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Abstract

We study the complexity of candidate control in
participatory budgeting elections. The goal of
constructive candidate control is to ensure that a
given candidate wins by either adding or delet-
ing candidates from the election (in the destruc-
tive setting, the goal is to prevent a given candidate
from winning). We show that such control prob-
lems are NP-hard to solve for many participatory
budgeting voting rules, including PHRAGMEN and
EQUAL-SHARES, but there are natural cases with
polynomial-time algorithms. We also argue that
control by deleting candidates is a useful tool for
assessing the performance (or, strength) of initially
losing projects, and we support this view with ex-
periments on real-life PB instances.

1 Introduction

Participatory budgeting is a recent democratic innovation
where cities allow their inhabitants to decide about a certain
fraction of their budgets [Cabannes, 2004; Goel et al., 2019;
Rey and Maly, 2023]. Specifically, some of the commu-
nity members propose possible projects to be implemented
and, then, all the citizens get a chance to vote as to which
of them should be funded. Most commonly, such elections
use approval ballots, where people indicate which projects
they would like to see implemented, and the GREEDYAV
rule, which selects the most approved projects (subject to
not exceeding the budget). However, there also are more ad-
vanced rules, such as PHRAGMEN [Brill et al., 2024; Los et
al., 2022] or EQUAL-SHARES [Peters and Skowron, 2020;
Peters et al., 2021], which produce arguably more fair—
or, to be precise, more proportional—decisions [Faliszewski
et al., 2023]. Yet, with more advanced rules come issues
about understanding the results. Indeed, recently Boehmer
et al. [2024] have argued that proposers whose projects were
rejected may find it quite difficult to understand the reasons
for these outcomes. To alleviate this problem, they intro-
duced a number of performance measures—mostly based on
the bribery family of problems [Faliszewski er al., 2009;
Faliszewski and Rothe, 2016]—that attempt to answer the
following question: As a proposer of a project that was
not funded, what could I have done differently to have it

funded? For example, they ask if the project would have
been funded if its cost were lower (see also the work of
Baumeister et al. [2021]), or if its proposer convinced more
people to vote for it, or if the proposer motivated some vot-
ers to only approve his or her project. Similar bribery-
style problems were also used to evaluate the robustness
of election results [Shiryaev er al., 2013; Bredereck et al.,
2021; Boehmer et al., 2021; Baumeister and Hogrebe, 2023;
Boehmer et al., 2023], or the margin of victory for the win-
ners [Magrino et al., 2011; Xia, 2012].

In this paper, we follow-up on these ideas, but using candi-
date control. The main difference is that instead of focusing
on circumstances that depend on a project’s proposer (indeed,
the project’s cost is his or her choice, and it is his or her choice
what support campaign he or she runs), we focus on external
ones, independent of his or her actions (such as some other
projects being submitted or not!). We believe that looking at
both types of reasons for a project’s rejection gives a more
complete view of its performance.

Candidate Control. The idea of the control-in-elections
family of problems is that we are given a description of an
election, a designated candidate, and we ask if it is possible
to ensure that this candidate is a winner (in constructive con-
trol) or ceases to be a winner (in destructive control) by mod-
ifying the structure of the election [Bartholdi III ef al., 1992;
Faliszewski and Rothe, 2016]. Specifically, researchers con-
sider control by adding or deleting either candidates or vot-
ers (some papers—including the one that introduced elec-
tion control [Bartholdi III et al., 1992]—also consider vari-
ous forms of arranging run-off elections as a type of control).
So far, election control was mostly studied theoretically, with
a focus on the complexity analysis [Bartholdi I1I ef al., 1992;
Hemaspaandra et al., 2007; Meir et al., 2008; Liu et al., 2009;
Erdélyi et al., 2015a; Yang, 2019], but some empirical results
exist as well [Erdélyi et al., 2015b]. We study candidate con-
trol in participatory budgeting, that is, we ask if it is possible
to ensure funding of a given project (or, preclude its funding)
by either adding new projects—from some a’priori known set

"We disregard the possibility that a proposer might try to discour-
age other people from proposing projects, albeit we acknowledge
that this may happen, and this might even be quite benign: A group
of activists focused on making their city more green may discuss
among themselves which projects to submit and which to withhold.
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unit unary binary
Del Add Del Add Del Add
GREEDYAV pt pt pi pt NP-c NP-c
GREEDYCOST pt pt pi pt NP-c NP-c
PHRAGMEN NP-c NP-c NP-c NP-c NP-c NP-c
EQUAL-SHARES NP-c NP-c NP-c NP-c NP-c NP-c

Table 1: A basic overview of our complexity results. In the first column, we list the rules we are interested in. All the remaining columns
contain the complexity classification of our problem in one of the three variants: by unit, we mean that all input projects are of the same
price, unary stands for cases where the costs are of size polynomial in n + m, and binary applies for the variant where costs need to
be encoded in binary (and hence can be exponential in n and m). By Del (Add, respectively), we mean that the control operation is project
deletion (addition). The complexity classification is the same for both constructive and destructive objectives. Results marked with I hold
even in the weighted version of the control where projects’ weights are encoded in binary.

of projects—or by deleting them. Our results are theoretical
and focus on the complexity of our problems, but we motivate
them by project performance analysis and we also show some
experimental results that provide examples of such analysis.
As our performance analysis is based on control by deleting
projects, we pay most attention to results regarding this vari-
ant of control, and we include the addition case for the sake of
completeness and to be in sync with the preceding literature.

Performance Analysis. Let us now discuss how one could
use control by deleting candidates to analyze the performance
of projects in participatory budgeting (we will use the terms
projects and candidates interchangeably, e.g., using “candi-
dates” in the names of control problems). Consider a par-
ticipatory budgeting election and some not-funded project p.
One basic measure of its performance is the smallest number
of other projects that have to be removed from the election
for p to be funded. The lower this number, the closer was
the project to winning: Indeed, perhaps some proposers only
managed to submit their projects in the last minute and it was
possible that they would have missed the deadline, or some
projects were close to being removed from the election due
to formal reasons, but the city officials were not strict in this
regard. However, it is more likely that such issues would af-
fect cheaper projects than the more expensive ones—which,
likely, had more careful proposers—so instead of asking for
a smallest set of projects to delete, we may ask for a set with
the lowest total cost.

Another way of using control by deleting projects to assess
a project’s performance is to use a probabilistic approach,
along the lines of the one taken by Boehmer et al. [2021],
Boehmer et al. [2023], and Baumeister and Hogrebe [2023]
for bribery: We ask for the probability that project p is
funded, assuming that a random subset of projects (of a given
cardinality) is removed. The higher it is, and the lower the
number of removed projects, the closer p is to winning.

A different interpretation of the above measures is that
instead of thinking that some projects “barely made it” to
participate in the election, we learn how many projects per-
formed better than p. The more projects we need to delete
to have p funded (or, to have p funded with sufficiently

high probability) the more projects can be seen as critically
stronger than p.

Finally, we can use candidate control as a way of assessing
rivalry between projects. For example, if project p has a much
higher probability of being funded after deleting a random set
of projects under the condition that some other project ¢ was
included in this set, then we can view ¢ as a strong rival of p.

Our Contributions. We provide theoretical and experi-
mental results. First, we regard the complexity of candidate
control for four well-known voting rules, depending on how
the costs of the projects are encoded (either in binary, or in
unary, or as unit costs, which means that each project costs
the same amount). We show the overview of our results in
Table 1. We mention that all our NP-hardness results also
imply #P-hardness for respective problems where we ask for
a number of solutions (e.g., number of ways in which we can
ensure a victory of a given project by deleting a given number
of others). This is interesting because solving such problems
is necessary for estimating the probability that a project wins
if a given randomly-selected set of projects is deleted. On the
experimental side, we provide an analysis of real-world par-
ticipatory budgeting instances, showing what one can learn
about them via candidate control. To this end, we provide
several performance measures and prove their usefulness in
an extensive analysis of instances from PabuLib [Faliszewski
et al., 2023]. The full version of the paper and the code for
our experiments are available at https://github.com/Project-
PRAGMA/PB-control-IJICAI-2025.

2 Preliminaries

An instance of participatory budgeting (PB) is a triple E =
(P,V,B), where P = {p1,...,pm} is a set of projects, V =
{v1,...,v,} is a set of voters, and B € N is an available
budget. Each voter v € V is associated with an approval set
A(v) C P, which is the set of projects they approve. For each
project p € P, we know cost(p) € N, cost(p) < B, i.e., the
price for which this project can be implemented. We extend
this notation from a single project p to a set of projects S C P
and set cost(S) = 3 g cost(p). We say that S C P is aset

of B-feasible projects if cost(S) < B.
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A PB rule is a function f: £ — 2P that, for a given PB
instance, outputs a B-feasible subset of projects. Note that we
assume the rules to be resolute, which can be easily ensured
by incorporating some tie-breaking order into them. Let W =
f(E) for some rule f and some PB instance E. We say that
projects from W are selected or, equivalently, funded. The
projects not in W are called losing.

In this work, we consider four different participatory bud-
geting rules. Each of these rules starts with an empty set
W and sequentially, in rounds, extends W with additional
projects unless the budget B is exhausted or all the projects
were processed. More formally, given a PB instance £ =
(P, V, B), the rules of our interest works as follows:

GREEDYAV. We define the score of a project p € P as
the number of voters approving p; formally scoreay (p) =
{v € V | p € A(v)}|. The GREEDYAV rule then pro-
cesses the projects in non-increasing order according to
their scores (with ties resolved according to a given tie-
breaking order). If the rule can afford the currently pro-
cessed project p, i.e., cost(W) + cost(p) < B, then it
includes p in W. Otherwise, the rule continues with the
next project. The rule terminates when all projects were
processed.

GREEDYCOST. This rule is very similar to the GREEDYAV
rule. The only difference is in the order in which the
projects are processed. Specifically, the score of a project
p € P under GREEDYCOST rule is scoreay/c(p) =
scoreay (p)/ cost(p). The process is then identical as in
the GREEDYAV rule.

PHRAGMEN. This rule is conceptually different from the
two above. Here, each voter starts with an empty virtual
bank account, which is, in a continuous manner, increased
by one unit of money per unit of time. Once there is a
project p € P\ W such that the sum of balances of voters
approving p is exactly cost(p), the current round ends, and
the rule performs several steps. First, it includes project p
into the set of funded projects. Next, it sets the balance of
all voters approving p to zero. Finally, the rule removes all
projects p’ € P\ W such that cost(WW) + cost(p’) > B.
Then, the rule continues with the next round. The rule ter-
minates when there is no remaining project in P.

EQUAL-SHARES. Our last rule is also based on the idea
of virtual bank accounts. However, this time, the budget
is proportionally spread between the voters, meaning that
each voter starts with the initial balance of B/n, and this
initial value is never increased. Again, the rule works in
rounds. In each round, the rule funds a project such that
its supporters have enough cumulative budget to fund this
project, and each of them covers as small a fraction of its
cost as possible. Formally, let b; be the current balance of
a voter v;. We say that a project p € P\ W is g-affordable,
where ¢ € [0, 1], if

Zv,;e\/: (o) min (b;, q - cost(p)) = cost(p).

In each round, the rule funds a project that is g-affordable
for the smallest ¢ over all projects and adjusts the balances
of voters supporting p: Specifically, the balance b; of each

agent is decreased by ¢; - cost(p), where ¢; = ¢ if b; >
q - cost(p) and b;/ cost(p) otherwise. The rule terminates
when no affordable project exists.

It is known that the EQUAL-SHARES rule is not exhaus-
tive [Peters et al., 2021]. In our experiments, we use the
Add1 completion: If the EQUAL-SHARES outcome is not ex-
haustive, we increase each voter’s budget by 1 and rerun the
rule. We do so until we get an exhaustive outcome or find an
outcome that exceeds the original budget (and take the non-
exhaustive solution from the previous iteration in this case).

Control Problems. We focus on the control by adding
or deleting projects and follow the standard notation from
single- and multi-winner voting [Faliszewski and Rothe,
2016]. Let f be a PB rule. In the f-CONSTRUCTIVE CON-
TROL BY DELETING CANDIDATES (f-CCDC, for short),
we are given an instance £ = (P,V,B) of PB, an inte-
ger 7, and a project p ¢ f(FE), and our goal is to decide
whether it is possible to delete a set D of at most 7 such that
p € f((P\ D,V,B)). In the f-DESTRUCTIVE CONTROL
BY DELETING CANDIDATES (f-DCDC), the project p is ini-
tially funded, and the goal is to decide whether we can delete
at most r projects so that project p becomes a loser.

In control by adding projects, there are two disjoint sets
of projects: P is a set of standard projects, and () is a set
of spoiler projects. The rule does not initially consider the
spoiler projects. The question here is whether we can find
at most r spoiler projects such that once we add them to the
instance, then project p is (in the case of f-CCAC) or is not
(in the case of f-DCAC) funded by the rule f.

In our algorithmic results, we are sometimes interested in
the weighted variant of the above-defined problems. Under
this consideration, each project p is additionally associated
with its weight w(p), and the goal is to decide whether a set D
of projects securing our goal exists such that }° ., w(p) <
r. We indicate the weighted variant by adding a dollar sign in
front of the operation type. For example, the weighted vari-
ant of f-CCDC is referred to as f-CC$DC. Even though the
weighted variant might seem unnatural at first glance, the mo-
tivation for it is two-fold. First, it is studied in the literature on
control in elections [Faliszewski and Rothe, 2016]. Second,
and more importantly, if we set the weight of each project
equal to its cost, we can use a hypothetical algorithm for the
weighted variant to find a set of the lowest total costs that
secures our goal, one of the proposed performance measures.

3 Complexity Results

Due to space restrictions, we focus on the complexity pic-
ture of both constructive and destructive control by deleting
projects. This operation is arguably more natural for real-
life instances and is also assumed in our experimental results.
Before we present our results, let us illustrate the concept of
control by deleting projects using a toy example.

Example 1. Assume an instance with three projects cy, cs,
and p. Project cy is approved by three voters, project cy by
two voters, and project p by a single voter. The costs of the
projects are cost(cy) = 1, cost(ca) = 2, and cost(p) = 1.
The total budget is B = 2. Under the GREEDYAV rule,
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project c1 is considered first, and since its cost is smaller than
the budget, this project gets funded. Next, the rule consid-
ers project co, but this project costs more than the remaining
budget. Lastly, project p is considered and eventually also
funded. If we remove project c1, then project co gets funded
and exhausts the budget, and therefore, project p cannot be
funded. Hence, removing ci from the instance is a successful
destructive control that prevents p from winning and a suc-
cessful constructive control that makes co winning.

We start with the GREEDYAV rule. In our first result, we
show that both constructive and destructive control are com-
putationally intractable, even if the instance is unweighted.
Maybe surprisingly, this hardness result holds even if the in-
stance contains only two agents. We give a reduction from
the classic NP-complete [Gonzalez, 1985] problem RX3C,
in which we are given a universe U = {uy,...,usny} and
a family S of 3N size-3 subsets S1,...,S55 C U such that
every element u; € U appears in exactly 3 subsets of S, and
we ask if there are IV subsets in S whose union is U.

Theorem 1. Both GREEDYAV-CCDC and GREEDYAV-
DCDC are NP-complete, even if |V| = 2.

Proof Sketch. The idea of the proof is that the projects are
in 1-to-1 correspondence with the sets, and using project
costs, we encode which elements are covered by each set.
We achieve this by having project costs as a 3NV digit-length
number in base 4. A project p; corresponding to a subset
S = {uwiy, wiy, uiy } € S, 11 < i2 < i3, then has cost of the
form

000---00100---00100---00100---00,
3N i3 i i1 21

where the i-th digit of this cost has value one if and only
if the element u; belongs to .S;. All other digits are always
zero. Next, we set the budget and the cost of our distinguished
project p so that it gets funded only if the deleted projects
correspond to subsets that form an exact cover in Z.
Formally, given an instance Z = (U, S), we construct an
instance J of GREEDYAV-CCDC as follows. For each set
S; €8, 8; = {ui,,us,, ui, }, we create a set-project p; with
cost 1-4% 4+ 1-4% 4 1-4%_ Next, we add our distinguished

project p and N + 1 guard-projects g1, ...,gn+1. The cost

of the distinguished project p is Z?ivl 1 - 4% and for every

i € [N +1], we set cost(g;) = cost(p) + 1. That is, the guard
projects are only one unit more expensive compared to our
distinguished project. This ensures that the budget left after
we delete some set-projects is exactly the cost of p.

The set of voters consists of just two voters, v; and vy. The
first voter, v, approves all projects except for p. The second
voter, va, approves only the set-projects. Such a preference
profile secures that, regardless of the tie-breaking order, the
method first processes all set-projects, then all guard-projects,
and only as the last possibility, the method processes the dis-
tinguished project p.

To complete the construction, we set B = Zfivl 3-4% and
r = N. Observe that the number of guard-projects is one
greater than the number of projects we are allowed to delete;
hence, no solution may delete all guard-projects. The budget

is selected so that if we do not delete any project, all the set-
projects are funded, and the budget is exhausted after the last
set-project is taken into consideration by the rule. On the
other hand, if we remove NV projects corresponding to subsets
forming an exact cover in Z, the remaining budget after the
rule processes all the set-projects will be exactly the cost of p.

First, let us show that p is indeed initially not funded. The
scoreay of every set-project p;, j € [3N], is exactly two,
the scoreay of the guard-projects is exactly one, while the
scoreay of our distinguished project p is zero. Therefore, all
other projects are processed before project p. Moreover, their

total cost is Z?ivl 3 - 4% due to the definition of the costs and
the fact that every element u; appears in exactly three subsets.
Therefore, when the distinguished project p is processed by

the rule, the budgetis B— Y2, 3.4 = Y3 3.41 373N 3.
4% = 0. Hence, project p is clearly not affordable.

For left-to-right implication, let Z be a YES-instance and
let C C S be an exact cover of U. We delete every set-
project p; such that S; € C, and we claim that p is now
founded, that is, the control is successful. Since C' is an ex-
act cover, we spend exactly Z?ivl 2 - 4% on the set-projects.
Consequently, after the last set-project is processed by the

rule, the remaining budget is B — Zfivl 2.4 = Zfivl 34—
SN 2.47 = SN (3-2).47 = S2°N 1.47, This is one unit
of money less than the cost of any guard-project. Therefore,
no guard-project is funded, and once the rule processes p, the
remaining budget is still Zfivl 1 - 4° which is the cost of p,
so p is funded. Consequently, 7 is also a YES-instance. [J

The hardness construction from Theorem 1 requires prices
of exponential size. That is, our problems are, from the
computational complexity perspective, weakly NP-hard. It
is natural to ask whether Theorem 1 can be strengthened to
polynomial-size prices or if a pseudopolynomial time algo-
rithm exists for the problem. In the following result, we an-
swer this question positively by giving an algorithm based
on dynamic programming, which works even in the case of
weighted control.

Theorem 2. If the costs of the projects are encoded in unary,
both GREEDYAV-CC$DC and GREEDYAV-DCS$DC can be
solved in polynomial time, even if the projects’ weights are
encoded in binary.

Proof Sketch. Our algorithm is based on the dynamic pro-
gramming approach. We present an algorithm for construc-
tive control; for destructive control, only a minor tweak is
required when we are checking the table for the existence of
a solution.

We suppose that py, ..., pm,m—1,p is the order in which the
rule processes the projects in the original instance; that is,
p1 is processed first and py is processed just before the dis-
tinguished project p. Note that the assumption that p is pro-
cessed last is not in contradiction with the fact that our algo-
rithm works for any tie-breaking order, as we can remove all
projects that the GREEDYAV rule processes after the distin-
guished project p. Moreover, we can remove all projects with
cost(p;) > B, as such projects cannot be afforded.
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The central part of the algorithm is to compute a dynamic
programming table DP[j, 5], where j € [m—1]is an index of
the last processed project, and [ € [B] is a desired remaining
budget just before the rule processes a project p;41. We call
the pair (j, 8) a signature. For every signature, the dynamic
programming table stores the weight of a minimum-weight
partial solution D;j g3 C {p1, ..., p;} such that if the projects
from D; g are removed, the remaining budget just before the
GREEDYAV rule processed project p;j41 is exactly 5. If no
such partial solution exists, we store some large value oo (in
fact, it is enough to store a value greater than 7).

The computation is then defined as follows. The basic step
is when 57 = 1. Here, we just decide whether p; needs to
be deleted or not, based on the required remaining budget 5.
Formally, we set the dynamic programming table as follows:

0 if 8 = B — cost(p1),
DP[1,5] = w(py) if 8= B, and
%) otherwise.

For every j € [2, m — 1], the computation of the algorithm
is defined as follows.

min{DP[j — 1, 8] + w(p;),
DP[j — 1, 8 + cost(p;)]}
if DP[j — 1, 5] + w(p;) < r and
B + cost(p;) < B,
DP[j, 8] =
DP[j —1,5]  if B+ cost(p;) > B,
DP[j — 1, 8 + cost(p;)]
if DP[j — 1, 8] + w(p;) > r.

The first case corresponds to a situation where we need to
decide whether to include p; in a solution or not. In the sec-
ond case, we cannot fund p; anyway, so we need not delete
it, and we are only interested in whether the same budget can
be achieved just before p; is processed. In the last case, we
cannot delete p;, as it would exceed the budget.

Once all the cells of the dynamic programming table DP
are correctly computed, we can decide the instances. Specif-
ically, we return YES whenever there exists a cell DP[m —
1, ], where 8 > cost(p), such that DP[m — 1, 8] < r. The
dynamic programming table has O(m - B) cells, and each
cell can be computed in time O(log(r)). The final check can
be done in O(B) time; therefore, the overall running time of
the algorithm is O((m - B) - log(r) + B), which, assuming
the unary-encoded budget, is clearly a polynomial-time algo-
rithm, even if the projects’ weights are encoded in binary. [

Theorem 2 implies that for real-life elections, performance
measures based on project control can be computed effi-
ciently.

The hardness construction provided in Theorem 1 and the
algorithm from Theorem 2 also work for the GREEDYCOST
rule. For the former result, one can observe that even un-
der the GREEDYCOST rule, the property that the set-projects
are processed before the guard-projects, and that the guard-
projects are processed before the distinguished project p is

preserved. This comes from the fact that set-projects are ap-
proved by exactly two voters, guard-projects by exactly one
voter, and p by no voter. Moreover, no set-project is more ex-
pensive than any guard-project. The algorithms require that
the relative ordering of the projects is not affected by dele-
tions. This is also clearly preserved under GREEDYCOST.

Corollary 1. Both GREEDYCOST-CCDC and GREEDY-
CosT-DCDC are NP-complete, even if |V| = 2. If the
projects’ costs are encoded in unary, even the weighted con-
trol can be solved in polynomial time.

Now, we turn our attention to the PHRAGMEN rule. Here,
the situation is significantly less positive. Specifically, in the
following theorem, we show that for this rule, it is NP-hard
to decide whether successful control is possible, even if the
instance is unweighted and all projects are of the same cost.

Theorem 3. Both PHRAGMEN-CCDC and PHRAGMEN-
DCDC are NP-complete, even if the projects are of unit cost.

The idea behind the construction is that we have one
project for every set S; € S in RX3C instance and many
direct competitors of the distinguished project p. The set-
projects have significantly higher support than p or its com-
petitors, and, moreover, the competitors of p share their vot-
ers with the set-projects. Hence, all the set-projects are al-
ways funded before the first project of a different type may
be funded. These set-projects exhaust most of the budget,
and unless every voter approving a competitor of p approves
a funded set-project, the remainder of the budget is spent on
the competitor of p, which is, consequently, not funded.

To finalize the complexity picture, we show that for the
EQUAL-SHARES rule, the control by deleting projects is also
highly intractable. To prove this result, we exploit a reduction
of Janeczko and Faliszewski [2023], who showed that it is
NP-hard to decide whether the EQUAL-SHARES rule outputs
the same outcome for every tie-breaking order.

Theorem 4. Both EQUAL-SHARES-CCDC and EQUAL-
SHARES-DCDC are NP-complete, even if the projects are
of unit cost.

For performance measures based on the probability that a
project wins/loses if a randomly selected set of projects is
deleted or added, it is essential to efficiently determine the
number of solutions for an instance. However, it turns out that
all our NP-hardness results, excluding EQUAL-SHARES and
the deletion operation, also imply #P-hardness for respective
problems. Therefore, we do not expect the existence of a
significantly faster algorithm for computing such measures
than a simple enumeration of all possible solutions.

4 Experiments

We analyze the effect of project deletions on real-world data
from Pabulib [Faliszewski et al., 2023] and explore how dif-
ferent performance measures based on this operation can help
with understanding and explanation of outcomes for pro-
posers of losing projects and PB election organizers.

Data. In our experiments, we analyze 543 approval-based
PB instances from Pabulib. We include every instance with
approval ballots available as of October 2024 with at least
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Figure 1: (a) The distribution of projects according to their optimal control size. Each bar represents one rule and is partitioned into five parts
whose sizes correspond to the number of projects that require » € {0, 1,2, 3,4+} deletions to get funded. The part with winning projects
is always the darkest, and the part for projects with » > 4 is the lightest. (b) The ratio between the project’s cost and the sum of costs of
projects in the cheapest possible set of projects that makes a given project winning. The interesting projects are labeled with their name, and
each project p is plotted for every rule f (unless p € f(FE)). Instance: Warsaw, Citywide, 2023. (c) The probability of being funded for each
initially losing project after removing r € {1, 2, 3} projects. The projects are ordered according to their winning probability for » = 1. The
used rule is GREEDYAV, and the depicted instance is Warsaw, Ursynow, 2019.

one losing project. In total, our dataset contains 10531 los-
ing projects for GREEDYAV, 5771 for GREEDYCOST, 6004
for PHRAGMEN, and 7412 for EQUAL-SHARES. The largest
instance consists of 160 projects and 90494 voters.

Experimental Setup. The experiments were run on com-
puters with two AMD EPYC™ 7H12, 64-core, 2.6 GHz
CPUs, and 256 GB DDR4 3200MT/s RAM. We use the same
Python implementation for rules GREEDYAV, GREEDY-
CoST, and PHRAGMEN as in [Boehmer et al., 2024]. For
EQUAL-SHARES, we use our own implementation in C++
that significantly outperforms the available implementations.
For each rule, every instance, and every combination of r €
{1, 2, 3} projects in this instance, we determined the winners
after deleting these r projects. Evaluating the instances with
our rules took us the following number of core-hours: 38000
for PHRAGMEN, 900 for both GREEDYAV and GREEDY-
CosT, and 5000 for our C++ implementation of EQUAL-
SHARES. The overall running time is significantly skewed by
instances with many projects, as we need to try all O(n") sub-
sets (recall that significant speed-up for these rules is not pos-
sible due to Theorems 3 and 4). For computing the optimal
control in the setting with either GREEDYAV or GREEDY-
CosT, we use the DP algorithm from Theorem 2, which fin-
ishes for the whole dataset in less than 1 core-hour.

4.1 How Close is a Project to Being Funded?

In general, PB rules do not provide any information about the
performance of proposed projects—a project is either funded
or not—and there are no direct ways of measuring how close
a project was to being successful. Indeed, this is exactly what
drove Boehmer ef al. [2024] to initiate the study of project
performance measures. Here, we propose several further
measures based on constructive control by deleting projects.
The first, very basic, approach we suggest is to count how
many other projects need to be removed from the instance to
make some initially losing project p funded. In Figure la,
we present an overview of the results for the whole dataset.
For GREEDYAV, more than 47% initially losing projects get
funded after the removal of at most 3 projects; for the re-
maining rules, the value is smaller, but still significant — 37%

for GREEDYCOST, 40% for EQUAL-SHARES, and 43% for
PHRAGMEN, respectively. Another interesting information
we gain from Figure la is that for most of the projects for
which it is enough to remove at most three projects, it is ac-
tually enough to remove only one other project. This is most
evident in the case of GREEDYAV.

Yet, saying that a project is close to winning simply be-
cause it can be funded after deleting some small number of
carefully selected projects is overly simplistic. On the one
hand, it is not too surprising that a project gets selected af-
ter deleting some other, expensive projects. On the other
hand, we expect such expensive projects to be well-prepared
and not to be removed for formal reasons, or due to miss-
ing a deadline. Consequently, instead of taking the num-
ber of projects that we need to delete to get some initially
losing project p funded, we may rather seek the cheapest
set of projects (of a given cardinality) whose deletion gets p
funded. This measure indeed is much more fine-grained than
our first one. To see this, we consider the results for War-
saw, Citywide, 2023 PB election, shown in Figure 1b: There
are certain projects where the removal of expensive projects
is the only way to get them funded (e.g., project 1915), but
there are also projects that get funded after removing rather
cheap projects (see, e.g., project 1592). Note that this be-
havior is not very consistent among different PB rules, which
is caused mostly by their underlying principles: whether the
rule is more proportionality- or social-welfare-oriented (e.g.,
to get project 640 funded, we delete cheaper projects under
GREEDYCOST, but more expensive ones under GREEDYAV).

Both above measures have the downside that they focus
on deleting exactly a particular subset of projects. However,
even if we can get some initially losing project p to be funded
after deleting projects whose cost is X, it is possible that p
would be losing after deleting some other projects, whose
cost is 2X (while this may seem unintuitive, it can happen
due to various possible interactions among the projects and
involved operation of our PB rules). Hence, in the remainder
of this section, we take a more stochastic approach and ana-
lyze the probability that a project gets funded if we remove a
random subset of projects of some predefined size. We start
with an overview of the whole dataset, and later we analyze
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Figure 2: Each point of this plot represents a single instance. On
the z axis, we have the percentage of losing projects with a probabil-
ity of at least 0.25 for getting funded after the removal of 3 random
projects. On the y axis, we have m, i.e., the number of projects.

one specific instance to show what information can be gained
from measures based on the probability of winning.

In Figure 2, we have a data point for every instance and plot
the percentage of initially losing projects that have at least
25% probability of being funded after the removal of three
random projects. First, we see that for all the voting rules,
there are instances where successful control is either unlikely
for large fractions of projects or, on the contrary, where con-
trol is likely to be successful for nearly all projects. This af-
fects more frequently instances of smaller size. Also, there is
a visible difference between GREEDYAV and the remaining
rules: unlike in GREEDYAV, for these rules, the instances are
more ‘clustered’ around certain percentage values, while for
GREEDYAV, the instances are more spread.

Now, we focus on a specific instance. In Figure lc, we
plot for each losing project of the instance Warsaw, Ursynow,
2019 (under GREEDYAV), the probability that this project be-
comes a winner if r projects are removed for different values
of r. From this plot, we can distinguish between projects that
are ‘clear losers’, meaning that their probability of winning is
very close to zero regardless of the size of the removal set, and
projects that are much closer to winning. This demonstrates
how useful such a measure of a project’s strength is.

4.2 Who Are My Biggest Rivals?

The performance measures introduced so far allow us to com-
pare projects from a ‘global perspective’, meaning that we
can see how a losing project performed relative to other los-
ing projects. However, for project proposers, it is very impor-
tant to know why their project was not funded and what can
be done to improve their project’s performance in the future.
One possibility is to identify a given project’s rivals—projects
whose removal significantly increases its chances of victory.
Proposers of losing projects can then analyze such rivals,
learn what they did differently, and improve their projects.
We propose the following measure of rivalry. We set the
r-rivalry between a losing project p and some other project ¢
equal to the probability that p is funded after we remove ¢
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Figure 3: Rivals for initially losing projects. For each losing
project p (plotted on the x-axis) and every other (not necessarily
losing) project g (plotted on the y-axis), we display the probability
(red represents a value close to 0, blue represents a value close to 1)
that p is funded when ¢ and » = 2 other random projects are re-
moved. Instance: Warsaw, Ursynow, 2019.

and r other random projects. In Figure 3, we present the re-
sults for r = 2, instance Warsaw, Ursynow, 2019, and differ-
ent PB rules. It is not surprising that the strongest rivals are
usually the projects that were initially funded. However, this
is not always the case. One such example is project 1490 un-
der the PHRAGMEN rule (Figure 3d), for which the (initially
losing) project 1432 is a much stronger rival than most of
the initially winning projects. It can also be the case that for
some projects, their funding relies solely on the performance
of a few other projects. A very good example of this behavior
is project 1806 under the GREEDYAV rule (Figure 3a): un-
less we remove project 210, there is almost no chance that
project 1806 will ever be funded. This measure also nicely
complements the measures from the previous subsection, as,
based on plots similar to Figure 3, we can visually distinguish
projects that are hopeless losers, which are somewhere in the
middle, and which projects almost got in.

5 Conclusions

In our experiments, we demonstrated the usefulness of project
performance analysis. One can use our measures to compare
different projects and provide election organizers with infor-
mation on which projects were very close to being funded.
In practice, cities often try to discuss popular losing projects
and fund them from an increased or completely separate bud-
get. Moreover, our rivalry measures help project proposers
identify which other projects prevented their success. If such
strong rivals share some similarities, the proposer can learn
from them and improve their project for the next round of PB.

Our work’s most immediate extensions are to study ap-
proximation and parameterized algorithms for the corre-
sponding hard computational problems and to extend our ex-
periments also to winning projects.
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Ethical Statement

Even though our paper’s goal is to improve the explainabil-
ity and transparency of participatory budgeting outcomes,
voting control is traditionally understood as malicious and
highly undesired behavior. As such, one might object that our
work could increase awareness of possible manipulation in
PB elections. We want to stress that manipulations based on
our performance measures are implausible: Our measures can
be computed only after the elections have ended and we have
complete (and anonymized) information about the whole in-
stance. That is, the potential knowledge based on our mea-
sures can be used, if at all, to manipulate the next installation
of PB elections. However, the new instance will most likely
be different since some projects have already been funded,
new projects will be proposed, and, in particular, voters’ pref-
erences may change over time.
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