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Abstract

Whole slide images (WSIs) are gigapixel digital
scans of traditional pathology slides, offering sub-
stantial support for cancer diagnosis. Current mul-
tiple instance learning (MIL) methods for WSIs
typically extract instance features and aggregate
these into a single bag feature for prediction. We
observe that these MIL methods rely on point esti-
mation, where each bag is mapped to a determinis-
tic embedding. Such MIL methods based on point
estimation fail to capture the full spectrum of data
variability due to the reliance on fixed embedding,
especially when the number of trainable bags is
limited. In this paper, we rethink probabilistic mod-
eling in MIL and propose RPMIL, an uncertainty-
aware probabilistic MIL method for whole slide
pathology diagnosis. RPMIL learns a probabilis-
tic aggregator to consolidate instance features into
dynamic bag feature distributions instead of a de-
terministic bag feature. Specifically, we employ a
variational autoencoder approach to compress mul-
tiple instance features into a low-dimension space
with probabilistic representation and obtain the bag
feature distribution formulated by the mean and
variance. Furthermore, we drive the prediction by
jointly leveraging the instance feature distribution
and bag feature distribution. We evaluate the WSI
classification performance on two public datasets:
Camelyon16 and TCGA-NSCLC. Extensive exper-
iments demonstrate that our method surpasses point
estimation methods in MIL, achieving state-of-the-
art levels.

1 Introduction

Deep neural networks have made significant strides in re-
cent years, benefiting various fields worldwide. In the field
of computational pathology, the application of various deep
learning methods has led to new insights into disease diag-
nosis. Whole slide image (WSI) pathology diagnosis is re-
garded as the gold standard for identifying or excluding tu-
mors and remains a hot topic of research. Due to the gi-
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Figure 1: (a) Point estimation in multiple instance learning. x: in-
stance features in a same bag; z: a deterministic bag feature aggre-
gated from instances; y: the prediction. (b) The proposed proba-
bilistic MIL utilizing bag uncertainty. z: a bag feature distribution.
(c) The proposed probabilistic MIL utilizes both bag and instance
uncertainties.

gapixel resolution of WSIs and the absence of fine-grained
patch labels, current methods predominantly follow the mul-
tiple instance learning (MIL) paradigm [Tellez ef al., 2019;
Pinckaers er al., 2020; Zhang et al., 2022]. This approach di-
vides a WSI (bag) into many small patches (instances), where
the presence of even a single positive instance can lead to the
bag as positive.

Existing research primarily focuses on enhancing instance
feature representation, such as through self-supervised learn-
ing [Huang et al., 2023; Lu et al., 2024; Chen et al., 2024b] or
instance feature re-embedding [Chikontwe et al., 2022; Tang
et al., 2024]. More work is dedicated to the design of bag ag-
gregators, using methods like modifying instance weight allo-
cation [Li et al., 2021] or designing Transformer-based aggre-
gators [Shao et al., 2021]. Recently, some novel studies have
begun to address false relationships in MIL [Lin et al., 2023;
Chen et al., 2024al, recalculating intervention expectations to
replace traditional likelihood estimation. In practice, training
data is often limited, typically consisting of only a few hun-
dred or a few thousand bags. In a deterministic embedding
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space, a small number of bag features can easily fit the de-
cision boundary, but this fitting is often fragile and prone to
overfitting. The bag feature obtained in this manner are sub-
optimal. Although existing research has explored data aug-
mentation through splitting or mixing existing bags to gen-
erate pseudo-bags [Zhang et al., 2022; Chen and Lu, 2023;
Liu et al., 2024], the number of training samples is typically
only expanded by a limited factor.

From the perspective of uncertainty estimation [Kendall
and Gal, 2017], we rethink the process of MIL modeling. We
observe that these MIL methods fall under point estimation,
where each bag is mapped to a deterministic embedding.
Conversely, uncertainty estimation maps input samples to
an embedding distribution, better capturing the bag feature
distribution and aiding in understanding the confidence of the
estimation. Figure 1(a) illustrates the process of point esti-
mation in MIL, while Figure 1(b) depicts the probabilistic
MIL utilizing bag uncertainty. The essential difference be-
tween the two lies in whether the bag feature is represented
as a single value or a probability distribution. Furthermore,
we consider the instance features within a bag as a distri-
bution and assume that the instance feature distribution can
also aid in prediction. This assumption aligns with the log-
ical process in actual clinical diagnosis, where pathologists
identify tumor regions (instance) to assess whether WSI is a
tumor [Xiong et al., 2023]. Consequently, we jointly utilize
the bag distribution and the instance distribution to drive pre-
dictions, as shown in Figure 1(c). Two main issues need to
be verified when applying uncertainty estimation in MIL: i)
Can uncertainty estimation outperform the dominant point es-
timation MIL methods? Specifically, this involves comparing
P(y|z = g(x)) and [, P(z|x)P(y|z)dz. ii) Can instance
distribution and bag distribution jointly enhance classifica-
tion results? This involves comparing likelihood P(y|z) and
P(y|z,x).

In this paper, we rethink probabilistic modeling in MIL
and propose RPMIL, an uncertainty-aware probabilistic MIL
method for whole slide pathology diagnosis. RPMIL learns
a probabilistic aggregator that consolidates instance fea-
tures into a bag feature distribution rather than the fixed
bag feature. Specifically, the probabilistic aggregator uses
a variational autoencoder approach [Cemgil er al., 2020;
Michelucci, 2022] to compress multiple instance features into
two low-dimensional latent space features, representing the
mean and variance of the bag feature distribution, respec-
tively. By reparameterization sampling [Kingma er al., 2015],
an arbitrary number of bag feature representations can be ob-
tained. We use Kullback-Leibler (KL) divergence and mean
squared error (MSE) loss to constrain the bag feature distri-
bution, preventing distribution drift. Importantly, we propose
combining instance and bag feature distribution for the final
prediction. Through extensive experiments and analysis, we
reach two significant conclusions: i) Uncertainty estimation
based on bags surpasses point estimation methods in MIL.
ii) Combining instance feature distribution and bag feature
distribution for prediction significantly outperforms using a
single distribution. Through ablation studies, we further find
that as the number of sampling in the bag feature distribution
increases, the results become more pronounced.

2 Related Work

2.1 Multiple Instance Learning for WSIs

There are two main methods for predicting bags: the
instance-based method and the bag-based method. A typi-
cal instance-based approach trains a instance classifier to as-
sign pseudo-labels to each instance based on bag labels [Qu
et al., 2024b; Lin et al., 2024]. Due to the large number of in-
stances, the top-k policy is often used to select instances [Xu
et al., 2019; Chikontwe er al., 20201, necessitating a very
large number of WSIs [Chen and Lu, 2023]. Given the fact
that WSIs lack pixel-level labels and contain both cancer-
ous and normal regions, bag-based approaches have become
dominant. The rapid development of deep learning, par-
ticularly the exploration of attention mechanisms [Vaswani,
2017, Tlse et al., 2018], has led to the rise of bag-based meth-
ods that can directly predict the label of a bag by aggre-
gating instance features into a bag feature [Li et al., 2021;
Shao et al., 2021; Zhang et al., 2022]. The advantage of this
approach is that it does not require the labels of numerous in-
stances, so only the bag labels are needed for classification.
Some studies also explore improving bag feature represen-
tation, employing multi-scale learning [Xiong et al., 2023;
Qu et al., 2023] or fusing multimodal information [Qu ez al.,
2024a; Li et al., 2024; Shi et al., 2024] to achieve a better
representation of the bag. The above MIL methods fall under
point estimation and fail to capture the full spectrum of data
variability. Therefore, we propose RPMIL, an uncertainty-
aware probabilistic MIL method to learns a probabilistic ag-
gregator.

2.2 Probabilistic Methods in MIL

Introducing a probabilistic model in multiple instance learn-
ing can adequately take into account uncertainty [HauBmann
et al., 2017; Kendall and Gal, 2017]. DGMIL [Qu et al.,
2022] is an instance-based MIL method that considers in-
stance feature distribution while assigning pseudo-labels to
instances and focuses on constructing instance-level feature
distribution. Bayes-MIL [Cui et al., 2023] uses the uncer-
tainty of the attention weight of each instance as a measure
of the accuracy of guessing whether the instance is positive
or negative. However, our RPMIL is a bag-based method to
construct distributions for bag features and we drive the pre-
diction by jointly utilizing instance feature distribution and
bag feature distribution. AGP [Schmidt e al., 2023] is also
a bag-based method that utilizes Gaussian processes to dy-
namically obtain attention scores for each instance. In con-
trast, our RPMIL learns a probabilistic aggregator based on
a generative model, constructing the bag features as a distri-
bution, which allows for sampling to capture uncertainty. We
note that Causal inference methods such as IBMIL [Lin et al.,
2023] and CaMIL [Chen et al., 2024a] have also made ad-
justments to the probability calculation formula by using in-
terventional likelihood expectations. Yet, these causal meth-
ods still fall under point estimation, and they rely on sam-
pling based on clustering. Conversely, our RPMIL constructs
a normal distribution about bag features. We perform sam-
pling via reparameterization and utilize MCMC [Rubinstein
and Kroese, 2016] to approximate the desired quantity.
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Figure 2: The overall architecture of our proposed uncertainty-aware probabilistic MIL. method. RPMIL learns a probabilistic aggregator
and maps the WSI to the bag feature distribution rather than the deterministic bag feature. Furthermore, we drive the prediction by jointly

leveraging the instance feature distribution and bag feature distribution.

3 Methodology

3.1 Preliminary

The MIL methodology involves the following steps: first, in-
stance features are obtained using a feature extractor with
fixed weights. Then, these instance features are aggregated
into a bag feature by assigning attention scores or through
global integration. Finally, these bag features are used for
classification. For a given dataset of WSIs, each WSI has a
corresponding label y; € {0,1} for the binary classification
task, which determines whether a certain cancer is present.
Moreover, each WSI referred to as a bag is divided into many
patches pj, i.e., instances, {p;1, pi2, .., Pin; } and n; is the
number of instances from a bag. The bag label y; is defined
as follows:

0,if 7 y;i =0,
vi= j=1 ¥ M
1, else,

where y; ; corresponds to the label of p; ;.

A challenging problem arises because the number of in-
stances usually reaches thousands or more. We only have
access to bag labels y;. Our goal is to predict the bag label
when the instance labels are unknown. This whole process of
MIL can be summarized as follows:

xi; = f(pij) zi =8 ({Xi,j};il) Ji=h(zi), (2

where f(-) is a pre-trained feature extractor used to obtain the
instance features x, g(-) is an aggregator that converges all
instance features x into a bag feature z, and h(-) is a classifier
to get the predicative result . The optimization objective is to
minimize the cross-entropy (CE) loss between the real label
y and the prediction .

There is a dependency among all the variables due to their
sequential relationship, as illustrated in Figure 1(a). The tra-

ditional MIL methods fall under point estimation, and the pre-
diction probability can be defined as follows:

P(y|x) = P(y|z = g(x)). 3)
In this approach, a bag is mapped to a deterministic embed-
ding, which is then used to predict its output. P(y|z) is the
final prediction probability.

3.2 Uncertainty-Aware Probabilistic MIL

MIL methods based on point estimation fail to capture the full
spectrum of data variability due to their reliance on a fixed
embedding, especially when the number of trainable bags is
limited. Conversely, uncertainty estimation is better equipped
to capture data diversity, as it maps input samples to an em-
bedded distribution. Thus, we propose an uncertainty-aware
probabilistic MIL method for whole slide pathology diagno-
sis, as shown in Figure 2. Our method learns a probabilistic
aggregator that aggregates instance features into a bag feature
distribution P(z|x) rather than a fixed bag feature z. Then,
we obtain z by sampling from the dynamic distribution space,
allowing us to derive a range of different values that provide
openings for the bag classifier. Here, the specific prediction
probability equation is different from Equation (3) and is de-
fined as follows:
P(y|x) = / P(z

Now, we obtain the probability by sampling z from the dis-
tribution P(z|x) and then performing marginal integration.
In an implementation, we use Markov Chain Monte Carlo
(MCMC) [Rubinstein and Kroese, 2016] to approximate the
desired quantity.

Furthermore, we conceptualize the instance features within
a bag as representing a distribution. We consider that jointly
leveraging these distributions can enhance the final predic-
tion, as shown in Figure 1(c). This approach mirrors the clin-
ical diagnostic process, wherein pathologists use tumor areas

P(y|z) dz. “4)
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M Camelyonl6 TCGA-NSCLC
ethod
ACC F1-score AUC ACC F1-score AUC

Mean-pooling [Wang et al., 2018] 65.894+1.35 31.754+2.72 56.22+2.76 83.21+£2.26 82.67+£2.45 90.93+1.55
Max-pooling [Wang et al., 2018] 81.40+1.55 74.16+t1.13 82.45+0.97 85.50+1.90 84.03+1.01 94.7340.80
ABMIL [Ilse et al., 2018] 84.50+1.55 76.74+1.83 87.17+1.25 85.09+1.76 84.35+1.53 92.74+1.10
CLAM-SB [Lu et al., 2021] 80.62+3.09 72.09+3.74 83.42+2.42 87.83+1.52 85.22+2.81 94.6740.54
CLAM-MB [Lu et al., 2021] 81.40+2.32 74.23+£2.69 86.81+1.23 87.07+£1.90 85.71+1.84 94.07+0.83
TransMIL [Shao et al., 2021] 86.054+3.10 80.95+3.36 91.02+2.35 87.45+1.52 86.89+1.46 94.5141.57
DGMIL [Qu et al., 2022] 82.17£2.28 79.13+£1.70 85.71+£2.03 89.93+1.70 88.91+1.43 9543+1.44
DTFD-MaxS [Zhang et al., 2022] 88.37+£0.77 82.35+1.37 89.13+1.58 85.55+1.14 83.26+1.84 91.644+1.46
DTFD-MaxMinS [Zhang et al., 2022] 87.59+1.63 82.75+2.64 92.27+1.48 88.59+1.14 88.064+0.74 95.234+1.27
DTFD-AFS [Zhang et al., 2022] 90.694+0.78 86.95+0.96 93.46+0.71 88.97+£1.90 87.71+£1.85 95.01+0.88
MMIL [Zhang er al., 2023] 91.184+2.33 88.914+2.64 94.83+1.36 90.11+1.67 88.57+t1.64 96.03+0.60
DGRMIL [Zhu et al., 2024] 91.47+1.55 89.07£1.67 93.024+1.57 90.38+0.65 89.024+1.00 95.69+0.74
RPMIL(Ours+ResNet-50) 91.724+1.07 89.36+1.25 95.13+1.58 90.49+1.53 89.34+1.84 96.31+1.01
RPMIL(Ours+PLIP) 92.424+0.95 89.89+0.63 95.71+1.32 90.76+1.45 90.99+1.57 97.08+0.83

Table 1: Comparison performance of WSIs classification on the Camelyon16 and the TCGA-NSCLC dataset.

(instance) to assess WSI. We modify the probability P(y|x)
in Equation (4) to obtain the P(y|x,z), and the final predic-
tion is as follows:

P(y|x) = /Zp(z|x)/Xp(y\x,z)p(x|z)dxdz.

For detailed formula derivations, please refer to the supple-
mentary materials. To calculate P(x|z), we use a cross-
attention [Vaswani, 2017] module, where z is act as query
and x is act as key. We fuse the joint distributions of instance
and bag:

&)

(N (2) W, (N (x)Wy) '
Vd

where IN(-) is the layer normalization, z € R4 x € R"¥4,
W, € R™ W, € R and W, € R are learnable
parameters of query, key and value, respectively.

Eventually, we use the pooling operator and feed it to the
classifier h(*) to get the final predicted labels:

7 = h(Pooling(z)).

Z = Softmax ( ) IN(x)W,, (6)

(7
3.3 Building Bag Distribution

In our probabilistic framework, it is necessary to construct a
distribution of bag features. Specifically, we compress multi-
ple instance features into a new distribution for classification
purposes. Here, we use a variational autoencoder to compress
the instance features into two low-dimensional latent space
features, representing the mean and variance of the bag fea-
ture distribution, respectively. We use KL loss to regularise
the distribution P(z|x). We assume that P(z|x) obeys a nor-
mal distribution, with the mean y and variance o obtained
by the encoder. Given the assumption that Q(z) is a prior
that follows a standard normal distribution. The KL loss is
defined as follows:

KL(P(2])||Q(2)) = — 5 (log(e?) — o — 12 +1). ®)

The benefit of keeping P(z|x) close to a standard normal dis-
tribution is the benefit of ensuring that the feature space is
more compact and distinct, which aids the classifier in mak-
ing better distinctions. Now, we have reformulated Equation
(2), and the bag feature distribution is represented as follows:

z; ~ N (yi, Ui2> , where p;, 07 = §<{xz]}7l:1) NG

By reparameterization sampling, an arbitrary number of
bag features z can be obtained. To prevent excessive differ-
ences between features sampled from uncertainty estimation
and those obtained from point estimation, we use MSE to
constrain the differences between the mean of the sampled
features Z and the point-estimated feature z’. The overall loss
is summarised as follows:

L = MCE(y, §) + A2KL(P(z[x)[|Q(z))
+ A3MSE(z,2),
where A1, Ay and A3 are hyperparameters.

(10)

4 Experiments

4.1 Datasets

The effectiveness of the proposed method is examined on
both the Camelyon16 [Bejnordi et al., 2017] and the TCGA-
NSCLC datasets. The Camelyon16 dataset, from a competi-
tion organized by ISBI to classify breast cancer, is officially
divided into a training set and a test set, with 270 WSIs in the
training set and 129 in the test set.

The TCGA is a joint project of the National Cancer In-
stitute and the National Human Genome Research Institute,
including clinical data on a wide range of human cancers.
We select two types of non-small cell lung cancer (NSCLC)
WSIs for classification: lung adenocarcinoma (LUAD) and
lung squamous carcinoma (LUSC). TCGA-NSCLC dataset
contains a total of 1053 WSIs, with 541 LUAD from 478 pa-
tients and 512 LUSC from another 478 patients. We divide
the dataset into training, validation, and test sets in a 6:1.5:2.5
ratio.
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Figure 3: The effect of the number of sampling (1, 10, 100, and 1,000) on the Camelyon16 dataset. (a) Results on ACC. (b) Results on
F1-score. (c) Results on AUC. A larger sampling size effectively improves model performance and stability.

4.2 Preprocessing and Implement Details

Following CLAM [Lu et al., 2021], all WSIs are divided into
non-overlapping patches at 20 X magnification with a window
size of 256256 pixels. Our statistics show that the Came-
lyonl6 has a total of approximately 3.617 million patches,
with an average of about 9,066 patches per WSI, while the
TCGA-NSCLC has a total of about 12.731 million patches,
with an average of about 12,102 patches per WSI.

All patches are extracted using ResNet-50 pre-trained on
ImageNet-1k [He er al., 2016], resulting in features with a
dimension of 1024. Additionally, PLIP pre-trained on large-
scale pathology images is used to obtain 512-dimensional
features [Huang et al., 2023]. We use the Adam optimizer
with an initial learning rate of le-4 and a weight decay of
le-5, adjusting the learning rate using a cosine annealing
scheme. The minibatch is set to 1, the number of epochs is set
to 100, and the hyperparameter Aq is 1, A» and A3 are both set
to 0.5. We record accuracy (ACC), F1 score, and area under
curve (AUC) as criteria for evaluating our models. All exper-
iments are performed on an NVIDIA GeForce RTX 3090 and
are repeated five times, with all metrics reported as averages.

4.3 Baseline Methods

We compare many classical multiple instance learning meth-
ods for WSIs classification, including ABMIL, CLAM,
TransMIL, DGMIL, DTFD, MMIL and DGR-MIL. We use
the vanilla attention-based method as part of our default bag
probabilistic aggregator. ABMIL enables the aggregation
of instance features by assigning different attention scores
to each instance. CLAM employs a multi-branch attention
network that trains the instance classifier to obtain higher-
scoring instances. TransMIL and MMIL are multiple instance
learning networks based on the Transformer architecture that
take into account information between instances. DTFD is
a dual-layer framework which introduces pseudo-bags to in-
crease the number of bags, and the pseudo-bags are still at the
same resolution. DGMIL performs WSI classification from
the perspective of data distribution, while it focuses on in-
stances rather than bags. DGR-MIL takes into account the
relationship between global vectors and instance embeddings,
but diverse global vectors make training unstable.

Dataset Distribution = ACC Fl-score AUC
P(y|z = g(x)) 84.50 76.74 87.17

Camelyonl6 P(y|z) 86.05 80.43 89.16
(y|x, ) 91.72 89.36 95.13

( zZ = (x)) 85.09 84.35 9274

TCGA-NSCLC P( |z ) 86.61 86.27 93.23
( | ,Z) 90.49 89.34 96.31

Table 2: Impact of joint distribution of instance feature and bag fea-
ture on model performance.

4.4 Experimental Results

As shown in Table 1, our method achieves the best results
on both the Camelyonl6 and the TCGA-NSCLC datasets,
in terms of all three evaluation metrics: ACC, Fl-score,
and AUC. Especially, our method has a significant improve-
ment on the Camelyonl6 dataset compared with DGMIL, a
method for constructing instance feature distribution, 9.55%
increase on ACC, 10.23% increase on Fl-score, and 9.42%
increase on AUC. This improvement can be attributed to the
limitations of DGMIL, which relies on clustering techniques
to construct instance distributions and requires positive in-
stances to train the instance classifier. On the Camelyonl6
dataset, however, the small cancer regions in the WSI posi-
tive samples result in a limited number of available positive
instances, hindering DGMIL’s performance. In contrast, our
method handles such imbalances more effectively, demon-
strating better performance under these challenging condi-
tions. Notably, these methods usually achieve better results
on the TCGA-NSCLC compared with the Camelyonl6. In
particular, the two constructed baselines, mean-pooling and
max-pooling [Wang et al., 2018], also performe admirably
on the latter. Specifically, the TCGA-NSCLC dataset con-
tains a larger number of WSIs, and the distribution of posi-
tive and negative samples is more balanced compared to the
Camelyon16 dataset. The average tumor region in positive
samples of the TCGA-NSCLC dataset is significantly larger,
often around 80%, whereas, in the Camelyon16 dataset, the
tumor region in positive samples is much smaller, averaging
only about 10% [Shao er al., 2021].
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Figure 4: Importance of the variance on the TCGA-NSCLC dataset. Random stands for random deletion, and ¢ stands for deletion of those
with higher variance. (a) Results on ACC. (b) Results on F1-score. (c) Results on AUC.

Dataset Loss ACC Fl-score AUC Aggregator  Pooling ACC Fl-score AUC
RPMIL  91.72 89.36 95.13 Mean Mean 89.92 86.32 94.62
Camelvonl6 w/o MSE  85.27 80.85 90.03 Mean Max 88.37 86.02 92.78
y w/o KL  87.60 83.67 91.45 Max Mean 89.15 84.78 93.93
w/o both  84.50 79.21 87.40 Max Max 91.47 87.64 92.88
Attention Mean 91.72 89.36 95.13
SRQIIL - 9049 8934 9665 Attention Max 90.70 86.36 93.95
TCGA-NSCLC w/o MSE  86.31 85.48 93.88
w/o KL  87.83 85.96 94.60 . .
wloboth  85.55 84.92 03.42 Table 4: Impact of different aggregators and pooling methods on

Table 3: Impact of loss function limitations of the encoder and de-
coder on model performance.

4.5 Main Analysis

In this subsection, we primarily address the two main ques-
tions posed in the introduction: i) Can uncertainty estimation
outperform the dominant point estimation MIL methods? ii)
Can instance distribution and bag distribution jointly enhance
classification results?

Comparison between Point Estimation and Uncer-
tainty Estimation (P(y|z ¢(x)) in Equation (3) vs
[, P(z|x)P(y|z) dz in Equation (4). In point estimation
methods, multiple instance features are aggregated into a sin-
gle feature, whereas uncertainty methods aggregate them into
a probability distribution. To compare these two types of MIL
methods, we conduct experiments with both parameterized
aggregators (using vanilla attention) and non-parameterized
aggregators (using mean-pooling and max-pooling). The
results, as shown in Table 2, reveal that under parameter-
ized aggregators, uncertainty methods significantly outper-
form point estimation methods. We acknowledge that a high-
performance aggregator can enhance the performance of MIL
models. However, our experiments reveal that even with a ba-
sic pooling method, MIL models can still achieve significant
benefits from uncertainty estimation and the joint distribution
of instance and bag features. This finding suggests that, de-
spite the focus on aggregator design in MIL, uncertainty es-
timation methods should be given more attention in practical
WSI applications.

Camelyon16.

Comparison between Two Predictive Distributions
(P(y|z) in Equation (4) vs P(y|z,x) in Equation (5)). The
limitation of point estimation methods lies in their sole fo-
cus on the aggregated, fixed bag feature representation, over-
looking the inherent distribution of instance features within
the bag. To better utilize the information from instance fea-
ture distribution, we propose a method that jointly utilizes
instance distribution and bag feature distribution. In this pro-
cess, we remove the cross-attention branch and simplify the
modeling P(y|z). As shown in Table 2, the experimental
results indicate that using only P(y|z) leads to a significant
shift in the bag feature distribution. In contrast, our method,
which jointly leverages instance distributions and bag feature
distributions, significantly improves the model’s predictive
performance, highlighting the importance of considering in-
stance distributions. The effectiveness of this approach aligns
with clinical observations, as tumor patches can confirm the
tumor WSI.

4.6 Ablation Results

In this subsection, we investigate the proposed method in
more detail, showing the contribution of each component
through a series of ablation experiments.

Effect of Sampling Number. In our study, the probabilis-
tic model makes predictions by learning the distribution of
bag features, and the sampling number significantly impacts
the experimental results. In Figure 3, we test different sam-
pling numbers (1, 10, 100, and 1,000) and find that a larger
sampling size effectively improves model performance and
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(c)

Figure 5: Comparison of attention score visualisations in our Approach and the CLAM Approach. The redder areas represent higher attention
scores, which are the pathological tissues that the model attends to. (a) Original WSI. (b) CLAM heatmap. (c) Ours RPMIL heatmap.

stabilizes training. With a sampling size of 1,000, the model
obtains more enriched bag representations, achieving the best
performance. When sampling sizes are small, the sampled
bag features often fail to represent the overall distribution,
leading to a significant deviation of the sample mean from
the actual center of the bag feature distribution.

Importance of the Variance. Due to the introduction of
variance, the results of each iteration will fluctuate, and the
degree of fluctuation is related to the magnitude of the vari-
ance. We roughly think that larger variance indicates more
uncertainty in the bag features, making the model unable to
adequately estimate the results of classifying such bag fea-
tures. We verify the above thought by removing some test
samples with a large variance in bag features. We compare
this with randomly removing a portion of the sample. We ob-
serve that the results become more favorable in Figure 4. The
ACC improves by 0.46%, 0.75% and 1.19%, the F1-score im-
proves by 0.20%, 0.29% and 0.44% and the AUC improves
by 0.99%, 1.21%, and 1.32% when 5%, 10%, and 15% of
the test set with high variance are removed on the TCGA-
NSCLC. As the number of removed samples increases, there
is an improvement, indicating that variance can be an effec-
tive measure of uncertainty to some extent.

Impact of KL and MSE Loss. Compared to the single
feature in point estimation, we learn an enriched feature dis-
tribution. To prevent significant deviations in the features, we
introduce additional KL and MSE loss functions to constrain
the bag feature distribution, in addition to using cross-entropy
loss. From Table 3, it can be concluded that the absence of
either two loss functions degrades the model performance, es-
pecially on the Camelyon16. The effect of the missing MSE
loss is greater than the KL loss, which keeps the pre-encoding
and post-decoding bag features from deviating significantly,
while the KL loss contributes to reducing the variance of the
classification results.

Combination of Probabilistic Aggregator and Bag Pool-
ing. We compare the effectiveness of learning bag fea-
tures using three different aggregators: mean-pooling, max-
pooling, and vanilla attention-based aggregators. Addition-
ally, there is another bag pooling operation before classifi-
cation to pool the fusion bag features, and we compare two
pooling: mean-pooling and max-pooling. In Table 4, the best
combination is the attention-based probabilistic aggregator

and the bag mean-pooling. The former is able to learn a fine
bag distribution, and the latter enables bag features sampled
from the distribution to be near the center of the distribution.

4.7 Visualization

In this subsection, we follow the visualization technique in
CLAM to assess whether the attention mechanism in the dis-
tribution aggregator is appropriately focused on the positive
tissue regions. This evaluation is crucial as it helps to pro-
vide further confidence in the reliability of our approach and
holds significant promise for real-world clinical applications,
where precision and interpretability are paramount for diag-
nosis. In Figure 5, both our model and the classical CLAM
successfully identify the general regions of interest that are
deemed positive. While CLAM assigns high attention to ar-
eas that are contaminated or irrelevant in the original WSI,
our method, enhanced by the incorporation of uncertainty, re-
frains from considering these areas as positive. This distinc-
tion is vital because such contaminated regions, often arising
due to issues like uneven staining or sample folding during
WSI acquisition, can lead to misclassifications. By prevent-
ing these areas from being mistakenly labeled as positive, our
approach maintains a higher level of accuracy in classifica-
tion, demonstrating robustness in the presence of common
challenges faced during sample collection and preparation.

5 Conclusion

In this paper, we rethink the process of MIL modeling from
the perspective of uncertainty estimation. We propose RP-
MIL, an uncertainty-aware probabilistic MIL method tailored
for WSI pathology diagnosis. Unlike traditional methods that
rely on point estimates, RPMIL constructs a bag feature dis-
tribution, enabling more excellent results. Our experimen-
tal results demonstrate that uncertainty estimation surpasses
conventional point estimation approaches in MIL, achieving
SOTA performance. Moreover, combining instance feature
distribution with bag feature distribution for prediction yields
significantly better results than relying on a single distribu-
tion alone. We also observe that increasing the number of
samples in the bag distribution leads to more pronounced im-
provements in classification performance. Additionally, the
variance in uncertainty serves as a supplementary support for
enhancing classification accuracy.
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