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Abstract
Hypergraphs offer superior modeling capabilities
for social networks, particularly in capturing group
phenomena that extend beyond pairwise interac-
tions in rumor propagation. Existing approaches
in rumor source detection predominantly focus on
dyadic interactions, which inadequately address the
complexity of more intricate relational structures.
In this study, we present a novel approach for
Source Detection in Hypergraphs (HyperDet) via
Interactive Relationship Construction and Feature-
rich Attention Fusion. Specifically, our methodol-
ogy employs an Interactive Relationship Construc-
tion module to accurately model both the static
topology and dynamic interactions among users,
followed by the Feature-rich Attention Fusion mod-
ule, which autonomously learns node features and
discriminates between nodes using a self-attention
mechanism, thereby effectively learning node rep-
resentations under the framework of accurately
modeled higher-order relationships. Extensive ex-
perimental validation confirms the efficacy of our
HyperDet approach, showcasing its superiority rel-
ative to current state-of-the-art methods.

1 Introduction
Source detection in graphs offers a viable mathematical ap-
proach to identifying the sources of propagation information
such as rumors [Shah and Zaman, 2011; Zhu et al., 2022].
Over recent years, various methodologies have been proposed
to address this issue [Wang et al., 2025; Dong et al., 2024].
Initially, techniques based on source centrality theory [Shah
and Zaman, 2011] and maximum likelihood estimation [Yang
et al., 2020], including methods such as LPSI [Wang et al.,
2017], OJC [Zhu et al., 2017], and MLE [Pinto et al., 2012;
Cheng et al., 2025]. More recently, with the rapid advance-
ment of graph neural networks [Kipf and Welling, 2017;
Jin et al., 2023], an increasing number of researchers have
employed strategies to learn node representations by embed-
ding node features and modeling propagation information

∗Corresponding authors.
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Figure 1: Social scenario modeling. (a) Various social scenarios. (b)
Pairwise interactions in exiting methods. (c) Higher-order interac-
tions in our proposed approach. This accurate yet complex hyper-
graph modeling introduces new challenges to source detection.

[Ling et al., 2022; Wang et al., 2022]. These approaches have
set benchmarks in identifying sources [Cheng et al., 2024a].

However, existing methods predominantly model graphs
through dyadic interactions, assuming that user interactions
are pairwise. In practice, interactions often extend be-
yond pairwise engagements, occurring among triads or larger
groups, thus constituting higher-order interactions [Battiston
et al., 2020; Gao et al., 2022]. To our knowledge, no existing
work has addressed source detection considering interactions
that extend beyond the pairwise level. When networks ex-
hibit higher-order interactions, the influence/pressure among
group peers accelerates the information propagation process,
in stark contrast to binary interactions, as illustrated in Fig. 1.

Hypergraphs offer a superior framework for modeling
the aforementioned higher-order interactions. However,
source detection in hypergraphs faces two significant chal-
lenges. First, propagation on hypergraphs exhibit both static
low/high-order topological structures and dynamic user in-
teractions, posing a primary challenge in accurate model-
ing. Second, node features are often manually engineered
and of low dimensionality, which can hinder model perfor-
mance. Furthermore, the varying significance of different
nodes in information propagation, if treated uniformly, af-
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fects the model’s learning and convergence. To intuitively
address these issues, we should: 1) Establishing relationships
between nodes through both static topology and dynamic in-
teractions to enhance subsequent message propagation. 2)
Enabling the model to autonomously learn and enrich node
features, while distinguishing between nodes based on their
information transmission capabilities.

In this paper, we propose a novel Source Detection ap-
proach in Hypergraphs (HyperDet) via Interactive Relation-
ship Construction and Feature-rich Attention Fusion. Ini-
tially, to accurately depict user relationships and node fea-
tures, an Interactive Relationship Construction module (IRC)
is developed to leverage the static topology of the hypergraph
as well as the dynamic interactions between infected and un-
infected subgraphs to form the nodes’ interactive relation-
ships; combining node states, propagation information, and
positional encoding to constitute raw node features. Subse-
quently, to automatically learn and enrich node features, and
to focus on nodes with stronger information propagation ca-
pabilities, a Feature-rich Attention Fusion module (FAF) is
introduced. This module includes a designed hypergraph au-
toencoder to extract latent node features, and a multi-head at-
tention mechanism to automatically assign different attention
coefficients to various nodes. Lastly, to counteract model pre-
diction biases due to significant sample size differences be-
tween sources and non-sources, we introduce a class balanc-
ing mechanism. The effectiveness of our proposed method
is validated across eight public datasets, and extensive exper-
iments demonstrate that HyperDet outperforms state-of-the-
art methods in hypergraph-based source detection.

Overall, our contributions can be summarized as follows:

• We are the first to formalize the problem of source de-
tection in hypergraphs and to propose a methodology to
address this challenge.

• We introduce a novel approach for source detection in
hypergraphs through Interactive Relationship Construc-
tion and Feature-rich Attention Fusion.

• We demonstrate the effectiveness of our proposed
method over baseline approaches through extensive ex-
perimental validation.

2 Related Work
General Source Detection. Various methods have been
proposed for source detection [Bao et al., 2024]. Based on
the source centrality theory [Prakash et al., 2012; Shah and
Zaman, 2011], LPSI selects local outliers by iterating node
labels [Wang et al., 2017], EPA computes the infection time
for each node and selects the node with the longest duration
of infection [Ali et al., 2019], and OJC identifies nodes that
cover the infected area with the smallest radius [Zhu et al.,
2017]. However, these methods do not account for user di-
versity and have limited application scenarios.

Graph Learning-based Source Detection. Utilizing graph
neural networks (GNNs), GCNSI and SIGN employ user
states as inputs to classify nodes and identify sources [Dong
et al., 2019; Li et al., 2021], while GCSSI considers the
last infected node, referred to as the wavefront [Dong et al.,

2022]. From the perspective of network structure, ResGCN
enhances the influence of initial features through a residual
structure [Shah et al., 2020]. Nevertheless, these methods are
primarily challenged by class imbalance and lack integration
with the information propagation process.

Addressing graph diffusion explicitly, IVGD initially
learns the information propagation process and subsequently
reverses this knowledge for source detection [Wang et al.,
2022]. SL-VAE deciphers various propagation patterns on
graphs [Ling et al., 2022], and GIN-SD accommodates nodes
with partial information [Cheng et al., 2024b]. Despite these
advances, the above methods predominantly model social
network propagation through pairwise interactions. This sim-
plification overlooks higher-order interactions that are preva-
lent in group dynamics, a crucial aspect that remains unad-
dressed by these models [Battiston et al., 2020].
Hypergraph Neural Networks. To model higher-order so-
cial phenomena, hypergraphs have been proposed with hyper-
edges containing multiple nodes beyond mere pairwise con-
nections [Zhou et al., 2006; Battiston et al., 2020]. Building
on the higher-order structure of hypergraphs, HGNN intro-
duces a two-stage message passing approach to learn node
representations, consisting of hyperedge information aggre-
gation and node information aggregation [Feng et al., 2019;
Gao et al., 2022]. Inspired by the Graph Attention Network
[Veličković et al., 2017], Hyper-Atten enhances the model’s
learning capability by computing attention coefficients for
nodes and their associated hyperedges [Bai et al., 2021].

Based on GNNs, UniGNN directly applies GNNs to hyper-
graphs using hyperedges as intermediaries [Huang and Yang,
2021], while HyperGCN first transforms hypergraphs into
weighted graphs before applying GCNs for node represen-
tation learning [Yadati et al., 2019]. Integrating existing ap-
proaches, AllSet proposes an effective model that unifies cur-
rent hypergraph learning methods [Chien et al., 2022]. As
an extension of simple pairwise graphs, hypergraphs demon-
strate a stronger and more flexible data modeling capability,
widely applied and exhibiting high efficiency across multiple
domains [Jiao et al., 2024].

3 Problem Formulation
Preliminary on Hypergraphs. The low/high-order inter-
actions in social networks can be modeled using a hyper-
graph G = (V,E,Ω), where V = {v1, v2, ..., vn} represents
the set of nodes; E = {e1, e2, ..., em} denotes the set of hy-
peredges, with each hyperedge ei = {vi1, vi2, ..., vij}, where
i ∈ {1, 2, ...,m} and j ∈ {1, 2, ..., n}; and Ω ∈ Rm×m is a
diagonal matrix, each element of which represents the weight
of the corresponding hyperedge. Based on the relationship
between node v and hyperedge e, the hypergraph can be rep-
resented by an incidence matrix H ∈ Rn×m, i.e.,

Hve =

{
1, v ∈ e
0, otherwise. (1)

Consequently, the degree of node v in the hypergraph can
be defined as Dvv =

∑m
e=1 ΩeeHve, and the degree of hyper-

edge e can be defined as Dee =
∑n

v=1 Hve, where the diag-
onal matrices DV ∈ Rn×n and DE ∈ Rm×m respectively
represent the degree matrices for nodes and hyperedges.
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Figure 2: Framework of HyperDet. (a) The snapshot acquisition process. (b) The Interactive Relationship Construction (IRC) module, which
constructs node relationships through static topology and dynamic interactions, and initially builds raw node features. (c) The Feature-rich
Attention Fusion (FAF) module, which first learns node representations via autoencoding and then differentiates nodes using a self-attention
mechanism to enhance model learning capabilities. (d) Model output, where nodes are classified based on predicted probabilities to identify
the source set ŝ.

Propagation Process on Hypergraphs. The information
propagation on hypergraphs unfolds over the evolutionary
time t, where at t = 0, the set of source nodes s in the net-
work transitions from the ignorant (susceptible) state to the
spreader (infected) state. As time progresses, each spreader
vi disseminates information to its neighbors with a probabil-
ity pi. Unlike the propagation processes on bipartite graphs,
the propagation on hypergraphs not only involves pairwise
interactions but also includes peer influence/pressure within
groups represented by hyperedges. Consequently, an ignorant
node transitions to the spreader state with an additional prob-
ability p△, as depicted in Fig. 1. Several classical models,
such as the IC, SI, SIR, and SIS models [Battiston et al., 2020;
de Arruda et al., 2020], have been proposed to characterize
the propagation process on hypergraphs.

In summary, the propagation process on hypergraphs can
be represented by the time series {G′(t), t ≥ 0}, where G′(t)
denotes the network snapshot at time t, with nodes being cate-
gorized into two types based on the states, i.e., G+ (spreader)
and G− (ignorant).
Source Detection in Hypergraphs. As the propagation
proceeds, when δ% of the nodes in the network reach the
spreader state, a network snapshot G′ is captured, which in-
cludes the network’s topological structure T , the states of the
nodes N , and the propagation information P . Consequently,
source detection in a hypergraph can be formalized as:

ŝ = f(G′(T,N, P )), (2)
where f(·) represents the corresponding source detection
method, and ŝ denotes the detected source set.
Discussion. For source detection in hypergraphs, the net-
work snapshot G′ not only encapsulates static low/high-order
topological structures but also contains dynamic user inter-
action information, underscoring the necessity to accurately

model the relationships between nodes. Furthermore, the
node features are manually engineered with low dimension-
ality and the attributes of nodes are diverse; thus, enabling
the model to automatically learn, enrich these node features,
and differentiate between nodes becomes crucial for enhanc-
ing model performance.

4 Method
In this section, we introduce the proposed HyperDet, which
primarily consists of two modules: the Interactive Relation-
ship Construction module (IRC) and the Feature-rich Atten-
tion Fusion module (FAF), as illustrated in Fig. 2.

4.1 Interactive Relationship Construction (IRC)
The IRC module comprises two submodules, i.e., Node Re-
lationship Construction and Node Feature Construction.
Node Relationship Construction. The hypergraph snap-
shot G′ incorporates not only the static topological structure
but also the dynamic interaction information among nodes,
we model these two aspects using hyperedges. For the static
topological structure, it is represented by the incidence ma-
trix H, where each hyperedge e encompasses nodes that can
interact with each other. Regarding the dynamic interaction
information, nodes in G′ that are in ignorant and spreader
states are encompassed within specific hyperedges, denoted
as eig = {vi|vi ∈ G−} and esp = {vj |vj ∈ G+}, respectively,
which can further be transformed into the incidence matrices
Hig ∈ {0, 1}n×1 and Hsp ∈ {0, 1}n×1. Therefore, the over-
all incidence matrix can be concatenated as:

H′ ∈ {0, 1}n×(m+2) = H ∥ Hig ∥ Hsp. (3)
Node Feature Construction. Various types of information,
including node states, propagation data, and node positions,
are embedded as node features.
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The hypergraph snapshot G′(t) captures the state of node
vi at time t within the network: spreader (vi ∈ G+), indicat-
ing that vi is influenced by and propagating the rumor, and
ignorant (vi ∈ G−), meaning vi has not received the rumor
or deems the information unreliable. Consequently, the state
feature X1

i can be represented as:

X1
i =

{
+1, vi ∈ G+

−1, otherwise. (4)

Social platforms such as Facebook and Twitter record
timestamps when users forward information, which are crit-
ical for understanding the propagation dynamics. Therefore,
for node vi, we incorporate the information timestamp as its
propagation features:

X2
i =

{
ti, vi ∈ G+

−1, otherwise. (5)

In spatial domain convolution, unlike the message passing
aggregated from local neighbors, the positional relationships
between nodes play a crucial role in facilitating global mes-
sage propagation. Additionally, encoding the different posi-
tions of infected nodes assists the model in learning the lo-
cational characteristics of the source. Given the generative
nature of Laplacian positional encoding, we decompose the
Laplacian matrix of the infected subgraph for encoding the
positional features of nodes.

We first extract the infected subgraph G′
+ from G′, and its

symmetric normalized Laplacian matrix is computed as:

Lsym
+ = I − D− 1

2

V+H+D−1
E+HT

+D− 1
2

V+, (6)

where H+ is the incidence matrix of G′
+, DV+ and DE+ re-

spectively represent the corresponding degree matrices of the
nodes and edges. Subsequently, the matrix Lsym

+ is subjected
to factorization:

△Lsym
+

= ΨΛΨT , (7)

here, Λ is a diagonal matrix whose elements are eigenvalues,
while matrix Ψ consists of the corresponding eigenvectors.
Given that the first component of the eigenvectors weakly
differentiates between node structure and organizational in-
formation, we select k smallest non-trivial eigenvectors start-
ing from the second component as Ψi for node vi’s positional
encoding (k ≪ n). Therefore, the positional feature of node
vi is represented as:

X3
i =

{
Ψi, vi ∈ G′

+
−1, otherwise. (8)

In conclusion, the raw feature vector of node vi can be
synthesized by concatenating several component features to
achieve a comprehensive representation:

Xi =
[
∥3x=1Xx

i

]
. (9)

4.2 Feature-rich Attention Fusion (FAF)
The FAF module first automates the learning and enrichment
of raw node features, and then differentiates between nodes
using a self-attention mechanism.

Feature Augmentation via Autoencoding. In contempo-
rary graph-based learning paradigms, the manually engi-
neered raw node features may not adequately support model
learning and stability due to their simplistic representation
and limited discriminative power. To address this, we design
an autoencoder with encoder-decoder architecture. Specifi-
cally, the feature vector X undergoes transformation by the
encoder En(·), resulting in an embedding Γ, which is subse-
quently reconstructed back into X̂ by the decoder De(·). This
process is encapsulated as:

X̂ = De (En (X,H′) ,H′) . (10)

Each layer of this architecture involves successive transfor-
mations through hypergraph convolution and attention mech-
anism HConvatt(·). The process can be formalized as:

X(l+1) = LReLU
(
HConvatt

(
X(l),Θ(l),H′,Ω

))
, (11)

where X(l) ∈ Rlw×n represents the features of nodes at layer l
and X(0) = X, Θ(l) ∈ Rlw×m denotes the hyperedge attributes
at the lth layer, lw is the dimensionality of both node features
and hyperedge attributes. H′ and Ω are the incidence ma-
trix and hyperedge weights matrix, respectively. LReLU(·)
serves as the activation function. The attention coefficients
α are computed based on the relative importance of nodes in
relation to their associated hyperedges:

αij =
exp

(
a⃗T LReLU (W [Xi∥θj ])

)∑
ek∈N (vi)

exp (⃗aT LReLU (W [Xi∥θk]))
, (12)

where a⃗ ∈ R2l′w represents a learnable parameter of the at-
tention mechanism, W ∈ Rl′w×lw is the weight matrix, and
N (vi) denotes the set of hyperedges that include node vi
within the hypergraph. Xi and θj represent the features of
node vi and the attributes of hyperedge ej , respectively.

Building on the aforementioned architectures, each layer of
hypergraph attention convolution is delineated into two dis-
tinct operations, i.e.,

(1) Node-to-Hyperedge Convolution In this process, each
node transmits its features to the connected hyperedges:

θ′e =
∑

v∈N (e)

αveWXv, (13)

where N (e) represents the set of nodes being connected to
the hyperedge e.

(2) Hyperedge-to-Node Convolution Conversely, in the
hyperedge-to-node convolution, the features of hyperedges
are aggregated back to the nodes:

X′
v =

∑
e∈N (v)

αevW′θ′e. (14)

To facilitate effective learning, the autoencoder is initially
pre-trained by minimizing the discrepancy between the orig-
inal node features and the reconstructed features, fostering
an accurate representation of the latent space conducive to
downstream tasks. The loss function utilized during this pre-
training phase is defined as:

Lae = ∥X − X̂∥2. (15)
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Differential Attention Fusion. The latent node represen-
tations Γ learned by the autoencoder often require nuanced
processing due to the diversity of nodes. To address this, we
employ hypergraph attention convolution to allocate distinct
attention coefficients to different nodes. The transformation
for Γ is formalized by:

Γ′ = LReLU (HConvatt (Γ,Θ,H′,Ω)) , (16)

where H′ is the incidence matrix constructed in Eq. (3) within
the IRC module.

Furthermore, to enhance the discriminative power of our
model, a multi-head attention mechanism is employed. This
approach involves the fusion of K independent attention
computations to refine the node representations, which are
then concatenated to serve as the input for the subsequent
layer. The process is formalized as:

Γ′′ = ∥Kk=1 LReLU
(
HConvatt

(
Γ′k)) . (17)

In the final layer of attention module, to align dimensions
and synthesize the information across different heads, the rep-
resentations from K attention heads are averaged:

Γ′′′ =
1

K

K∑
k=1

Γ′′k. (18)

This operation ensures the final node representation encap-
sulates a comprehensive view, mitigating the bias that might
arise from a single convolution channel. Ultimately, these
node representations are projected into a 2-dimensional space
and transformed via a softmax function to calculate the prob-
abilities of each node belonging to the source/non-source set:

P (vx) =
ezi∑
j e

zj
, z⃗ = Γ′′′

x . (19)

This sophisticated architecture leverages both the detailed
local interactions and the global structure of the hypergraphs,
thereby ensuring that our model effectively discerns the nu-
anced roles of nodes in information propagation.

4.3 Loss Function and Training
To address the significant disparity in sample sizes between
the source node set and the non-source set, thereby mitigating
prediction bias, we design a balancing coefficient:

ρ =
|s|

n− |s|
, (20)

where n and |s| represent the number of nodes and sources,
respectively. This approach ensures that the contribution of
each node is weighted equally. Integrating this class balance
mechanism, we configure the loss function for the attention
fusion module as:

Laf =
∑
vi∈s

Li + ρ
∑

vj∈(V−s)

Lj , (21)

here, L denotes the cross-entropy loss, for sample x and its
label y, L(x, y) = −y log(ŷ), ŷ is the predicted probability.

During the training process, we fine-tune the autoencoder,
and the overall loss function is formulated as:

LHyperDet = Lae + Laf + λ∥w∥2, (22)

where λ is the regularization parameter, and ∥ · ∥2 represents
the L2-norm, adding a penalty for model complexity to pre-
vent overfitting.

For the proposed HyperDet system, the IRC module estab-
lishes node relationships and features. Subsequently, the FAF
module undertakes the automatic learning and enrichment of
node features, followed by the application of multi-head at-
tention to differentiate nodes based on their significance and
roles within the network. This structured approach ensures
effective identification of source nodes within diverse and in-
tricate network structures.

5 Experiments
5.1 Experimental Settings
Implementation. Due to the independent attributes of users
in social networks, the short-term nature and the group effects
of rumor propagation, we employ a heterogeneous indepen-
dent cascade model on hypergraphs to simulate the spread of
rumors. Initially, 5% of the nodes are selected as sources,
with each node’s propagation probability p following a uni-
form distribution U(0, 0.5). The group propagation probabil-
ity p△ is proportional to the ratio of infected nodes within a
hyperedge, represented as p△ = 0.3(|e ∩ G+|/|e|). A net-
work snapshot is captured when 30% of the nodes become
spreaders, and the final ratio of the training set to the test set
is 8:2. For the learning process, the autoencoder and the Hy-
perDet system are set with learning rates of 0.01 and 0.005,
respectively, with the latent node feature dimensions at 64.
For small networks (G1-G4), there are three attention heads
and 500 hidden neurons; medium networks (G5-G7) use two
heads and 500 neurons; and the large network (G8) has one
head and 400 neurons due to space constraints. The hyper-
graphs undergo clique expansion before being applied in the
baseline methods. All experiments are conducted on a work-
station equipped with four NVIDIA RTX 3090 GPUs.

Datasets. We evaluate the methods using eight diverse and
widely utilized datasets across various scales and domains,
including Zoo [Asuncion et al., 2007], House [Chodrow et
al., 2021], NTU2012 [Chen et al., 2003], Mushroom [Asun-
cion et al., 2007], ModelNet40 [Wu et al., 2015], 20News
[Asuncion et al., 2007], PubMed [Yadati et al., 2019], and
Walmart [Amburg et al., 2020].

Evaluation Metrics. Accuracy (ACC), F1-Score, and Area
Under the Curve (AUC) are used to assess method perfor-
mance. ACC measures the correct classification rate of sam-
ples. The F1-Score comprises Precision, which quantifies
the ratio of true sources in the predicted set ŝ, calculated as
|ŝ∩ s| / |ŝ|, and Recall, which assesses the proportion of true
sources correctly detected, computed as |ŝ ∩ s| / |s|. AUC
evaluates the model’s capacity to differentiate between source
and non-source classes at all threshold levels. These metrics
provide a comprehensive framework for assessing the effec-
tiveness and reliability of source detection methods.

Baselines. Several representative methods that published
recent years are considered as baselines, including those
based on source centrality such as LPSI [Wang et al., 2017]
and EPA [Ali et al., 2019]; methods that account for user
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Methods Zoo House NTU2012 Mushroom
ACC F-Score AUC ACC F-Score AUC ACC F-Score AUC ACC F-Score AUC

LPSI 0.798 0.348 0.785 0.806 0.341 0.804 0.795 0.316 0.823 0.810 0.332 0.780
EPA 0.793 0.356 0.790 0.812 0.336 0.812 0.806 0.302 0.815 0.816 0.329 0.764
GCNSI 0.819 0.378 0.805 0.826 0.322 0.809 0.814 0.297 0.829 0.809 0.358 0.798
SIGN 0.824 0.457 0.816 0.829 0.417 0.810 0.819 0.408 0.826 0.811 0.436 0.820
GCSSI 0.817 0.418 0.801 0.815 0.397 0.799 0.813 0.384 0.825 0.810 0.395 0.810
ResGCN 0.829 0.497 0.810 0.824 0.459 0.814 0.805 0.439 0.829 0.821 0.447 0.826
IVGD 0.835 0.578 0.809 0.815 0.513 0.829 0.852 0.526 0.841 0.842 0.510 0.858
SL-VAE 0.834 0.598 0.815 0.841 0.528 0.815 0.840 0.517 0.832 0.852 0.526 0.884
GIN-SD 0.856 0.682 0.849 0.853 0.617 0.847 0.866 0.629 0.850 0.861 0.631 0.878
HyperDet (ours) 0.901 0.792 0.892 0.884 0.726 0.875 0.877 0.715 0.869 0.912 0.801 0.923

Methods ModelNet40 20News PubMed Walmart
ACC F-Score AUC ACC F-Score AUC ACC F-Score AUC ACC F-Score AUC

LPSI 0.764 0.235 0.786 0.732 0.255 0.758 0.749 0.181 0.762 0.705 0.125 0.712
EPA 0.785 0.249 0.791 0.756 0.267 0.764 0.762 0.192 0.778 0.710 0.114 0.725
GCNSI 0.810 0.254 0.801 0.795 0.218 0.785 0.805 0.188 0.789 0.806 0.180 0.799
SIGN 0.820 0.429 0.818 0.809 0.359 0.796 0.804 0.229 0.784 0.819 0.236 0.805
GCSSI 0.808 0.378 0.786 0.813 0.357 0.782 0.803 0.189 0.786 0.796 0.195 0.795
ResGCN 0.814 0.482 0.813 0.820 0.426 0.811 0.806 0.235 0.817 0.819 0.224 0.818
IVGD 0.826 0.610 0.823 0.821 0.534 0.827 0.824 0.531 0.819 0.815 0.523 0.824
SL-VAE 0.836 0.579 0.824 0.835 0.561 0.819 0.818 0.530 0.819 0.829 0.514 0.836
GIN-SD 0.826 0.607 0.816 0.839 0.580 0.821 0.834 0.574 0.826 0.829 0.527 0.836
HyperDet (ours) 0.887 0.786 0.885 0.869 0.748 0.882 0.870 0.723 0.871 0.868 0.627 0.859

Table 1: The performance of source detection across all datasets for each method, with the best results highlighted in bold.

states like GCNSI [Dong et al., 2019], SIGN [Li et al., 2021],
GCSSI [Dong et al., 2022] and ResGCN [Shah et al., 2020];
and approaches integrating propagation information such as
IVGD [Wang et al., 2022], SL-VAE [Ling et al., 2022], and
GIN-SD [Cheng et al., 2024b].

5.2 Performance Analyses
Comparison with State-of-the-art Methods. The compar-
ative results are compiled in Table 1. From the outcomes, we
can discern several insights: 1) All methods exhibit relatively
high ACC, while F-Scores are generally lower. This discrep-
ancy primarily arises because ACC accounts for all samples,
including non-sources, thus a greater divergence between
ACC and F-Score indicates a more severe impact of class im-
balance issues on the model, as observed with the LPSI, EPA,
and GCNSI methods. 2) Methods that integrate propagation
information, such as IVGD, SL-VAE, and GIN-SD, demon-
strate superiority over those based solely on source centrality
theory or user states. This advantage is largely due to the in-
herent randomness of the propagation process, which cannot
be effectively countered by merely considering user states.
Overall, in the context of all evaluated methods, the presence
of higher-order interactions means that the propagation pro-
cess is not confined to pairwise interactions, making it chal-
lenging for baseline methods based on pairwise interactions
to capture propagation dynamics effectively. Consequently,
these methods underperform compared to their optimal out-
comes. However, the proposed HyperDet achieves the best
results across all datasets. Specifically, HyperDet improves
performance by 23%-30% over methods that based on source
centrality theory and user states, and by 8%-15% over those
consider propagation information. This improvement is at-
tributable primarily to HyperDet’s strategies: 1) Designing
higher-order interaction relationships among nodes through

both static topology and dynamic interactions. 2) Enriching
node features and discriminatively learning node representa-
tions through autoencoding and multi-head attention mecha-
nisms. 3) Eliminating predictive bias in the model through a
class balancing mechanism.
Visualization. To provide an intuitive representation of
source detection results, we visualize the correctly detected
sources of representative methods on the House network, as
shown in Fig. 3. This visualization facilitates an immediate
understanding of the comparative performance and effective-
ness of each method in a real-world network context.

(b) GIN-SD (c) HyperDet(a) SL-VAE

Ignorant Spreader Source Correctly detected source

Figure 3: Visualization of source detection results on House.
Performance on Early Detection. Early detection of ru-
mor sources is crucial to prevent further escalation of harm.
We analyze the performance of various methods as the scale
of rumor propagation increases from 10% to 30%, in an in-
crement of 5%. The results are summarized in Fig. 4. As
the scale of propagation expands, the accuracy of all methods
gradually declines. This trend is primarily due to the increas-
ing number of infected nodes that need to be differentiated,
underscoring the importance of early intervention in rumor
source detection. Moreover, HyperDet outperforms baseline
methods across all datasets, demonstrating its efficiency.
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Figure 4: The performance in early rumor sources detection.

Impact of Data Incompleteness. The data incomplete
rates are increased from 0 to 0.25 in steps of 0.05, indicat-
ing that a corresponding proportion of nodes lack features.
The results are shown in Fig. 5. As the proportion of in-
complete data increases, there is a noticeable decline in the
performance of all methods. This decrease is primarily due
to the incomplete features of nodes, which hinder the model’s
ability to effectively learn and converge. However, the perfor-
mance of HyperDet decreases the least, which is mainly be-
cause in addition to node states and propagation features, we
also consider structural features, specifically positional en-
codings. This integration diminishes the impact of feature
loss on the model’s performance, demonstrating the robust-
ness and adaptability of the proposed HyperDet.

(b) 20News (c) PubMed(a) House

GCNSI GCSSI ResGCN SL-VAE GIN-SD HyperDet
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Figure 5: Impact of data incompleteness on source detection.

Computational Efficiency. The runtime of HyperDet com-
pared to methods that integrate propagation information is de-
tailed in Table 2. Due to the requirement for additional mod-
ules to learn propagation dynamics, methods such as IVGD
and SL-VAE exhibit longer runtimes. In contrast, Hyper-
Det incorporates propagation information into feature em-
beddings, thereby reducing model complexity. This demon-
strates its enhanced efficiency.

Datasets IVGD SL-VAE HyperDet
NTU2012 179.71 198.53 126.11
Mushroom 264.30 295.05 212.86

Table 2: The runtime (s) comparison across different methods on
NTU2012 and Mushroom datasets.

5.3 Ablation Study and Other Analyses
Effect of Interactive Relationship Construction. We ini-
tially remove the high-order structure from the hypergraph;
results from w/o H indicate a significant performance decline
compared to configurations that retain this structure, as shown
in Table 3. Additionally, by preserving the high-order topol-
ogy while eliminating the dynamic interaction construction,
as in w/o D, we observe an improvement over w/o H, yet per-
formance remains inferior to the full HyperDet model. These

Module Methods ModelNet40 PubMed
ACC F-Score ACC F-Score

IRC w/o H 0.835 0.629 0.840 0.611
w/o D 0.854 0.753 0.847 0.705

FAF

w/o E 0.874 0.771 0.852 0.705
w/o A 0.837 0.739 0.846 0.697
w/ AL 0.825 0.731 0.839 0.689
w/ AS 0.774 0.358 0.781 0.260

- HyperDet 0.887 0.786 0.870 0.723

Table 3: Performance of different HyperDet variants.

findings underscore the importance of both static topologi-
cal structures and dynamic interactions in capturing the high-
order relationships between nodes.
Effect of Feature-rich Attention Fusion. Removing the
autoencoder, as indicted in Table 3, w/o E demonstrates
that manually engineered features with sparse dimensions de-
grade model performance. Regarding attention, we design
three variants: treating nodes and hyperedges uniformly, w/o
A achieves the best results. w/ AL is next, primarily due to
the presence of small-degree yet crucial bridge nodes. w/ AS
performs the worst, mainly because it overly focuses on nodes
with lesser information transmission capabilities. These find-
ings emphasize the importance of automatic learning and en-
richment of features, as well as adaptive attention in enhanc-
ing model efficacy.
Effects of Different Information Diffusion Models. The
performance of HyperDet under various propagation models
is depicted in Table 4. Experimental results affirm that Hy-
perDet consistently exhibits stable performance not only in
the influence-based IC model but also in the infection-based
SI, SIS, and SIR models. Notably, in the SIS and SIR models,
the sources may randomly recover and thus become obscured,
leading to a decline in performance. These findings substanti-
ate the versatility and broad applicability of HyperDet across
diverse modeling scenarios.

Models House NTU2012
ACC F-Score AUC ACC F-Score AUC

SI 0.878 0.728 0.881 0.879 0.711 0.873
SIS 0.863 0.692 0.851 0.859 0.685 0.862
SIR 0.854 0.687 0.850 0.862 0.680 0.865
IC 0.884 0.726 0.875 0.877 0.715 0.869

Table 4: The performance of HyperDet under different information
propagation models.

6 Conclusion
This paper explores the phenomenon of group interactions
within social networks and introduces a novel source de-
tection approach, HyperDet, applied to hypergraphs to ad-
dress this challenge. The key idea lies in integrating static
topology with dynamic interactions to construct node rela-
tionships, followed by enhancing model learning capabili-
ties through feature enrichment and adaptive attention mech-
anisms. Extensive comparative and ablation experiments on
hypergraphs demonstrate HyperDet’s efficacy and robustness
against state-of-the-art methods. We hope this work can in-
spire source detection researchers and advances the develop-
ment of effective modeling in this field.
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