could also
be applied after defining the deterministic BPSP problem,
leveraging the proposed Monte Carlo simulation to achieve
the minimum probabilistic Makespan. Lastly, our approach
focuses solely on minimizing the global Makespan, while
resource-based objectives — such as the minimization of costs
or of idle resource times — could better address organizational
needs in BPSP problems.

5 Related Work

Proactive and Data-Driven Scheduling. To the best of our
knowledge, no other work combines together the unique fea-
tures that characterize BPSP and that differentiate it from
RCPSP, namely uncertain durations and resource unavailabil-
ity. Several papers have studied the uncertainty in job dura-
tions such as [Satic et al., 2022; Liu and Xu, 2020; Hauder
et al., 2020; Chen et al., 2019; Beck and Wilson, 2007;
Goémez et al., 2023]; yet those works do not address resource
unavailability.

In contrast, there are few papers on RCPSP constrained
by resource time-window, mainly for human resources with
working time constraints, resources with planned mainte-
nance attributes [Ding er al., 2023] or resource calendars
[Kreter et al., 2018]. [Tian et al., 2018] address resource
unavailability planning by defining randomly generated peri-
ods during which certain resources are unavailable. However,
these works do not address duration uncertainty.

Lastly, the majority of studies test their solutions using
generated instances, while only a small portion, about 11%,
utilize real-world-based instances [Sénchez et al., 2023]. The
only exception is the work of [Senderovich et al., 2019]. Our
approach extends [Senderovich et al., 2019] by incorporating
stochastic activity durations, as well as by discovering dura-
tion distributions and resource calendars from event data.

Resource Allocation in Process Mining. Several works in
process mining have addressed the problem of resource al-
location, which aims to ensure that each activity in a pro-
cess case is executed at the right time and with the right re-
sources [Kumar et al., 2002]. Much of the research in this
area focuses on online resource allocation, involving reac-
tive scheduling where tasks are dynamically assigned to re-
sources at runtime. These strategies are particularly useful
in settings where information becomes available over time,
such as the appearance of unexpected cases or unforeseen re-
source unavailability. Various techniques have been proposed
to address these problems, including batch allocation strate-
gies [Delias er al., 2011; Arias et al., 2018; Zeng and Zhao,
2005], predictive allocation [Park and Song, 2019], reinforce-
ment learning approaches [Huang et al., 2011; Zbikowski et
al., 2023; Middelhuis et al., 2025; Beerepoot et al., 2023;
Meneghello er al., 2024], as well as formulations based on
assignment problems or parallel machine scheduling [Kun-
kler and Rinderle-Ma, 2024].

Fewer works have explored offline scheduling, where an
initial schedule or roster is required from the outset. For in-
stance, in [Havur et al., 2022], the problem is formalized as
an Answer Set Programming (ASP) formulation, enabling an

ASP solver to compute a schedule. Similarly, [Aalst, 1996;
Doerner et al., 2006] use a Petri net formalization of con-
trol flow and resource perspectives, solving the problem
through the reachability graph. Notably, only [Doerner et
al., 2006] considers stochasticity in activity durations. These
approaches lack mechanisms to ensure schedule robustness
under temporal fluctuations. In this context, [Di Cunzolo et
al., 2024] is the only work that integrates operations research
with PPM predictive models to produce robust schedules. De-
spite these advances, none of the existing methods considers
planned resource unavailabilities in a proactive setting.

6 Conclusion

In this work, we introduced the Business Process Scheduling
Problem (BPSP) to address the challenges of scheduling busi-
ness processes with stochastic activity durations and planned
resource unavailability. Our solution framework combines
process mining for parameter inference, deterministic trans-
formations for uncertainty modeling, constraint programming
for robust scheduling, and Monte Carlo simulation for proba-
bilistic evaluation. Through evaluation on synthetic datasets,
we demonstrated the adaptability of our solution to vary-
ing uncertainty levels, problem sizes, and resource configu-
rations, achieving effective optimization of the probabilistic
Makespan. Real-world validation on hospital data showcased
the utility of the approach, achieving up to 14% reductions in
global Makespan.

Future work will focus on addressing the limitations iden-
tified in this study. Enhancing the scalability of the frame-
work to handle larger, more complex business processes and
integrating adaptive real-time rescheduling capabilities will
extend its applicability to realistic environments. Explor-
ing multi-objective optimization to balance trade-offs such as
cost, resource utilization, and Makespan could further align
the framework with organizational goals when scheduling
business processes. Additionally, refining parameter infer-
ence methods to handle incomplete or noisy event logs and
incorporating contextual data would significantly improve the
practicality of the approach across diverse domains. Lastly,
while we currently use Monte Carlo simulation to handle un-
certainty by sampling from the full distribution of activity du-
rations, we aim to explore stochastic programming in future
work. Stochastic programming offers a more structured ap-
proach by optimizing over a finite set of scenarios with as-
signed probabilities, potentially reducing uncertainty more
effectively. However, its main limitation lies in the need to
predefine a manageable set of scenarios, which is impractical
in our case due to the vast number of possible realizations.
As we introduce new uncertainties—such as variability in ac-
tivity sequences—scenario-based methods may become more
tractable, making stochastic programming a promising direc-
tion for future exploration.
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