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Abstract
Graph Neural Networks (GNNs) have shown re-
markable performance across various domains, yet
they often struggle with model bias, particularly
in the presence of class imbalance. This bias can
lead to suboptimal performance and unfair pre-
dictions, especially for underrepresented classes.
We introduce NeuBM (Neutral Bias Mitigation), a
novel approach to mitigate model bias in GNNs
through neutral input calibration. NeuBM lever-
ages a dynamically updated neutral graph to esti-
mate and correct the inherent biases of the model.
By subtracting the logits obtained from the neutral
graph from those of the input graph, NeuBM effec-
tively recalibrates the model’s predictions, reduc-
ing bias across different classes. Our method inte-
grates seamlessly into existing GNN architectures
and training procedures, requiring minimal compu-
tational overhead. Extensive experiments on mul-
tiple benchmark datasets demonstrate that NeuBM
significantly improves the balanced accuracy and
recall of minority classes, while maintaining strong
overall performance. The effectiveness of NeuBM
is particularly pronounced in scenarios with severe
class imbalance and limited labeled data, where tra-
ditional methods often struggle. We provide the-
oretical insights into how NeuBM achieves bias
mitigation, relating it to the concept of represen-
tation balancing. Our analysis reveals that NeuBM
not only adjusts the final predictions but also influ-
ences the learning of balanced feature representa-
tions throughout the network.

1 Introduction
Graph Neural Networks (GNNs) have revolutionized the field
of machine learning on graph-structured data, demonstrating
unprecedented performance in various domains such as so-
cial network analysis [Zhou et al., 2020; Qiao et al., 2019],
recommender systems [Ying et al., 2018; Ju et al., 2022], and
bioinformatics [Zitnik et al., 2019; Huang et al., 2024]. The
power of GNNs lies in their ability to capture and leverage the

∗Corresponding author.
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Figure 1: Visualization of the impact of class imbalance and Neu-
tral Graph Calibration on GNN predictions, illustrated on the Cora
dataset. Left: Original data distribution showing a moderate imbal-
ance across classes. Middle: Biased GNN predictions exhibiting
significant misclassifications, especially for minority classes. Right:
Predictions after applying NeuBM, demonstrating improved classi-
fication accuracy and reduced bias across all classes.

intricate relationships between entities represented as nodes
in a graph, enabling more nuanced and context-aware predic-
tions compared to traditional machine learning approaches
[Wu et al., 2020; Zhao et al., 2021; Park et al., 2021;
Wang et al., 2022b; Qu et al., 2021; Duan et al., 2022;
Zhang et al., 2021; Qiao et al., 2025].

Despite their success, GNNs face a significant challenge
when confronted with class-imbalanced data, a prevalent is-
sue in real-world applications [He and Garcia, 2009; Ju et
al., 2025]. Class imbalance occurs when certain classes are
substantially underrepresented in the training data, leading to
biased models that perform poorly on minority classes [Cui
et al., 2019]. This problem is particularly acute in graph-
structured data due to the interconnected nature of nodes,
where the influence of majority classes can propagate through
the graph structure, further marginalizing minority classes
[Liu et al., 2023].

The complexity of addressing class imbalance in graph
learning stems from the unique characteristics of graph data.
Unlike traditional machine learning tasks with independent
and identically distributed instances, nodes in a graph are
inherently related through edges, creating complex depen-
dencies that standard resampling or reweighting techniques
struggle to address effectively [Hamilton et al., 2017]. More-
over, the topological structure of the graph itself can con-
tribute to imbalance, a phenomenon recently termed ”topol-
ogy imbalance” [Chen et al., 2021], which adds another layer
of complexity to the problem[Zhou et al., 2018; Juan et al.,
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2021; Zhou and Gong, 2023; Wang et al., 2022c].
Existing approaches to mitigate class imbalance in GNNs

can be broadly categorized into resampling techniques and
loss function modifications. Resampling methods attempt to
balance the training data distribution by oversampling minor-
ity classes or undersampling majority classes [Chawla et al.,
2002]. However, these techniques face unique challenges in
graph settings, as adding or removing nodes can disrupt the
original graph structure and lead to information loss [Zhao et
al., 2021]. Loss function modifications, on the other hand,
aim to assign higher importance to minority classes during
training [Johnson and Khoshgoftaar, 2019]. While these
methods have shown some success, they often struggle to
capture the full complexity of class imbalance in graph data,
particularly in scenarios with severe imbalance or limited la-
beled data [Park et al., 2021; Shi et al., 2020; Ma et al., 2022;
Wang et al., 2022a; Bai et al., 2022; Santos et al., 2022;
Zhang et al., 2022; Qiao et al., 2023].

Recent research has begun to explore topology-aware ap-
proaches to address class imbalance in graph learning. [Chen
et al., 2021] introduced the concept of topology imbalance,
highlighting the importance of considering the structural roles
of labeled nodes. Building on this idea, [Liu et al., 2023]
proposed a method to mitigate class-imbalance bias through
topological augmentation. While these approaches offer valu-
able insights, they often require complex graph manipula-
tions or additional training stages, which can be computa-
tionally expensive and may not generalize well across differ-
ent GNN architectures[Qian et al., 2022; Song et al., 2022;
Zeng et al., 2023; Wu et al., 2022; Yun et al., 2022].

Our preliminary analysis, as illustrated in Figure 1, reveals
the profound impact of class imbalance on GNN predictions.
The leftmost plot depicts the original data distribution with
a moderate class imbalance, where certain classes are under-
represented. When a standard GNN is applied to this imbal-
anced dataset (middle plot), we observe significant misclassi-
fications, particularly for minority classes. These biased pre-
dictions manifest as scattered points in regions dominated by
majority classes, indicating a systematic bias in the model’s
decision boundaries. This visualization underscores the need
for a more robust approach to handling class imbalance in
GNNs. To address these challenges, we introduce NeuBM
(Neutral Bias Mitigation), a efficient approach to mitigat-
ing model bias in GNNs through neutral input calibration.
NeuBM leverages the concept of a neutral graph to dynami-
cally estimate and correct for model bias during both training
and inference. By constructing a reference point for unbiased
predictions, NeuBM enables an effective recalibration of the
model’s outputs without requiring complex graph manipula-
tions or changes to the underlying GNN architecture.

The effectiveness of our approach is demonstrated in the
rightmost plot of Figure 1, where NeuBM significantly im-
proves the classification accuracy, particularly for minority
classes. The calibrated predictions show a clear reduction
in misclassifications, with data points more closely aligning
with their true class distributions. This visual evidence sup-
ports the efficacy of NeuBM in mitigating class-imbalance
bias and improving overall model performance.

Our work makes several significant contributions to the

field of graph learning:

• We propose a novel method for mitigating class-
imbalance bias in GNNs through neutral input calibra-
tion, which addresses class imbalance in a unified frame-
work.

• We provide theoretical insights into the mechanisms
by which NeuBM achieves bias mitigation, establishing
connections to the concept of representation balancing
in deep learning.

• Through extensive experimentation on multiple bench-
mark datasets, we demonstrate the superior performance
of NeuBM in improving balanced accuracy and recall
for minority classes, while maintaining strong overall
performance.

2 Method
2.1 Overview of NeuBM
NeuBM (Neutral Bias Mitigation) represents a novel post-
processing approach designed to address the persistent chal-
lenge of class imbalance in Graph Neural Networks (GNNs).
By introducing a neutral reference point and a calibra-
tion mechanism, NeuBM aims to achieve balanced predic-
tions without the need for model retraining or architectural
changes.

At the core of NeuBM lie two key components: the neu-
tral graph and the bias calibration mechanism. The neutral
graph serves as a balanced reference point, encapsulating the
average characteristics of the entire dataset. Meanwhile, the
bias calibration mechanism leverages this neutral reference
to adjust the model’s predictions, effectively mitigating class-
specific biases.

To formalize NeuBM, let us consider a pre-trained GNN
model fθ : G → RC , where G represents the space of graphs
and C denotes the number of classes. We introduce a neutral
graph Gneutral ∈ G and a bias calibration function B : RC ×
RC → RC . The high-level formulation of NeuBM can be
expressed as:

ŷ = softmax(B(fθ(G), fθ(Gneutral))). (1)

This formulation encapsulates the essence of NeuBM. By
applying the bias calibration function B to both the input
graph G and the neutral graph Gneutral, we aim to produce cal-
ibrated logits. The subsequent softmax operation transforms
these calibrated logits into balanced class probabilities. This
approach allows NeuBM to achieve fair and accurate predic-
tions across all classes, effectively addressing the class im-
balance issue in GNNs.

2.2 Neutral Graph Construction
The construction of the neutral graph plays a pivotal role in
NeuBM, serving as a balanced reference point for bias cali-
bration. Our goal is to create a graph that encapsulates the
average characteristics of the entire dataset, thereby provid-
ing a neutral baseline for comparison during the calibration
process.
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To begin the construction process, we first analyze the
training set D = Gi = (Vi, Ei, Xi)

N
i=1 to extract key statis-

tical properties. We aim to capture both the structural and
feature-based aspects of the graphs in our dataset. The aver-
age node count n̄ and average edge density d̄ are computed as
follows:

n̄ =
1

N

N∑
i=1

|Vi|, d̄ =
1

N

N∑
i=1

2|Ei|
|Vi|(|Vi| − 1)

. (2)

These statistics provide us with a foundation for construct-
ing the neutral graph’s structure. We create the set of neutral
nodes Vneutral such that |Vneutral| = ⌊n̄⌋, ensuring that our neu-
tral graph closely mirrors the average size of graphs in the
dataset. The edges Eneutral are then established probabilisti-
cally: for each distinct pair of nodes in Vneutral, an undirected
edge is included in Eneutral with probability d̄. This procedure
ensures the neutral graph’s structure statistically mirrors the
average connectivity found in the training set.

For the feature generation process, we compute the mean
µnode and covariance matrix Σnode of node features across all
training graphs:

µnode =
1∑N

i=1 |Vi|

N∑
i=1

∑
v∈Vi

Xi[v], (3)

Σnode =
1∑N

i=1 |Vi|

N∑
i=1

∑
v∈Vi

(Xi[v]−µnode)(Xi[v]−µnode)
T .

(4)
Using these statistics, we generate features for each node

v ∈ Vneutral by sampling from a multivariate Gaussian distri-
bution:

Xneutral[v] ∼ N (µnode,Σnode). (5)

This approach ensures that the features of our neutral graph
are representative of the overall feature distribution in the
dataset. By constructing the neutral graph in this manner, we
create a balanced reference point that captures both the struc-
tural and feature-based characteristics of the entire dataset.
This neutral graph plays a crucial role in the subsequent bias
calibration process, enabling NeuBM to effectively mitigate
class imbalance and achieve more balanced representations in
GNNs.

2.3 Neutral Bias Calibration Process
The neutral bias calibration process forms the cornerstone of
NeuBM, enabling the method to adjust predictions and miti-
gate class-specific biases. This process leverages the neutral
graph as a reference point to calibrate the model’s outputs,
effectively addressing class imbalance without modifying the
underlying GNN architecture or retraining the model.

To initiate the calibration process, we first perform a for-
ward pass on the neutral graph to obtain neutral logits. Given
our pre-trained GNN model fθ and the neutral graph Gneutral,
we compute:

Lneutral = fθ(Gneutral). (6)

These neutral logits serve as a baseline, representing the
model’s output on a balanced, representative graph. By using

Algorithm 1 Neutral Bias Mitigation (NeuBM)

0: Input: Pre-trained GNN model fθ, Training set D =
{Gi = (Vi, Ei, Xi)}Ni=1, Input graph G

0: Output: Calibrated predictions ŷ
0: // Neutral Graph Construction
0: Compute n̄ and d̄ from D //Eq. (2)
0: Construct Vneutral with |Vneutral| = ⌊n̄⌋
0: Form Eneutral by connecting nodes with probability d̄
0: Compute µnode and Σnode from D //Eqs. (3) and

(4)
1: for each v ∈ Vneutral do
1: Generate Xneutral[v] ∼ N (µnode,Σnode) //Eq. (5)
2: end for
2: // Neutral Bias Calibration
2: Lneutral = fθ(Gneutral) //Eq. (6)
2: L = fθ(G) //Eq. (7)
2: Lcorrected = L− Lneutral //Eq. (8)
2: ŷ = softmax(Lcorrected) //Eq. (9)
2: Return: ŷ

this baseline, we aim to identify and correct for any inherent
biases in the model’s predictions.

For an input graph G, we compute the original logits and
then apply our calibration mechanism:

L = fθ(G), (7)

Lcorrected = L− Lneutral. (8)
This correction step is crucial for mitigating bias. By

subtracting the neutral logits, we aim to remove any class-
specific biases that the model may have learned during its
original training. This operation effectively shifts the deci-
sion boundary, providing a more balanced prediction land-
scape across all classes.

To obtain our final calibrated predictions, we apply the
softmax function to the corrected logits:

ŷ = softmax(Lcorrected). (9)

This step normalizes the corrected logits into a proper
probability distribution, ensuring that our final predictions are
both balanced and interpretable as class probabilities.

The entire calibration process can be encapsulated in the
bias calibration function B:

B(L,Lneutral) = L− Lneutral. (10)

By applying this calibration process, we aim to achieve
several key objectives. First, we seek to reduce the impact
of class imbalance on the model’s predictions, ensuring fairer
treatment of minority classes. Second, we strive to maintain
the model’s overall accuracy while improving its performance
on underrepresented classes. Finally, through this logit ad-
justment process, we implicitly work towards achieving more
balanced representations in the model’s feature space.

To provide a clear overview of the entire NeuBM process,
we present the step-by-step procedure in Algorithm 1. This
algorithm encapsulates the key components of our method,
including the neutral graph construction and the bias cali-
bration process. To provide a clear overview of the entire
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Dataset Nodes Edges Features Classes ρ

Cora 2,708 5,429 1,433 7 5
Citeseer 3,327 4,732 3,703 6 3
PubMed 19,717 44,338 500 3 2
Cora-ML 2,995 8,416 2,879 7 0.79
DBLP 17,716 105,734 1,639 4 0.83
Amazon Computers 13,381 245,778 767 10 18
Amazon Photo 7,487 119,043 745 8 6
Twitch PT 1,912 64,510 128 2 0.58

Table 1: Dataset Statistics

NeuBM process, we present the step-by-step procedure in Al-
gorithm 1. This algorithm encapsulates the key components
of our method, including the neutral graph construction and
the bias calibration process.

3 Experimental Results
3.1 Experimental Setup
Datasets
Our experiments leverage a diverse array of benchmark graph
datasets to evaluate NeuBM’s performance under various
class imbalance conditions. We employ eight widely-used
datasets spanning different domains: Cora, Citeseer, and
PubMed from citation networks; Cora-ML and DBLP rep-
resenting larger-scale citation networks; Amazon Computers
and Amazon Photo from e-commerce; and Twitch PT as a so-
cial network dataset. These datasets exhibit varying degrees
of class imbalance, with imbalance ratios (ρ) ranging from 2
to 18, enabling a comprehensive assessment of our method’s
effectiveness across different imbalance scenarios.

Table 1 presents the key statistics of these datasets, includ-
ing the number of nodes, edges, features, classes, and the im-
balance ratio (ρ).

Baseline Methods
To evaluate NeuBM’s performance, we compare it against
a diverse set of baselines covering three categories: tra-
ditional GNNs, imbalance-aware GNN methods, and post-
processing approaches. Traditional GNNs include GCN,
GAT, and GraphSAGE, serving as fundamental bench-
marks. Imbalance-aware methods comprise GraphSMOTE,
GraphENS, ImGAGN, ReNode, and TAM, each designed
to address class imbalance in graph data. Post-processing
methods include LTE4G and DPGNN. This comprehensive
selection allows us to assess NeuBM’s effectiveness against
various approaches to imbalanced node classification, rang-
ing from basic GNN architectures to specialized imbalance-
handling techniques.

3.2 Evaluation Metrics
To evaluate NeuBM and baseline methods on imbalanced
node classification tasks, we use F1-macro, F1-weighted, and
F1-micro scores as our primary metrics. F1-macro provides
insight into performance across all classes, including minor-
ity ones, while F1-weighted accounts for class distribution,
and F1-micro reflects overall accuracy. We also report per-
class precision and recall to identify specific strengths or
weaknesses in classifying particular node types.

3.3 Performance Comparison
Overall Performance
To evaluate the effectiveness of NeuBM, we conduct com-
prehensive experiments across all datasets and compare its
performance with baseline methods. Table 2 presents the F1-
macro, F1-weighted, and F1-micro scores for NeuBM and
baseline methods on all datasets. NeuBM demonstrates su-
perior performance across all datasets, showcasing its ef-
fectiveness in handling class imbalance in graph-structured
data. The performance gains are particularly notable in
datasets with high imbalance ratios, such as Amazon Com-
puters (ρ=18) and Cora (ρ=5), where NeuBM achieves sig-
nificant improvements in F1-macro scores compared to base-
line methods. The consistent outperformance in F1-macro
scores indicates that NeuBM effectively addresses the chal-
lenge of class imbalance without compromising overall accu-
racy, achieving balanced improvement across both minority
and majority classes. This is crucial for real-world applica-
tions where performance on all classes is equally important.
NeuBM’s adaptability is evident in its performance across
datasets with varying characteristics and imbalance ratios.
It shows robust performance not only on citation networks
(Cora, Citeseer, PubMed) but also on e-commerce networks
(Amazon Computers, Amazon Photo) and social networks
(Twitch PT). This versatility suggests that NeuBM can effec-
tively handle different graph structures and imbalance sce-
narios. Compared to specialized imbalanced learning meth-
ods like GraphSMOTE, GraphENS, and ImGAGN, NeuBM’s
superior performance, particularly in F1-macro scores, indi-
cates that its neutral bias mitigation strategy is more effective
than traditional oversampling or adversarial approaches in the
context of graph data.

Class-wise Performance Analysis
To gain deeper insights into NeuBM’s performance, we con-
duct a detailed class-wise analysis on the Cora dataset, which
has an imbalance ratio of ρ=5 and 7 classes. We compare
NeuBM with the best-performing baseline, TAM, to highlight
the improvements across different classes.

Figure 2 illustrates the F1-scores for each class on the Cora
dataset. The classes are arranged in descending order of their
sample sizes, with Class 1 being the majority class and Class
7 the smallest minority class.

The analysis reveals that NeuBM achieves substantial im-
provements across all classes compared to TAM. Notably,
NeuBM’s performance gain is more pronounced in minority
classes, addressing a key challenge in imbalanced learning.
For instance, in the smallest minority class (Class 7), NeuBM
improves the F1-score by 26.9% (from 0.5198 to 0.6596)
compared to TAM. NeuBM’s effectiveness in handling class
imbalance is further evidenced by its ability to maintain high
performance across both majority and minority classes. The
F1-score difference between the majority class (Class 1) and
the smallest minority class (Class 7) is reduced from 0.1617
in TAM to 0.0936 in NeuBM, indicating a more balanced per-
formance across classes. The consistent improvement across
all classes demonstrates that NeuBM’s neutral bias mitigation
strategy effectively addresses the challenges of learning from
imbalanced graph data. By leveraging the graph structure and
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Model Cora (ρ=5) Citeseer (ρ=3) PubMed (ρ=2) Cora-ML (ρ=0.79)
F1-macro F1-weight F1-micro F1-macro F1-weight F1-micro F1-macro F1-weight F1-micro F1-macro F1-weight F1-micro

GCN 0.5205 0.5195 0.5212 0.3870 0.4169 0.4692 0.5501 0.5569 0.5928 0.5205 0.5195 0.5212
GAT 0.5631 0.5659 0.5727 0.4503 0.4822 0.5220 0.6272 0.6323 0.6451 0.5656 0.5516 0.5611
GraphSAGE 0.5609 0.5660 0.5724 0.4457 0.4800 0.5156 0.6169 0.6178 0.6327 0.5609 0.5660 0.5724
GraphSMOTE 0.5845 0.6026 0.5820 0.4236 0.4774 0.5020 0.6122 0.5998 0.6110 0.6233 0.6450 0.6130
GraphENS 0.5934 0.5925 0.5948 0.4602 0.4943 0.5320 0.6372 0.6423 0.6551 0.6356 0.6316 0.6311
ImGAGN 0.5913 0.5862 0.5920 0.4524 0.4874 0.5270 0.6328 0.6378 0.6501 0.6312 0.6216 0.6260
ReNode 0.5813 0.5762 0.5820 0.4424 0.4714 0.5170 0.6228 0.6230 0.6401 0.6212 0.6116 0.6160
TAM 0.6015 0.6026 0.6048 0.4702 0.5043 0.5420 0.6472 0.6523 0.6651 0.6456 0.6416 0.6411
NeuBM 0.7115 0.7029 0.7111 0.4838 0.5180 0.5397 0.7018 0.7176 0.7189 0.7273 0.7278 0.7305
Model DBLP (ρ=0.83) Amazon Computers (ρ=18) Amazon Photo (ρ=6) Twitch PT (ρ=0.58)

F1-macro F1-weight F1-micro F1-macro F1-weight F1-micro F1-macro F1-weight F1-micro F1-macro F1-weight F1-micro
GCN 0.3482 0.3829 0.3876 0.5343 0.6808 0.6975 0.6999 0.7617 0.7666 0.4557 0.4510 0.4656
GAT 0.4214 0.4599 0.4795 0.5757 0.6876 0.6883 0.7135 0.7645 0.7632 0.4917 0.5088 0.5131
GraphSAGE 0.4379 0.4744 0.4892 0.5732 0.6845 0.6841 0.7204 0.7683 0.7670 0.4963 0.5168 0.5193
GraphSMOTE 0.4844 0.4938 0.4530 0.5509 0.6213 0.6370 0.7227 0.7716 0.7750 0.3922 0.3558 0.4130
GraphENS 0.5144 0.5238 0.4830 0.5809 0.6513 0.6670 0.7427 0.7916 0.7950 0.5122 0.4758 0.5330
ImGAGN 0.5044 0.5138 0.4730 0.5709 0.6413 0.6570 0.7327 0.7816 0.7850 0.5022 0.4658 0.5230
ReNode 0.4944 0.5038 0.4630 0.5609 0.6313 0.6470 0.7227 0.7716 0.7750 0.4922 0.4558 0.5130
TAM 0.5244 0.5338 0.4930 0.5909 0.6613 0.6770 0.7527 0.8016 0.8050 0.5222 0.4858 0.5430
NeuBM 0.6167 0.6665 0.6597 0.6702 0.7280 0.7310 0.7600 0.7943 0.7917 0.5600 0.5944 0.5915

Table 2: Overall Performance Comparison
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Figure 2: Class-wise F1-scores on Cora dataset

employing a calibrated learning approach, NeuBM can cap-
ture and utilize information from both majority and minority
classes more effectively than traditional imbalanced learning
methods.

Scalability Analysis
To assess NeuBM’s scalability, we evaluate its performance
and computational efficiency across datasets of varying sizes
and imbalance ratios. Figure 3 illustrates NeuBM’s F1-macro
scores and computation times in comparison with GCN, the
most widely used baseline, across all datasets arranged in or-
der of increasing node count.

NeuBM demonstrates robust scalability across datasets of
varying sizes, consistently outperforming GCN in terms of
F1-macro scores. The performance gap is particularly no-
table in larger and more imbalanced datasets, such as Ama-
zon Computers (13,381 nodes, ρ=18) and DBLP (17,716
nodes, ρ=0.83), where NeuBM achieves F1-macro scores of
0.6702 and 0.6167 respectively, compared to GCN’s 0.5343
and 0.3482. In terms of computational efficiency, NeuBM’s
runtime scales approximately linearly with the dataset size,
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Figure 3: Scalability analysis of NeuBM compared to GCN

similar to GCN. On average, NeuBM’s training time is about
1.3 times that of GCN across all datasets. For instance, on
the largest dataset, PubMed (19,717 nodes), NeuBM takes
29 seconds compared to GCN’s 22 seconds. This moderate
increase in computation time is offset by the significant per-
formance gains, particularly in F1-macro scores.

3.4 Ablation Study
To thoroughly evaluate the components of NeuBM and un-
derstand their individual contributions, we conduct a com-
prehensive ablation study. This analysis focuses on three key
aspects: the impact of the neutral graph, the calibration func-
tion, and the application position of NeuBM within the model
architecture.

Impact of Neutral Graph
The neutral graph is a core component of NeuBM, designed
to provide a balanced reference point for bias calibration.
To assess its importance, we compare the performance of
NeuBM with and without the neutral graph on the Cora
dataset (ρ=5). Additionally, we analyze different construc-
tion methods for the neutral graph to understand their impact
on model performance.
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Model Variant F1-macro F1-weighted F1-micro
NeuBM (Full) 0.7115 0.7029 0.7111
NeuBM w/o Neutral Graph 0.6523 0.6487 0.6592
NeuBM w/ Random Neutral Graph 0.6789 0.6742 0.6831
NeuBM w/ Class-Balanced Neutral Graph 0.6958 0.6901 0.6987

Table 3: Impact of Neutral Graph on Cora Dataset

Table 3 demonstrates the significant impact of the neutral
graph on NeuBM’s performance. Removing the neutral graph
leads to a substantial drop in all metrics, with F1-macro de-
creasing by 8.32%. This underscores the neutral graph’s cru-
cial role in mitigating class imbalance bias. We further ex-
plore different neutral graph construction methods. The ran-
dom neutral graph, which maintains the original class dis-
tribution, shows improved performance over the no-neutral-
graph variant but falls short of the full NeuBM. The class-
balanced neutral graph, which equalizes the representation of
all classes, performs better than the random variant but still
does not match the full NeuBM’s performance. These results
highlight the importance of our proposed neutral graph con-
struction method, which not only balances class representa-
tion but also captures the underlying data distribution effec-
tively.

Calibration Function Analysis
The calibration function in NeuBM plays a crucial role in ad-
justing predictions based on the neutral reference point. As
defined in our method, the calibration function B is a simple
subtraction operation(Eq.10). This straightforward approach
effectively removes class-specific biases by subtracting the
neutral reference point from the original predictions. To ana-
lyze the effectiveness of this calibration function, we compare
it with alternative approaches:

1. No calibration: f(L) = L,
2. Scaling calibration: f(L,Lneutral) = λ(L− Lneutral),
3. Normalization calibration: f(L,Lneutral) = (L −

Lneutral)/σ(Lneutral),
where λ is a scaling factor and σ(Lneutral) is the standard

deviation of neutral logits.
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Figure 4: Performance of different calibration approaches on Cora
dataset

Figure 4 compares the performance of these calibration
approaches on the Cora dataset. Our proposed subtraction-
based calibration consistently outperforms the alternatives,
suggesting that this simple adjustment is sufficient and ef-
fective for bias mitigation in most cases. The subtraction-
based method achieves an F1-macro score of 0.7115, which
is 36.7% higher than the uncalibrated baseline (0.5205). This
significant improvement indicates that the neutral graph ef-
fectively captures and corrects for class-specific biases.

The scaling and normalization calibrations show interme-
diate performance improvements, with F1-macro scores of
0.6892 and 0.6743 respectively. This suggests that while
these methods do provide some bias correction, they may in-
troduce unnecessary complexity or over-correction. The sub-
traction method’s superior performance can be attributed to
its direct offset of biases without introducing additional pa-
rameters that might lead to overfitting.

For the scaling calibration, we analyze the sensitivity of
the parameter λ by varying its value from 0.5 to 1.5. Figure 5
illustrates this analysis.
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Figure 5: Sensitivity analysis of scaling factor λ on Cora dataset

Our experiments show that the performance is optimal
when λ = 1, which is equivalent to our original subtraction-
based calibration. This further validates the effectiveness of
our simple calibration approach and demonstrates that ad-
ditional scaling or normalization steps are unnecessary for
achieving optimal performance. The sensitivity analysis re-
veals a relatively stable performance in the range of 0.8 ≤
λ ≤ 1.2, with F1-macro scores remaining above 0.70. This
stability indicates that our method is robust to small varia-
tions in the calibration process, which is advantageous in real-
world scenarios where exact calibration might be challenging.

The peak performance at λ = 1 (F1-macro = 0.7115) and
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Figure 6: Performance and computational complexity of NeuBM
applied at different GNN layers.

the symmetric decline on either side suggest that the neutral
graph provides an unbiased reference point. Deviating from
λ = 1 either under-corrects (λ < 1) or over-corrects (λ > 1)
the biases, leading to suboptimal performance. This behavior
underscores the effectiveness of our neutral graph construc-
tion in capturing the intrinsic biases of the model without in-
troducing additional skew.

Application Position Study
The position at which NeuBM is applied within the model ar-
chitecture can significantly impact its effectiveness. We com-
pare applying NeuBM at different stages of the model, focus-
ing on the logits layer and post-softmax layer.

Application Position F1-macro F1-weighted F1-micro

Logits Layer (Default) 0.7115 0.7029 0.7111
Post-Softmax Layer 0.6892 0.6814 0.6903
Multiple Layers 0.7043 0.6957 0.7032

Table 4: Performance comparison of NeuBM application positions
on Cora dataset

Table 4 shows that applying NeuBM at the logits layer
yields the best performance across all metrics. Applying
NeuBM after the softmax function results in a slight decrease
in performance, likely due to the loss of fine-grained calibra-
tion information in probability space. Interestingly, applying
NeuBM at multiple layers (both logits and intermediate lay-
ers) does not lead to further improvements and slightly in-
creases computational cost. This suggests that a single appli-
cation at the logits layer is sufficient to capture and correct
class imbalance biases.

Application at Different GNN Layers
To understand the impact of NeuBM at various stages of the
graph neural network, we conducted experiments applying
the method at the input layer, hidden layers, and output layer
of a GCN model. Figure 6 illustrates the performance and
computational complexity across these settings.

The analysis reveals that applying NeuBM at deeper lay-
ers of the GNN generally yields better performance, with

the output layer application achieving the highest F1-Macro
score of 0.7115. This trend suggests that calibration at later
stages allows the model to learn more balanced represen-
tations throughout the network. However, the performance
gains are not linear, with diminishing returns observed as
we move to deeper layers. In terms of computational com-
plexity, applying NeuBM at hidden layers incurs a moderate
increase in computation time, with the second hidden layer
application being 1.25 times slower than the baseline. In-
terestingly, output layer application shows only a 1.1x in-
crease in computation time while providing the best perfor-
mance, making it an attractive trade-off between effectiveness
and efficiency. Comparing single-layer and multi-layer ap-
plications, we found that applying NeuBM at multiple layers
does not necessarily lead to significant performance improve-
ments. A dual-layer application (hidden layer 2 and output
layer) achieved an F1-Macro score of 0.7143, only marginally
better than the single output layer application (0.7115), while
increasing the computation time by 1.35x. This suggests that
the benefits of multi-layer application may not justify the ad-
ditional computational cost in most cases.

While our results consistently show NeuBM’s effective-
ness across diverse benchmarks, it remains crucial to address
several practical challenges. For instance, in extremely large-
scale graphs with billions of nodes, building and processing a
neutral graph may introduce additional overhead unless com-
bined with efficient sampling techniques. Furthermore, our
current neutral graph construction assumes relatively consis-
tent feature distributions across classes, which could be com-
promised if outlier features heavily dominate certain minor-
ity classes. Investigating these aspects and refining NeuBM’s
calibration strategy for highly skewed feature distributions
constitute promising directions for future work.

4 Conclusion
In this work, we introduced NeuBM, an approach to miti-
gating class imbalance in Graph Neural Networks through
neutral bias calibration. NeuBM addresses a challenge in
real-world graph learning scenarios, where imbalanced class
distributions often lead to biased predictions and subopti-
mal performance for minority classes. Through a neutral
graph and adaptive calibration mechanism, NeuBM effec-
tively recalibrates model predictions while maintaining in-
herent graph structures. Experimental results demonstrate
NeuBM’s superiority over existing methods, particularly in
scenarios with severe class imbalance and limited labeled
data. The method’s robustness to noise, varying imbalance ra-
tios, and generalizability across different GNN architectures
establish it as a practical solution for real-world graph learn-
ing applications where balanced class performance is crucial.

While NeuBM shows promising results, further explo-
ration is needed on dynamic or heterogeneous graph scenar-
ios, where node types and structures may evolve over time.
Moreover, investigating the theoretical underpinnings of neu-
tral bias calibration could yield deeper insights and guide
refinements. As graph-based machine learning continues to
mature, NeuBM holds promise for improving fairness and ac-
curacy across a broad spectrum of real-world applications.
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