
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Towards Robust Incremental Learning under Ambiguous Supervision
Rui Wang1,2 , Mingxuan Xia1,2 , Haobo Wang1,2 ,

Lei Feng4 , Junbo Zhao3 Gang Chen3 , Chang Yao1,2∗

1School of Software Technology, Zhejiang University
2 Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security

3 College of Computer Science and Technology, Zhejiang University
4 School of Computer Science and Engineering, Southeast University, China

{r.wang, xiamingxuan, wanghaobo}@zju.edu.cn, fenglei@seu.edu.cn, {j.zhao, cg, changy}@zju.edu.cn

Abstract
Traditional Incremental Learning (IL) targets to
handle sequential fully-supervised learning prob-
lems where novel classes emerge from time to time.
However, due to inherent annotation uncertainty
and ambiguity, collecting high-quality annotated
data in a dynamic learning system can be extremely
expensive. To mitigate this problem, we propose a
novel weakly-supervised learning paradigm called
Incremental Partial Label Learning (IPLL), where
the sequentially arrived data relate to a set of can-
didate labels rather than the ground truth. Tech-
nically, we develop the Prototype-Guided Disam-
biguation and Replay Algorithm (PGDR) which
leverages the class prototypes as a proxy to mitigate
two intertwined challenges in IPLL, i.e., label am-
biguity and catastrophic forgetting. To handle the
former, PGDR encapsulates a momentum-based
pseudo-labeling algorithm along with prototype-
guided initialization, resulting in a balanced per-
ception of classes. To alleviate forgetting, we de-
velop a memory replay technique that collects well-
disambiguated samples while maintaining repre-
sentativeness and diversity. By jointly distilling
knowledge from curated memory data, our frame-
work exhibits a great disambiguation ability for
samples of new tasks and achieves less forgetting
of knowledge. Extensive experiments demonstrate
that PGDR achieves superior performance over the
baselines in the IPLL task.

1 Introduction
Modern deep models are mostly developed in curated and
static benchmark datasets, but data in the real world typically
emerge dynamically. This motivates the study of incremen-
tal learning (IL) [Cichon and Gan, 2015; Yuan et al., 2022;
Kim et al., 2024] that enables models to learn from se-
quentially arriving tasks. Despite the flexibility, it is well
known that deep models struggle to retain their known con-
cepts, i.e., catastrophic forgetting, making it hard to grad-
ually accumulate knowledge. To alleviate this problem, a

∗Corresponding author.
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Figure 1: In the first task, all samples are from new classes, while
subsequent tasks consist of samples containing both new and old
classes. Each sample is assigned a set of candidate labels, ensuring
the inclusion of the true label.

plethora of IL methods have been studied, including replay-
based methods [Rebuffi et al., 2017; Zheng et al., 2024],
regularization-based methods [Zenke et al., 2017; Szatkowski
et al., 2023], architecture-based methods [Yoon et al., 2018;
Marouf et al., 2024] and so on [Marczak et al., 2024].

Traditional IL methods [Rebuffi et al., 2017; Zhao et al.,
2020] are built on the assumption that data is accurately an-
notated. However, real-world data often has label ambiguity,
making precise annotations labor-intensive, especially in se-
quential learning. For instance, the Alaskan Malamute can
be visually similar to the Siberian Husky, hindering non-
experts from accurately identifying the true breeds. Recently,
this ambiguous supervision problem has attracted great atten-
tion from the community [Lyu et al., 2022; Lv et al., 2023;
Yan and Guo, 2023; Jia et al., 2024].

To reduce annotation costs, we study a novel weakly su-
pervised learning framework dubbed incremental partial la-
bel learning (IPLL), where (i)-data is given sequentially as
a stream; (ii)-each task contains a vast number of new class
samples while potentially carries old class data, and (iii)-each
sample is associated with a candidate label set instead of the
ground truth; see Figure 1. Notably, since the annotator may
confuse previous experience with the true label of the sample,
our IPLL setup allows the candidate label set of the sample to
include both new and old classes, while ensuring the inclusion
of the true one. Arguably, the IPLL problem is deemed more
practical in real-world scenarios due to its relatively lower
cost to annotations.

The key to successful learning from ambiguous supervi-
sion is label disambiguation, i.e., identifying the true la-
bels from the candidate sets. To achieve this, existing par-
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Figure 2: (a) Class distribution based on both predicted labels and
ground-truth labels. The real/estimated distribution of old classes
(0∼9) and new classes (10∼19) in the early stage of the second
task of the CIFAR100 (10 tasks). Combining the PLL baseline
(PiCO) and the IL baseline (iCaRL) leads to classification bias. (b)
Comparison of our PGDR and PiCO with iCaRL in IPLL. It dis-
plays the average accuracy of new and old classes for each task in
CIFAR100 where PiCO with iCaRL demonstrates inferior and un-
stable performance compared to our method.

tial label learning (PLL) algorithms [Wang et al., 2022c;
Yan and Guo, 2023; Li et al., 2023; Jia et al., 2024;
Liu et al., 2024] mostly rely on the self-training algorithm
that assigns pseudo-labels using the model predictions. How-
ever, such a strategy can be problematic in our IPLL frame-
work. On the one hand, the dynamically changing environ-
ment leads to the forgetting of past knowledge, which ampli-
fies knowledge confusion that hinders the disambiguation
procedure. On the other hand, ambiguous supervision sig-
nificantly undermines the ability of DNNs to acquire mean-
ingful knowledge from samples, exacerbating catastrophic
forgetting. As exemplified in our empirical studies, directly
combining the PLL method with the IL method also leads
to inferior results. Specifically, when combining the most
popular PLL method PiCO [Wang et al., 2022c] with one
classic IL method iCaRL [Rebuffi et al., 2017], the model
overly emphasizes old classes in the early stages of each task
(see Figure 2(a)), thus exacerbating the confusion of old class
knowledge (see Figure 2(b)). In the more challenging Tiny-
ImageNet, the negative impacts of classification bias become
more pronounced (see Figure 4(b)). This gives rise to the
fundamental issue in IPLL—how to balance the model’s per-

ception of new and old knowledge.
To address this issue, we propose the Prototype-Guided

Disambiguation and Replay Algorithm (PGDR), which lever-
ages class prototypes carrying rich category information as
proxies to balance the model’s perception of classes. Con-
cretely, to alleviate label confusion, we propose a prototype-
guided label disambiguation strategy, which firstly performs
distance-based old/new sample separation and then, mo-
mentumly updates on pseudo-labels. Secondly, to mitigate
catastrophic forgetting, we construct an episodic memory
by distance-based sampling for representative samples and
region-aware sampling for diverse samples, which are re-
played by a knowledge distillation loss. These two modules
mutually benefit each other to achieve a balanced percep-
tion on all classes—the disambiguation module ensures ac-
curate training on new classes while the memory replay mod-
ule strengthens the old classes. We conduct comprehensive
experiments on benchmark datasets to show that PGDR es-
tablishes state-of-the-art performance. In IPLL, our method
outperforms the best baseline by 6.05% and 11.60% on the
CIFAR100 and Tiny-ImageNet.

2 Related Work
Incremental Learning. The data appear in a sequence
and the model continuously learns novel knowledge while
maintaining the discrimination ability for previous knowl-
edge. There is a classical incremental learning variant—
blurry incremental learning [Bang et al., 2021; Moon et al.,
2023], where different stages exhibit distinct data distribu-
tions. Due to the intersection of the label space, it faces
heightened ambiguity. Nonetheless, IL and its variants are
confronted with the challenge of knowledge forgetting [Kim
et al., 2024; Li et al., 2024]. To address this issue, ex-
isting methods can be categorized into three major strate-
gies. For architecture-based methods [Yoon et al., 2020;
Marouf et al., 2024], different model parameters are allo-
cated for each task. The regularization-based methods [Bian
et al., 2024] introduce regularization terms into the objec-
tive function. The replay-based methods [Bhat et al., 2023;
Yoo et al., 2024] retain a subset of historical samples and in-
corporate them into subsequent tasks. Moreover, while some
works [Lange and Tuytelaars, 2021; Asadi et al., 2023] em-
ploy prototypes, they mainly focus on using them to alleviate
knowledge forgetting and do not investigate their effective-
ness in other aspects, distinguishing our approach from theirs.

The IL variants discussed above all assume accurately la-
beled data. More and more researchers are increasingly in-
terested in incremental learning in limited or unsupervised
settings, such as unsupervised continual learning [Cha et al.,
2024], semi-supervised continual learning [Fan et al., 2024],
and noisy labeled continual learning [Bang et al., 2022].
However, most of the work overlooks label ambiguity. Al-
though [Yu et al., 2024] attempts to address this issue, the
subsequent samples are unlabeled, making it similar to a
semi-supervised learning problem.

Partial-Label Learning. The fundamental challenge in
PLL is label disambiguation, requiring the model to select the
true label from the set of candidate labels [Lyu et al., 2021;
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Wang et al., 2022a; Bao et al., 2024]. Some PLL methods
enhance candidate label disambiguation through adversarial
learning [Zhang et al., 2020; Zhang et al., 2023], and the
majority of work [Wang et al., 2022c; Tian et al., 2024] is
geared towards devising appropriate objectives for PLL. The
strategy [Lv et al., 2023] based on averaging assigns equal
weights to the labels in the candidate labels, and then ob-
tains predictions by averaging the output. The disambigua-
tion strategy based on identification [Yu and Zhang, 2017;
Tian et al., 2024] treats the true labels of samples as la-
tent variables and iteratively optimizes the objective func-
tion of these latent variables. Based on self-training disam-
biguation strategies [He et al., 2022; Yan and Guo, 2023;
Dong et al., 2023; Liu et al., 2024], pseudo-labels are used as
the model’s supervisory information for training, e.g., PRO-
DEN [Lv et al., 2020] re-normalizes the classifier’s output
and PiCO [Wang et al., 2022c] introduces contrastive learn-
ing. Despite the promise, existing PLL work mostly assumes
a static data distribution, which is typically not available in
practice. Therefore, we introduce incremental learning to in-
vestigate IPLL that is more suitable for real-world scenarios.

3 Background
3.1 Problem Definition
The goal of IPLL is to sequentially learn a unified model from
ambiguous supervised datasets and classify unseen test sam-
ples of all classes that have been learned so far. Formally, as-
sume we are given a stream of datasets {Dt}Tt=1, where each
subset Dt = {(xt

i,Sti )}
Nt
i=1 contains Nt samples. Here, xt

i ∈
X represents a sample in the input space Rd. Different from
the supervised setup where the ground truth yi is known, we
follow the setup of previous PLL studies [Feng et al., 2020;
Lv et al., 2020; Wang et al., 2022c] and allow the annota-
tor to assign a rough candidate label set Sti ⊂ Yt containing
the true label, i.e., yti ∈ Sti . For the label space, we con-
sider a blurry incremental learning [Bang et al., 2021] that
can be ubiquitous in real-world applications1, whose data dis-
tribution demonstrates: (i)-a majority of samples with new
labels emerge incrementally Yt = Yt−1 ∪ Ynew

t ; (ii)-each
subset Dt potentially contains data samples from all labels in
Yt. At step t, the goal of IPLL is to train a model f from
the new dataset Dt without interfering with previous data,
where f consists of the feature extractor backbone ϕ with
a fully-connected layer upon it. During training, since the
ground-truth label is not accessible, we assign each sample
xi a pseudo-label vector pi and update the model by cross-
entropy loss:

Lce = −
1

Nt

Nt∑
i=1

|Yt|∑
j=1

pij log(fj(xi)) (1)

In the remainder of this work, we omit the task index t
when the context is clear.

1The classic IL setup simply assumes the label spaces have no
intersection, which is less practical and the label ambiguity issue is
typically not significant.

3.2 Prototype Generation
Recall the crucial challenge of IPLL is to balance the per-
ception of new and old classes. We observe that while in-
dividual samples exhibit strong ambiguity, prototypes de-
rived from sample aggregation can serve as stable and non-
parameterized proxies to guide the model in identifying new
patterns and memorizing old tasks. Formally, at the end of the
t-th training task, we generate prototypes for class c ∈ Yt by
feature averaging µc = 1

|Pc|
∑

Pc, where Pc = {ϕ(xi)|c =

argmaxj∈St
i
fj(xi)} represents the feature set of samples

whose classifier prediction is class c. In later rounds, hold-
ing the belief that the model always produces accurate pre-
dictions on old classes, we momentum update the prototypes
during the training procedure:

µc = γµc + (1− γ)
1

|Pc|
∑

Pc, (2)

where γ > 0 is a hyperparameter. In what follows, we elab-
orate on how prototypes help improve both disambiguation
and memorization ability.

4 Proposed Method
In this section, we describe our novel Prototype-Guided
Disambiguation and Replay algorithm (PGDR) in detail.
Overall, it consists of two components: (i)-a prototype-guided
label disambiguation module that first performs old/new sam-
ple separation according to their distance to the prototypes,
allowing the subsequent task-aware pseudo-labeling; (ii)-a
memory replay module that constructs a sample pool con-
taining both diverse and representative samples. The overall
training scheme of PGDR is outlined in Figure 3.

4.1 Prototype-Guided Label Disambiguation
To handle the label ambiguity, the most seminal PLL algo-
rithms [Lv et al., 2020] adopt a self-training paradigm that
elicits pseudo-labels from the model outputs. However, in the
IPLL setup, such a strategy can be problematic since the clas-
sifier can be largely biased after the previous rounds of train-
ing. Thus, the disambiguation process would be disrupted
since even new class samples can receive very confident pre-
dictions on old classes.
Old/New Data Separation. To address the bias, we intro-
duce a prerequisite step that separates samples into distinct
subsets for old and new classes. Specifically, we first con-
struct a distance measure set of those samples containing at
least one old class,

A = {ei = min
j∈St

i∩Yt−1

||ϕ(xi)− µj ||2, if Sti ∩ Yt−1 ̸= ∅}.

(3)
Our intuition is that, the prototypes fully condense the

knowledge of old classes, and thus, samples from old classes
are located closer to their prototypes than new ones. To
achieve fully automated separation, we draw inspiration from
the noisy label learning literature [Li et al., 2020] to fit a
two-component Gaussian Mixture Model (GMM) on A. Let
wi = p(g|ei) represent the probability of xi belonging to the
Gaussian component with smaller mean g, which can also be
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Figure 3: Overall framework of PGDR. The label disambiguation module divides new and old class samples based on prototypes and assigns
different labels. PGDR then combines the momentum-updated pseudo-labels to achieve label disambiguation. After completing the task, the
memory replay module is utilized to filter samples for subsequent training to mitigate forgetting.

deemed as its old task probability. Then, we collect those
samples whose wi exceeds the threshold α as “potentially”
old class data. The remaining samples belong to the new class
sample set Dnew

t , i.e., Dnew
t = Dt \ Dold

t .

Candidate Label Re-Allocation. We re-allocate the can-
didate label sets according to our data separation procedure,

S ′i =
{
{c∗i } ∪ Ynew

t ∩ Sti if xi ∈ Dold
t ,

Ynew
t ∩ Sti otherwise,

(4)

where c∗i is a class that corresponds to the nearest prototype.
Our rationale is that: (i)-for a sample is far away from the pro-
totypes (i.e. fromDnew

t ), it is highly probable to be a new class
sample, and thus, we discard all its old candidate labels; (ii)-
for those identified as from old classes, it is either an old class
sample locates around one old class prototype (i.e. prototype
of c∗i ) or actually a new class sample. Hence, we employ the
old class prototypes as a disambiguator to remove confusing
old classes, but preserve all candidates on new classes. Af-
ter this process, the model bias turns into a good property—it
allows pre-disambiguate old classes. Thus, the model can fo-
cus on addressing the ambiguity among new classes. Notably,
we conduct the separation procedure once before training for
each task to achieve differential guidance for the model.

Momentum-based Pseudo-labeling. After that, we ini-
tialize the pseudo-labels pi by a uniform probability on the
newly allocated candidate label set:

pij =
1

|S ′i|
I(j ∈ S ′i). (5)

In subsequent rounds, we assume the classifier can be in-
creasingly accurate. Thus, we devise a momentum-based
mechanism to update the pi:

pi ← βpi + (1− β)zi, (6)

where zi is a one-hot vector, i.e., zij = I(j =
argmaxj∈St

i
fj(xi)), and β is a hyperparameter. Practically,

we assign a large β at the beginning of each task due to the
unreliable model prediction of new classes. As the prediction
on new classes becomes more accurate, we set a smaller β
value to facilitate the convergence of the pseudo-labels.

4.2 Representative and Diverse Memory Replay
While our disambiguation module prevents the model from
label confusion, the current task is still dominated by new
class samples. As the pseudo-labels become increasingly pre-
cise, the model tends to be reversely biased towards new pat-
terns and quickly forgets the old knowledge. Without stabi-
lizing the old knowledge, the training procedure may be fairly
unstable, leading to degraded performance. To this end, we
further introduce a memory replay module to alleviate forget-
ting, which comprises representative and diverse samples.
Distance-based Representativeness. We assume that most
samples can be purified by our disambiguation module at the
end of each task. Accordingly, we believe those samples
around the prototypes are accurate and can represent well the
whole clusters. Formally, denote the whole memory byMt

at the t-th round, with a maximum limit of m for storing sam-
ples. We first concatenate the training set with the previous
memory by D′

t = Dt ∪ Mt−1. Then, we refer to prior re-
search [Rebuffi et al., 2017] and perform per-class distance-
based selection that collects samples having the shortest dis-
tance to their prototype:

Mt
r = ∪c∈Yt{xi|c = argmax

j∈St
i

fj(xi),

rank(dci ) ≤ Nr, and xi ∈ D′
t},

(7)

where dci = ||ϕ(xi) − µc||2. That is, we split the whole set
according to the predicted categories and then select Nr most
representative samples to the episodic memory.
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Neighborhood-based Diversity. Apart from those repre-
sentative samples, we further collect a few samples that can
better preserve the diversity of old class distribution. In our
IPLL setup, this should be done more carefully due to the la-
bel ambiguity. We propose selecting a sample with two char-
acteristics. First, it should lie in a smooth local manifold to
avoid including falsely disambiguated samples. Second, it
does not lie in a local region near those already selected sam-
ples and carries mutually different patterns. Formally speak-
ing, we calculate the sum of distance measure from a sample
to its K-nearest neighbor:

ai =
∑

j∈NK(xi)

dij , (8)

where NK(xi) = {xj |rank(dij) ≤ K, j ̸= i}. In other
words, we believe those samples with lower ai, which indi-
cates they have many close neighbors, are typically located in
a relatively smooth region.

Next, we select a sample with the smallest ai while being
not a part of the already chosen sample’s neighbors:

Mt
k =Mt

k∪{xi|ai = min
x′∈D′

t

a′, and xi /∈ ∪x′∈Mt
k
NK(x′)}.

(9)
In our implementation, for each class, we first select up to

Nd diverse samples and then, select Nr = m/|Yt| −Nd rep-
resentative samples, resulting inMt =Mt

r ∪Mt
k. This pro-

vides richer class information for subsequent learning, mit-
igating the forgetting of old classes. Lce also includes this
portion of samples
Knowledge Distillation Regularization. In the training
phase, we utilize replay data Mt−1 and the current data Dt

for training. Following [Rebuffi et al., 2017], we employ a
knowledge distillation loss to alleviate forgetting,

Lkd = − 1

|D′
t|

|D′
t|∑

i=1

|Yt−1|∑
j=1

fold
j (xi) log(fj(xi)). (10)

4.3 Practical Implementation
Robust Training with Self-Supervised Learning. In or-
der to further enhance classification performance, we intro-
duce self-supervised learning on the foundation of the disam-
biguation module and memory replay module. Specifically,
we introduce consistency regularization Lcr [Berthelot et al.,
2019] to encourage smoother decision boundaries (details in
Appendix A.1). Finally, the total loss is defined as,

Ltotal = Lce + Lkd + Lcr. (11)

Bias Elimination for the Testing Phase. In each task, de-
spite having operations to mitigate forgetting, the influence
of new class samples on model updates is more profound due
to the significantly larger number of new class samples com-
pared to old class samples. Therefore, the classifier exhibits a
certain bias. In contrast, the feature prototypes retain rich old-
class knowledge and are not substantially updated as training
progresses. Consequently, we employ the feature prototypes
for sample classification during testing,

y∗i ← arg min
j∈Yt

∥ϕ(xi)− µj∥ . (12)

As demonstrated empirically, the feature prototype classi-
fier does indeed outperform linear classification during the
testing phase; see Appendix B.7.

5 Experiments
5.1 Experimental Settings
Datasets. We perform experiments on CIFAR100
[Krizhevsky et al., 2009] and Tiny-ImageNet [Le and
Yang, 2015]. Additionally, we further conduct exper-
iments on CUB200 [Welinder et al., 2010]. For the
experimental setup of IPLL, we reference the settings
of PLL [Lv et al., 2020] and IL [Li and Hoiem, 2016;
Zhao et al., 2020]. We generate partially labeled datasets
by manually flipping negative labels ȳ ̸= y to false-positive
labels with probability q = P (ȳ ∈ Yt|ȳ ̸= y). In the t-th
task, all |Yt| − 1 negative labels have a uniform probability
to be false positive and we aggregate the flipped ones with
the ground-truth to form the candidate set Sti . The flipping
probability q is set at 0.1 and 0.2. We randomly partition
all classes into 10 tasks, i.e., T = 10. In the first task,
there are exclusively new classes, while in the remaining
T − 1 tasks, a substantial number of samples belong to
new classes, with relatively fewer samples belonging to old
classes. To be specific, for a certain category of samples,
W% of the samples emerge as new class samples in the
t-th task, while the remaining (100 − W )% of the samples
uniformly appear as old class samples in each subsequent
task {t+1, t+2, ..., T}. We consider the degree of blending
new and old class data to be “(100-W )-blurry” and set the
value of W to 90 (10-blurry) and 70 (30-blurry).

Baselines. We compare PGDR with two PLL methods:
PiCO [Wang et al., 2022c] and PaPi [Xia et al., 2023]. We
also discuss PRODEN [Lv et al., 2020] in Appendix B.4.
We compare PGDR with five incremental learning methods:
1) iCaRL [Rebuffi et al., 2017]; 2) BiC [Wu et al., 2019]; 3)
WA [Zhao et al., 2020]; 4) ER-ACE [Caccia et al., 2022]; 5)
ANCL [Kim et al., 2023]. To ensure experimental fairness
and credibility, we combine these five incremental learning
methods with PiCO and PaPi to achieve basic label disam-
biguation. To objectively evaluate our method, we respec-
tively plug the contrastive learning module of PiCO and the
Kullback-Leibler divergence of PaPi into our method.

Evaluation metrics. We utilize the average incremental ac-
curacy as the performance evaluation metric [Rebuffi et al.,
2017]. At the t-th task, the incremental accuracy represents
the classification accuracy At of the model on the currently
seen classes. The average incremental accuracy is denoted as
Ā = (1/T )

∑T
i=1 Ai.

Implementation Details. We employ ResNet-18 for fea-
ture extraction. The network model is trained using SGD
with a momentum of 0.9. Trained for 200 epochs on the CI-
FAR100, and trained for 300 epochs on the Tiny-ImageNet.
The learning rate starts at 0.1 for PiCO and 0.01 for PaPi.
Batch sizes are set to 256 and 128 for the CIFAR100 and
Tiny-ImageNet, with a maximum sample storage limit of m
of 2000. For prototypes, a moving average coefficient γ of
0.5 is used. In the sample selection for the storage phase, we
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Method
CIFAR100 Tiny-ImageNet

q = 0.1 q = 0.2 q = 0.1 q = 0.2

10-blurry 30-blurry 10-blurry 30-blurry 10-blurry 30-blurry 10-blurry 30-blurry

PiCO 28.00 28.90 18.66 19.34 22.62 19.02 10.85 9.96

+iCaRL 61.59 62.75 59.40 55.25 41.81 43.87 35.27 13.98
+BiC 64.11 64.78 53.17 52.93 33.43 34.71 25.34 23.41
+WA 67.31 66.86 64.12 59.93 44.15 44.33 33.80 31.37
+ER-ACE 62.98 65.32 61.32 61.29 43.14 43.01 40.83 40.79
+ANCL 65.66 66.10 56.04 48.81 35.11 30.31 23.53 22.59
+PGDR 69.84 71.68 68.49 70.85 46.47 49.33 42.03 41.79
PaPi 24.17 31.16 21.59 22.47 20.45 20.17 16.34 10.84

+iCaRL 60.11 62.52 57.69 58.08 38.89 37.46 22.42 20.46
+BiC 61.50 63.08 58.40 56.69 41.09 35.63 25.67 22.82
+WA 62.75 63.59 59.73 58.10 39.34 35.82 20.91 18.60
+ER-ACE 60.76 62.13 50.43 47.17 23.60 21.45 14.21 14.10
+ANCL 63.19 63.47 60.89 57.85 42.41 35.33 22.15 19.26
+PGDR 69.09 69.64 68.47 66.84 47.85 49.06 44.49 44.64

Table 1: Accuracy comparisons on CIFAR100 and Tiny-ImageNet. The best results are marked in bold and the second-best marked in
underline. q represents the degree of label ambiguity. IL methods are equipped with the PLL method PiCO and PaPi.

Method
CIFAR100-H CUB200

q = 0.1 q = 0.2 q = 0.1 q = 0.2

10-blurry 30-blurry 10-blurry 30-blurry 10-blurry 30-blurry 10-blurry 30-blurry

PiCO 22.85 26.50 19.41 18.16 21.12 22.12 15.25 13.08

+iCaRL 51.69 47.28 51.97 42.51 46.16 41.14 28.58 22.37
+BiC 52.75 53.74 36.65 37.32 43.67 41.28 28.11 22.49
+WA 53.25 54.50 49.26 46.53 44.84 43.02 30.40 24.14
+ER-ACE 54.22 54.99 51.75 52.00 39.09 39.48 23.83 23.11
+ANCL 55.59 55.73 38.73 37.37 44.70 42.18 31.16 24.86
+PGDR 60.35 59.78 56.85 54.93 48.83 49.26 36.11 34.04
PaPi 18.25 26.06 15.87 17.13 20.82 21.87 16.40 14.09

+iCaRL 47.06 48.71 38.37 38.93 44.61 38.81 29.54 23.62
+BiC 49.14 49.01 41.88 38.79 44.70 40.60 33.04 26.47
+WA 49.15 47.03 38.82 37.41 45.57 41.78 32.29 25.74
+ER-ACE 47.27 44.19 28.41 24.80 43.23 37.59 25.97 22.22
+ANCL 51.73 51.09 42.56 37.89 45.27 42.56 33.50 25.45
+PGDR 58.70 58.50 56.75 55.46 46.30 47.06 33.72 27.19

Table 2: Accuracy comparisons on CIFAR100-H and CUB200. The best results are marked in bold and the second-best marked in underline.
q represents the degree of label ambiguity. IL methods are equipped with the PLL method PiCO and PaPi.

set the number of nearest neighbors K to 10, with a maximum
limit Nd for diverse sample storage of 0.67 ∗m/|Yt|. In the
label disambiguation stage, the threshold α is set to 0.8. We
linearly ramp down β from 0.8 to 0.6 to ensure the full utiliza-
tion of differential labels in the early stages of training. This
helps mitigate the introduction of noisy information resulting
from inaccurate early predictions. The experiments regarding
PiCO and PaPi reference their experimental parameters.

5.2 Comparative Results
Comparison under IPLL. As shown in Table 1, our
method significantly outperforms baselines in the IPLL. The
PLL methods, PiCO and PaPi, are lower than other solutions
due to their difficulty in mitigating forgetting. In addition, on

the CIFAR100 dataset with 10 tasks and q = 0.1, our method
outperforms the best baseline incorporating PiCO by 2.53%
(10-blurry) and 4.82% (30-blurry). Additionally, compared
to the best baseline using PaPi, our method shows improve-
ments of 5.90% (10-blurry) and 6.05% (30-blurry). Further-
more, in the case of more noisy candidate labels with q = 0.2,
our method achieves a maximum performance improvement
of 9.56%. We also validate the effectiveness of our method
on the more challenging Tiny-ImageNet. Our method still
demonstrates significant advantages, providing evidence of
the superiority of our method in addressing disambiguation
and mitigating forgetting.
Comparison on fine-grained datasets. When semantically
similar classes are concentrated in a particular stage, disam-
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Ablation Disambiguation Memory Replay 10-blurry 30-blurry

PGDR ✓ ✓ 63.83 64.58
PGDR w MP Model Prediction ✓ 57.94 59.13
PGDR w PP Prototype Prediction ✓ 59.92 62.60

PGDR w/o Memory ✓ × 23.18 23.94
PGDR w Random ✓ Random 61.34 62.60
PGDR w Distance ✓ Prototype Distance 61.69 62.52

Table 3: Ablation study of PGDR on CIFAR100 with q = 0.2 at IPLL 10 tasks.

biguation becomes more challenging. To address this, we
reference [Wang et al., 2022c; Wang et al., 2022b] and eval-
uate our method on two fine-grained datasets: 1) CIFAR100
dataset with hierarchical labels, i.e., CIFAR100-H. There are
five categories under each superclass, and there is no intersec-
tion between different superclasses; 2) CUB200 [Welinder et
al., 2010] dataset with 200 species of birds. For CIFAR100-
H, the new classes in each task are derived from two unseen
superclasses in IPLL. The flipping probabilities q are 0.1 and
0.2. As shown in Table 2, all solutions exhibited a noticeable
decrease in performance in the more challenging setting. On
the CUB200 dataset, when q is set to 0.1, the gaps between
our method and the best baseline that incorporates PiCO are
2.67% (10-blurry) and 6.24% (30-blurry). This thoroughly
validates the efficacy of our method, even under highly chal-
lenging data settings.

5.3 Ablation Study
The additional introduction of the loss function in PGDR hin-
ders visualizing the effects of each module, reducing the in-
terpretability of ablation results. Thus, we present ablation
results on PGDR without contrastive learning and Kullback-
Leibler divergence to demonstrate our method’s effective-
ness. More experiments can be found in Appendix B.7.
Effect of Label Disambiguation. To validate the effective-
ness of the label disambiguation module, we choose the vari-
ants 1) PGDR w MP and 2) PGDR w PP; see Appendix
A.2. The first variant utilizes the PRODEN label computation
method. The second variant utilizes PiCO’s labeling method.
The Table 3 shows that our disambiguation solution is sig-
nificantly better than the two variants. To explore further,
we visualized category changes under the Tiny-ImageNet 10-
blurry (Figure 4). PGDR w PP frequent updates to prototypes
accumulate model bias, leading to a noticeable decline in
classifications when new class data is introduced. In compar-
ison, our solution alleviates knowledge confusion, balancing
the model’s perception of categories, especially in old classes.
Different Memory Replay Strategies. We further try dif-
ferent memory update strategies to validate the superiority of
our sample memory replay strategy. We compare PGDR with
three variants: 1) PGDR w/o Memory that does not store sam-
ples; 2) PGDR w Random randomly selects some samples for
storage; 3) PGDR w Distance entails selecting only represen-
tative samples. As shown in Table 3, our method outperforms
all the variants, which demonstrates the effectiveness of our
representative and diverse selection procedure. We detail the
comparison results of each task in Figure 5, where our method
outperforms other variants on all-class average accuracy. We
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Figure 4: Ablation experiment about disambiguation module on
Tiny-ImageNet (q=0.2)
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Figure 5: Ablation experiment about memory replay module on
Tiny-ImageNet (q=0.2).

can also observe that PGDR w Random struggles to overcome
forgetting old classes due to the lack of high-quality replay
data, and PGDR w/o Memory suffers from close to zero old-
class accuracies with no memory replay.

6 Conclusion
We propose and investigate a novel scenario called incremen-
tal partial label learning (IPLL), where data appears sequen-
tially, and each sample is associated with a set of candidate la-
bels. This presents even more challenging obstacles, involv-
ing the intertwining of label disambiguation and catastrophic
forgetting. To address this, we propose a prototype-guided
disambiguation and replay algorithm (PGDR), which utilizes
class prototypes as proxies to balance the model’s perception
of different categories. Moreover, we establish the first IPLL
benchmark to lay the foundation for future research. Through
extensive experiments, our method consistently outperformed
baselines, demonstrating the superiority of PGDR. We hope
our work will draw more attention from the community to-
wards a broader view of tackling the IPLL.
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