
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

A Timestep-Adaptive Frequency-Enhancement Framework for
Diffusion-based Image Super-Resolution

Yueying Li1,2 , Hanbin Zhao3 , Jiaqing Zhou4 , Guozhi Xu4 ,
Tianlei Hu2,3 , Gang Chen2,3 and Haobo Wang1,2∗

1School of Software Technology, Zhejiang University
2Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security

3College of Computer Science and Technology, Zhejiang University
4ByteDance, Hangzhou

{liyueying, zhaohanbin, htl, cg, wanghaobo}@zju.edu.cn, {jiashu, shuzhi}@bytedance.com

Abstract
Image super-resolution (ISR) is a classic and chal-
lenging problem in computer vision because of
complex and unknown degradation patterns in the
data collection process. Leveraging powerful gen-
erative priors, diffusion-based methods have re-
cently established new state-of-the-art ISR perfor-
mance, but their characteristics in the frequency do-
main are still underexplored. In this paper, we inno-
vatively investigate their frequency-domain behav-
iors from a sampling timestep perspective. Exper-
imentally, we find that current diffusion-based ISR
algorithms exhibit insufficiency in different fre-
quency components in distinct groups of timesteps
during the sampling. To address this, we first pro-
pose a Timestep Division Controller that is able to
adaptively divide the timesteps into groups based
on the performance gradient across different com-
ponents. Next, we design two dedicated modules
— the Amplitude and Phase Enhancement Mod-
ule (APEM) and the High- and Low-Frequency En-
hancement Module (HLEM), to regulate the in-
formation flow of distinct frequency-domain fea-
tures. By adaptively enhancing specific frequency
components at different stages of the sampling
process, the two modules effectively compensate
for the insufficient frequency-domain perception
of diffusion-based ISR models. Extensive experi-
ments on three benchmark datasets verify the supe-
rior ISR performance of our method, e.g., achiev-
ing an average 5.40% improvement on CLIP-IQA
compared to the best diffusion-based ISR baseline.

1 Introduction
Image super-resolution (ISR) is a fundamental task in low-
level vision that aims to reconstruct high-resolution (HR)
images from their low-resolution (LR) counterparts. It has
widespread applications in areas such as medical imaging [Li
et al., 2024], satellite imagery [Liu et al., 2017], and surveil-
lance systems [Shermeyer and Etten, 2019], where obtaining

∗Corresponding author.

(a) The visualization of numerical metrics.

Ours PASD
SUPIR SeeSR
StableSR

(b) User study.

Figure 1: (a) illustrates the variation of Mean Squared Error (MSE)
for different frequency-domain components (amplitude A, phase P ,
high-frequency H, and low-frequency L) with respect to timesteps.
(b) exhibits the result of user study among existing SOTA methods.

high-quality images can naturally be subject to hardware lim-
itations and transmission losses. Early ISR methods [Dong et
al., 2016a; Tai et al., 2017] attempt to construct synthetic im-
age pairs through simple handcrafted degradation operations
(e.g., bicubic downsampling). However, they fail to gener-
alize well in realistic scenarios since real-world LR images
typically involve complex and unknown degradation patterns.

To address this problem, some studies employ diverse net-
work architectures, such as CNN-based [Dong et al., 2016a]
and GAN-based methods [Zhang et al., 2021; Wang et al.,
2021]. Among them, recent diffusion model-based ISR meth-
ods [Wang et al., 2024b; Lin et al., 2023; Yu et al., 2024;
Wu et al., 2024; Yang et al., 2024] have gained great at-
tention, which exhibit superior performance levels in image
quality assessment (IQA) metrics while maintaining com-
petitive full-reference results. Another mainline of ISR re-
searches [Guan et al., 2024; Li et al., 2023a; Xu et al.,
2024; Xie et al., 2021] approaches image restoration from
a frequency-domain perspective, aiming to model the rela-
tionship with degradation processes for targeted image re-
covery. But, current frequency-domain enhancement algo-
rithms are predominantly applied to GANs [Fu et al., 2021;
Xu et al., 2024] and traditional CNN models [Yu et al., 2022;
Huang et al., 2022; Guo et al., 2022]. Only a few methods
[Wang et al., 2024c; Moser et al., 2024; Zhao et al., 2024;
Luo et al., 2023] explore the potential of diffusion-based
models in the frequency domain. Overall, these methods
either rely solely on a single frequency decomposition ap-
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proach [Wang et al., 2024c], or apply frequency informa-
tion merely during image processing [Moser et al., 2024;
Zhao et al., 2024]. For instance, FourierDiff [Lv et al., 2024]
merely leverages the amplitude component of the genera-
tive prior to ensure enhanced brightness aligns with natural
image distributions. WF-Diff [Zhao et al., 2024] employs
a wavelet-based dual-branch diffusion framework to refine
high-frequency and low-frequency components of the initial
enhanced images. To date, the frequency-domain property of
the current diffusion methods remains unexplored.

In this paper, we investigate the frequency-domain behav-
ior of diffusion-based ISR models from a novel sampling
timestep perspective. More concretely, we are interested in
the impact of different frequency-domain components ob-
tained via frequency spectral and band decomposition, on
the restoration process as low-resolution images are progres-
sively recovered through diffusion model timesteps. Through
our preliminary experiments, we have two main findings: (1)
Impact of Amplitude and Phase Components. To inves-
tigate the variation of frequency spectral components across
timesteps, we decompose the amplitude and phase compo-
nents. By fusing one of the components at the current
timestep with the corresponding component of the HR im-
ages (see top two rows, Figure 2), we observe that in the early
timesteps, containing the phase of current timesteps signifi-
cantly reduces MSE, while in the later timesteps, containing
the amplitude drive more MSE change. This indicates that
during the restoration process, the diffusion model first gen-
erates the phase component (structural information), and later
generates the amplitude component (overall visual informa-
tion). (2) Impact of High- and Low-Frequency Compo-
nents. Next, to investigate the variation of frequency band
components, we decompose the images into high- and low-
frequency components and perform a similar fusion proce-
dure (see bottom two rows, Figure 2). The experimental re-
sults show that in the early timesteps, containing the low-
frequency component significantly reduces the MSE, while
in the later timesteps, containing the high-frequency has a
greater impact. This indicates that the diffusion model ini-
tially reconstructs the low-frequency component with global
structures, and later generates high-frequency components
with fine details, consistent with its generation mechanism.

Based on this, we believe that enhancing the diffusion
model’s frequency-domain perception at the appropriate time
can improve ISR performance effectively. Therefore, we pro-
pose a Timestep-adaptive Frequency-aware Diffusion frame-
work for Super-Resolution (dubbed TFDSR), which en-
hances the diffusion ISR models’s different frequency com-
ponents at adaptive timesteps. It comprises three core com-
ponents: (1) Timestep Division Controller (TDC): This
module dynamically determines the enhancement frequency
components across different timesteps, strategically select-
ing phase and low-frequency components for the early stage,
while emphasizing amplitude and high-frequency compo-
nents for later. (2) Amplitude-Phase Enhancement Mod-
ule (APEM): This module adaptively enhances the missing
amplitude and phase components through a channel attention
mechanism, thereby optimizing the representation of each
frequency component. (3) High-Low Frequency Enhance-

Fusion of Amplitude from HR and Phase across timesteps

Fusion of High-Freq from HR and Low-Freq across timesteps

Fusion of Low-Freq from HR and High-Freq across timesteps

Fusion of Phase from HR and Amplitude across timesteps

Figure 2: Denoising process of each frequency component. Top
two rows: amplitude (A) and phase (P) combined with the cor-
responding frequency components of the HR image. Bottom rows:
low- (L) and high-frequency (H) components with their relative HR
components after the inverse Fourier Transform, aligned with each
timestep. It demonstrates that early timesteps show greater variation
in P and L, while A and H change more in later timesteps.

ment Module (HLEM): This module operates on skip con-
nection and adaptively enhances high- and low-frequency in-
formation in the skip features using a frequency band modu-
lation. In terms of sampling strategy, TFDSR adaptively en-
hances different frequency components at different timesteps,
requiring only minimal computational resources and time
for efficient fine-tuning. Extensive experiments demonstrate
that TFDSR significantly outperforms state-of-the-art diffu-
sion models, especially on no-reference metrics, e.g., average
+5.40% in CLIP-IQA. Our source code and appendix are
available at https://github.com/liyueying233/TFDSR.

2 Related Work
Image Super-Resolution (ISR). Although deep learning-
based ISR techniques have gained widespread adoption, most
CNN-based methods [Dong et al., 2016a; Lim et al., 2017;
Kim et al., 2016; Dong et al., 2016b; Shi et al., 2016] still suf-
fer from the issue of excessive detail smoothing. To better en-
hance visual perception, some advances [Zhang et al., 2021;
Wang et al., 2021; Liang et al., 2021; Chen et al., 2022;
Liang et al., 2022; Wang et al., 2024a] using the GAN-based
models in Real-ISR have explored more complex degrada-
tion models. For instance, BSRGAN [Zhang et al., 2021] and
Real-ESRGAN [Wang et al., 2021] employ realistic degra-
dation modeling techniques. Despite progress in generating
perceptually realistic details, GAN-based ISR methods often
suffer from unstable training and produce unnatural artifacts.
In recent years, the powerful Stable Diffusion (SD) [Rom-
bach et al., 2022] model has been applied to ISR tasks [Wang
et al., 2024b; Lin et al., 2023; Yu et al., 2024; Wu et al., 2024;
Yang et al., 2024]. For instance, SeeSR [Wu et al., 2024] pro-
poses a semantic-aware approach that better preserves seman-
tic fidelity in reconstructing real-world images. While achiev-
ing remarkable performance in Real-ISR tasks, these methods
are limited to the spatial domain, failing to fully exploit fre-
quency domain characteristics. In contrast, we discuss the
degradation processes of various frequency components and
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design a timestep-adaptive method to enhance them.
Frequency-based Image Reconstruction. Frequency
analysis of image processing has been widely used in
computer vision [Yu et al., 2022; Huang et al., 2024;
Yang and Soatto, 2020; Cai et al., 2021; Si et al., 2024;
Yu et al., 2022]. For ISR tasks, many studies improve
images reconstruction quality by applying frequency domain
to comprehensively extract features from low-resolution
images [Guan et al., 2024; Li et al., 2023a; Xu et al., 2024;
Xie et al., 2021]. Among these approaches, most frequency-
domain enhancement algorithms are primarily applied
to CNN-based and GAN-based models [Yu et al., 2022;
Huang et al., 2022; Guo et al., 2022]. Some methods
improve reconstruction quality by separating specific
components (such as high-frequency or amplitude com-
ponents) in the frequency domain [Guan et al., 2024;
Li et al., 2023a; Xu et al., 2024; Xie et al., 2021;
Dai et al., 2024]. Appendix A lists the effects of different
frequency components on image quality for other computer
vision tasks. Although these existing frequency domain-
based ISR methods significantly improve performance,
their integration with the increasingly popular diffusion
models remains largely unexplored. Only a few methods
[Wang et al., 2024c; Moser et al., 2024; Zhao et al., 2024;
Luo et al., 2023] explore the potential of diffusion-based
models in the frequency domain. For instance, WF-Diff
[Zhao et al., 2024] employs a wavelet-based dual-branch
diffusion framework to refine frequency components of the
initial input images. FourierDiff [Lv et al., 2024] decom-
poses frequency-domain samples, using generative prior
amplitudes to enhance brightness. These methods lack deep
integration of frequency components with crucial denoising
timesteps of the diffusion. In contrast, our TFDSR frame-
work introduces frequency-domain enhancement through a
novel timestep-adaptive approach that leverages the inherent
characteristics of diffusion models.

3 Background and Preliminaries
3.1 Diffusion Models for Image Super-Resolution
Diffusion models, like DDPM [Ho et al., 2020] and LDM
[Rombach et al., 2022], are latent variable models primar-
ily consisting of a diffusion and denoising process. In the
diffusion process, Gaussian noise is gradually added at each
timestep t via a Markov chain, using a variance schedule
β1, ..., βt, resulting in a random noise distribution

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
. (1)

In the denoising process, given the noisy input xt, the model
outputs the clean data xt−1 without noise, represented as

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) . (2)

Here, µθ and Σθ are set by the denoising model. Current
diffusion models [Ho et al., 2020; Rombach et al., 2022] are
implemented using a U-Net [Ronneberger et al., 2015] to re-
move noise from data samples, which consists of downsam-
pling and upsampling paths. Each upsampling block concats
both the backbone and skip features in the skip connections.

To improve ISR performance, existing diffusion-based
methods typically encode LR images and fuse them with the
U-Net through cross-attention or a ControlNet module for
HR image generation. Through iterative diffusion and reverse
processes, these models effectively recover realistic details.

3.2 Fourier Frequency Domain Transformation
The Fast Fourier Transform (FFT) is widely applied in low-
level vision tasks, transforming images from the spatial do-
main to the Fourier frequency domain, denoted as

F(x)(u, v) =
H−1∑
h=0

W−1∑
w=0

x(h,w)e−j2π( h
H u+ w

W v). (3)

Its inverse function (IFFT) is formulated as

G(f)(h,w) = 1

UV
·
U−1∑
u=0

V−1∑
v=0

f(u, v)e−j2π( u
U h+ v

V w), (4)

where j is the imaginary unit, and ejθ = cos θ+ j sin θ. F(·)
and G(·) denote 2D Fourier transform and its inverse. The
frequency features F(x) in Eq. (3) and f in Eq. (4) are
both complex domain tensors, expressed as F(x) = R(x) +
jI(x), with R(x), I(x) being the real and imaginary parts.

In this paper, we explore two frequency-domain decompo-
sition methods (see Appendix A). The first is the frequency
spectral decomposition, separating the frequency into the am-
plitude A and phase P , which is represented as

A(x)(u, v) =
√
R2(x)(u, v) + I2(x)(u, v), (5)

P(x)(u, v) = arctan[
I(x)(u, v)
R(x)(u, v)

]. (6)

The second is the frequency band decomposition, which di-
vides the frequency domain into high- H and low-frequency
L parts based on their distance from the frequency center.

4 The Propose Framework
In our preliminary experimental explorations, we observe
that in the early denoising stages, diffusion-based ISR mod-
els tend to reconstruct the overall structural phase and low-
frequency components while generating amplitude and high-
frequency details in the later stages. To leverage this dy-
namic sampling characteristic, we propose a Timestep Divi-
sion Controller (Section 4.1) to determine which frequency
component at the current timestep should be enhanced. For
the enhancement modules, shown in Figure 3, we introduce a
channel attention-based module (Section 4.2) for frequency
spectral enhancement, and an adaptive modulation module
(Section 4.3) for frequency band enhancement.

4.1 Timestep Division Controller
To determine the optimal demarcation points for dividing
the sampling timesteps into two distinct groups, we pro-
pose a computationally efficient timestep division optimiza-
tion strategy. Recall our frequency-domain analysis (as il-
lustrated in Figure 1a), which reveals rapid phase and low-
frequency components changing in early stages, significant
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Figure 3: The overview of TFDSR, which has three modules, (a) TDC: a dynamical timestep division controller, determining which com-
ponent should be activated across the timesteps. (b) APEM: a channel attention module for frequency spectral components that adaptively
enhance the missing amplitude and phase components; (c) HLEM: a modulation module for frequency band components that enhances high-
and low-frequency information in the skip features using, improving detail restoration capabilities.

amplitude and high-frequency components variations in later.
Leveraging this temporal divergence, our strategy identifies
the demarcation points TAP , THL through three steps.
a) MSE Arrays of Frequency Domain Components. To
quantify the reconstruction dynamics of different frequency
domain components, in the diffusion model-based ISR base-
line (SeeSR), we save the sampling results xt every 5 steps.
Then we decomposed them into low-frequency Lt and high-
frequency components Ht, as well as amplitude At and
phase components Pt through FFT. Subsequently, frequency-
domain fusion and iFFT are performed, expressed as

IA(t), IP(t) = G(At · ejPHR),G(AHR · ejPt); (7)
IH(t), IL(t) = G(Ht + LHR),G(HHR + Lt); (8)

where AHR, PHR, HHR and LHR represent the frequency com-
ponents of HR images, respectively. The fused results are
used to calculate the Mean Squared Error (MSE) with the HR
images, yielding a similarity array that changes across sam-
pling timesteps for four different frequency-domain compo-
nents. The visualization curves are shown in the Figure 1a.
b) Gradient Difference Calculation. For high- and low-
frequency components, we calculate the frequency band gra-
dient difference δAP = dIA(t)

dt − dIP(t)
dt . For amplitude and

phase, we calculate the spectral gradient difference δHL =
dIH(t)

dt − dIL(t)
dt to capture the dynamic relationship between

different frequency components during the denoising process.
c) Timestep Optimization Search. Notably, the gradient
difference δcomp follows a positive-to-negative or negative-to-
positive pattern, which indicates that L/P changes rapidly in

the early timestep group [0, t), while H/A changes dominate
in the later (t, T − 1]. To identify the point where the sign
reverses, we sum the cancellable signs, expressed as

St
comp = |

t−1∑
i=0

sign(δcomp(i))|+ |
n−1∑
i=t+1

sign(δcomp(i))|,

comp ∈ {AP ,HL}. (9)

Through searching across all sampling timesteps, TAP and
THL with maxt St

comp are selected as the demarcation points.
Then, our controller divides the whole sampling process into
two groups [0, TAP), [TAP , T − 1] for frequency spectral
decomposition, and [0, THL), [THL, T − 1] for frequency
bands, which is applied to determine the enhanced compo-
nents across diffusion sampling timesteps.

4.2 Frequency Spectral Enhancement
As stated previously, we observe that the amplitude and phase
features of images are progressively restored during the ISR
reconstruction process. Therefore, we propose that diffusion-
based ISR models should actively learn these two types of
features during training. Inspired by prior studies [Hu et al.,
2018; Zhao et al., 2019], which enhance model performance
by adjusting the importance of different channel features in
convolutional neural networks (CNNs), we extend this con-
cept to amplitude and phase features. To this end, we de-
sign a channel attention module based on CNNs, termed the
Amplitude-Phase Enhancement Module (APEM), to enhance
these two frequency-domain components. Through this, the
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diffusion model is able to perceive the phase features that bet-
ter capture structural information at the early stage, and later
amplitude features to improve the visual quality of the image.
Technically, this process can be divided into two steps:
a) Initial Feature Extraction. First, we extract the am-
plitude and phase components of the features from the up-
sampling blocks of the U-Net. This is implemented through
a combination of convolution and ReLU operations, which
serve as the initial feature extraction, represented as

Cf = ReLU(Conv(C)), (10)
where C : = A if t ≥ TAP else P, (11)

where C is the controller, Conv(·) denotes convolution oper-
ation, := means the replacement of variables. We activate A
when the timestep t ≥ TAP , and activate P when t < TAP ,
hence achieving adaptive control to better complete the fre-
quency perceptron ability of diffusion-based ISR models.
b) Channel Attention Map Generation and Application.
Next, we generate channel attention maps for both the ampli-
tude and phase components, which are denoted as

Mattn
C = σ(ReLU(Conv(AvgPool(Cf )))), (12)

where Mattn
C represents the attention maps of amplitude and

phase. σ(·) and AvgPool(·) denote the sigmoid and average
pooling operations. Then we calculate the enhanced ampli-
tude and phase components Aout and Pout by applying the
Mattn

C , which is denoted as

Cout = Conv(Mattn
C ⊙ Cf ). (13)

The attention map allows the model to better emphasize chan-
nel features that contribute significantly to the ISR task.

To apply the enhanced amplitude and phase components,
we combine Aout and Pout into the frequency domain by F ′ =
Aout ·ejPout , and further transfer to the spatial domain by iFFT,
which is denoted as x′

skip = G(F(xskip)
′).

4.3 Frequency Band Enhancement
Next, for frequency band, we explore enhancing the high- and
low-frequency components at different sampling timesteps.
As discussed in FreeU [Si et al., 2024], the skip connections
in U-Net blocks can transmit high-frequency, information-
rich features to deeper layers of the network, thereby pre-
serving more comprehensive image information. Note that
FreeU is designed for text-to-image tasks which only applies
two constant scaling transformations to low-frequency fea-
tures on all layers. However, for diffusion-based ISR prob-
lems, the features on U-Net layers with various resolutions
convey various semantic information. Therefore, considering
the varying richness of information, we propose a high- and
low-frequency enhancement module (HLEM) with adaptive
masking to enhance different frequency bands across sam-
pling timesteps. It can be divided into the following two steps.
a) Adaptive Mask Construction. To accurately filter and
dynamically enhance the frequency components in the skip
features, we construct the adaptive mask MH and ML,
for high- and low-frequency respectively. Considering that
lower-level and smaller-scale features often contain less de-
tailed information, the mask adjusts the enhancement factor

based on scale adaptively, to better adapt to the frequency
structure of features at different levels, formulated as

MC(r) = 1 + (
S − Smin

Smax − Smin
+ 0.5) · PC

2
· (r > rthresh),

(14)
where C : = H if t ≥ THL else L. (15)

Here r and rthresh are the radius and the radius threshold rela-
tive to the frequency center; C is the controller. S is the scale
of skip features; PC is the enhancement factor. Similarly, we
activate L when the timestep t < THL, and activate H when
t ≥ THL, obtaining the high- and low-frequency masks.
b) High- and Low-Frequency Component Enhancement.
We then perform an element-wise multiplication of the adap-
tive mask MC from Equation 14 with the skip features xskip
in the frequency domain, to amplify and enhance frequency
band components, which is represented as

F(xskip)
′ = F(xskip)⊙MC , (16)

where ⊙ denotes element-wise multiplication. Finally, the in-
verse Fourier transformation transfers the enhanced skip fea-
tures to the spatial domain, denoted as x′

skip = G(F(xskip)
′).

4.4 Overall Training and Sampling Details
Notably, diffusion-based ISR models typically consist of two
key stages — the training and sampling process. In practice,
our modules are integrated into the whole process as follows:

• For frequency spectral enhancement (APEM), we focus
on learning frequency-domain feature parameters with-
out requiring a timestep division controller during the
training process. During sampling, we apply the de-
marcation point TAP for adaptive enhancement, prior-
itizing the phase component in the initial stage with
t ∈ [0, TAP), and focusing on the amplitude component
in the later stage with t ∈ [TAP , T − 1].

• For frequency band enhancement (HLEM), which does
not contain any trainable layers, we set it as a training-
free module and apply it exclusively during the sampling
process. Similarly, we enhance the low-frequency com-
ponent when the timestep t ∈ [0, THL), and regulate the
high-frequency when t ∈ [THL, T − 1].

Overall, we make only minor modifications to the network
structure, which have minimal impact on the entire training
process. Consequently, in practice, the overall training cost of
our method is comparable to that of our diffusion-based ISR
baseline model (SeeSR); see Appendix E. These two modules
are applied to the skip connection features from the U-Net
down-blocks (see Figure 3). For more ablation results of the
training strategies and places, please refer to Appendix C.

5 Experiments
5.1 Experimental Settings
Training Datasets. We train TFDSR on the first 10K real-
world images from LSDIR [Li et al., 2023b] and first 10k face
images from FFHQ [Karras et al., 2021], which are cropped
into 512 × 512 patches. And we use the degradation model
with the setting of Real-ESRGAN [Wang et al., 2021].

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Datasets Metrics BSR-GAN Real-ESR FeMaSR DASR SwinIR- StableSR SS-MoE SUPIR PASD SeeSR TFDSR
GAN GAN (Ours)

DIV2K-Val

PSNR↑ 24.57 24.29 23.05 24.46 23.92 23.26 22.11 22.14 24.16 23.71 23.87
SSIM↑ 0.6232 0.6328 0.5816 0.6267 0.6235 0.5644 0.5775 0.5180 0.6099 0.6043 0.6004
LPIPS↓ 0.3354 0.3115 0.3125 0.3542 0.3159 0.3119 0.2881 0.3930 0.3705 0.3212 0.3251

MUSIQ↑ 61.23 61.11 60.82 55.20 60.22 65.91 64.78 63.60 61.85 68.56 69.42
CLIPIQA↑ 0.5255 0.5283 0.5997 0.5036 0.534 0.6771 / 0.713 0.5848 0.6927 0.7300
MANIQA↑ 0.3561 0.3823 0.3457 0.3186 0.3656 0.4208 / 0.5533 0.4028 0.5040 0.5510

RealSR

PSNR↑ 26.37 25.65 25.06 27.01 26.3 24.66 24.68 23.64 26.53 25.05 25.20
SSIM↑ 0.7643 0.7592 0.7342 0.7702 0.7719 0.7003 0.7352 0.6603 0.7597 0.7394 0.7359
LPIPS↓ 0.2652 0.2720 0.2896 0.3047 0.2479 0.3101 0.2719 0.3511 0.2783 0.2862 0.3020

MUSIQ↑ 63.19 60.49 59.20 40.95 58.83 65.24 57.10 61.34 60.61 70.99 71.15
CLIPIQA↑ 0.5105 0.4491 0.5450 0.3135 0.4367 0.6169 / 0.6316 0.5030 0.6787 0.7245
MANIQA↑ 0.3800 0.3769 0.3648 0.2459 0.3455 0.4302 / 0.4952 0.3894 0.5456 0.5771

DRealSR

PSNR↑ 28.68 28.61 26.87 29.74 28.46 27.93 29.35 24.80 28.96 27.92 27.77
SSIM↑ 0.8021 0.8044 0.7557 0.8257 0.8036 0.7442 0.7946 0.6333 0.7919 0.7773 0.7683
LPIPS↓ 0.2885 0.2848 0.3179 0.3143 0.2801 0.3280 0.3017 0.4323 0.3142 0.3196 0.3406

MUSIQ↑ 57.25 54.26 53.32 42.43 52.65 58.28 42.32 59.73 52.29 65.37 67.07
CLIPIQA↑ 0.5104 0.4525 0.5534 0.3807 0.4389 0.6272 / 0.6880 0.5122 0.6887 0.7168
MANIQA↑ 0.3407 0.3422 0.3121 0.2822 0.3265 0.3890 / 0.5040 0.3672 0.5164 0.5526

Table 1: Quantitative comparison with SOTA methods on the synthetic benchmark DIV2K-Val. Red and blue colors represent the best and
second-best performance. ↓ represents the smaller the better, while ↑ represents the opposite. It is evident that the core of GAN-based ISR
methods lies in enhancing image fidelity, primarily reflected in higher full-reference metrics (e.g., PSNR). In contrast, Diffusion-based ISR
methods focus on improving image quality, mainly demonstrated by higher no-reference metrics (e.g., CLIPIQA). Note that the symbol ’/’
denotes that these metrics are not provided in the original paper.

Testing Datasets. We employ the StableSR [Wang et al.,
2024b] test datasets and evaluate our approach on the follow-
ing datasets. (1) For the synthetic dataset, we use 3,000 gen-
erated pairs of LR-HR images from the DIV2K validation set
[Agustsson and Timofte, 2017], where the LR images have a
resolution of 128 × 128, and the HR images have a resolu-
tion of 512 × 512. (2) For the real-world datasets, we utilize
the DRealSR [Wei et al., 2020] and RealSR [Ji et al., 2020]
datasets center-cropping the LR images to 128 × 128.

Evaluation Metrics. We adopt a series of full-reference
and no-reference metrics to assess the performance of differ-
ent methods. The full-reference metrics include PSNR, SSIM
(evaluated on the Y channel in the YCbCr color space), and
LPIPS [Zhang et al., 2018]. For quality evaluation, we em-
ploy no-reference image quality assessment (IQA) metrics,
including CLIP-IQA [Wang et al., 2023], MUSIQ [Ke et al.,
2021], and MANIQA [Yang et al., 2022].

Implementation Details. We employ the SeeSR [Wu et
al., 2024], a controlled T2I (Text-to-Image) diffusion-based
model, as our pre-trained baseline. Then we train the APEM
for 600 iterations with a batch size of 32, a learning rate of
5 × 10−5, and 512 × 512 resolution on a single A100 GPU.
During sampling, we utilize the adaptive frequency sampling
strategy using the TDC module, which dynamically selects
enhanced frequency components based on the current sam-
pling timestep, with a total sampling step of 50. Hyperparam-
eters TAP = 400, THL = 500, PH = 0.05, and PL = 0.9
are tuned using a validation set composed of 100 randomly
selected images from the training set (LSDIR+FFHQ), which

are uniformly applied to the three datasets of Table 1, includ-
ing varying samples. For the ablation results of hyperparam-
eters tuning and the full reproducibility information, please
refer to Appendix B and the source code.
Compared Methods. We select several state-of-the-art
(SOTA) ISR models, which can be divided into two groups.
The first group consists of GAN-based methods, including
BSRGAN [Zhang et al., 2021], Real-ESRGAN [Wang et al.,
2021], FeMaSR [Chen et al., 2022], DASR [Liang et al.,
2022], SwinIR-GAN [Liang et al., 2021]. The second group
is diffusion-based methods, including StableSR [Wang et al.,
2024b], SS-MoE [Luo et al., 2023], SUPIR [Yu et al., 2024],
PASD [Yang et al., 2024], SeeSR [Wu et al., 2024].

5.2 Comparison with Existing Models
Quantitative Comparisons. As shown in Table 1, we first
conduct a quantitative comparison between the proposed
method and the current state-of-the-art (SOTA) methods on
both synthetic and real-world datasets. The results demon-
strate that our method achieves the best scores on almost all
no-reference metrics. Specifically, on the real-world bench-
mark RealSR, our TFDSR achieves a CLIP-IQA score of
0.7245, representing a 6.75% improvement over our baseline
(the second-best method) SeeSR, which fully validates the
superiority of TFDSR. Notably, the experimental results in-
dicate that GAN-based methods outperform almost all based
on diffusion models in terms of full-reference metrics (aver-
age PSNR/SSIM metrics, Diffusion: 23.21/0.5791 vs. GAN:
24.06/0.6176). This discrepancy can be primarily attributed
to a potential limitation inherent to the training strategies of
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Figure 4: Qualitative comparisons of GAN-based, diffusion model-based ISR methods and our TFDSR. It shows that TFDSR can reconstruct
more realistic high-resolution images without unnatural artifacts.

diffusion models. For more detailed discussions, please refer
to the Appendix F. Overall, it can be shown that our TFDSR
does indeed largely outperform current diffusion-based ISR
methods in terms of no-reference metric scores while main-
taining very competitive full-reference metrics.
Qualitative Comparisons. To demonstrate the effective-
ness of TFDSR, Figure 4 presents a comparison between the
existing methods and our TFDSR. It can be observed that our
method enhances the quality and fidelity of the image gener-
ated by diffusion-based ISR methods, particularly in detailed
textures and general visual effects. Specifically, GAN-based
approaches tend to produce over-smoothed outputs, whereas
diffusion models frequently exhibit unnatural details, particu-
larly manifesting in biological features (e.g., mammalian fur
patterns) and complex textures. For instance, the third case
in Figure 4 demonstrates some diffusion-based methods will
generate incorrect eyes and blurring results. More examples
with varying orientations of stripes are in Appendix D.
User Study. We also conduct a user study comparing our
method on a set of test datasets, instructing 20 participants to
choose the result with high quality and fidelity among these
test methods. The results are shown in Figure 1b, revealing
superior performance of our approach in perceptual quality.

5.3 Ablation Study
To further demonstrate the effectiveness of our TFDSR
method, we conduct ablation results on three key frequency-
based modules. We validate the superior performance of
APEM shown in Row 2 of Table 2. Next, we evaluate the
effectiveness of HLEM shown in Row 3 of Table 2. And we

Varients Metrics (RealSR)
TDC APEM HLEM PSNR↑ SSIM↑ LPIPS↓ MUSIQ↑ CLIPIQA↑ MANIQA↑

✗ ✗ ✗ 25.05 0.7394 0.2862 70.99 0.6787 0.5456
✓ ✓ ✗ 25.17 0.7435 0.2888 70.29 0.6907 0.5551
✓ ✗ ✓ 25.25 0.7373 0.3013 71.10 0.7239 0.5756
✗ ✓ ✓ 24.96 0.7406 0.2856 70.32 0.6801 0.5435
✓ ✓ ✓ 25.20 0.7359 0.3020 71.15 0.7245 0.5771

Table 2: Ablation studies of TFDSR modules and the relative loca-
tions on RealSR. ✓ and ✗ denote the inclusion and exclusion.

also show the significant potential in ISR of TDC (see Row 4
of Table 2). By applying three modules, we achieve obvious
improvement in no-reference metrics over baseline (see Row
1, Table 2), while maintaining competitive full-reference met-
rics. More ablation results are in Appendix C.

6 Conclusion
In this work, we propose a timestep-adaptive framework
TFDSR for enhancing diffusion-based ISR models from a
frequency perspective. To achieve this, we first propose a
novel channel attention mechanism for enhancing the fre-
quency spectral components (APEM). Also, we develop a
new semantic-aware mask that adaptively determines the
thresholds by feature inputs for regulating the frequency band
components (HLEM). As shown in the extensive experi-
mental evaluation, we demonstrate the effectiveness of the
TFDSR. We also hope our work will draw more attention
from the community toward a broader view of addressing dif-
fusion for low-level vision from a frequency perspective.
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