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Abstract

Recommender systems play a critical role in many
applications by providing personalized recommen-
dations based on user interactions. However, it re-
mains a major challenge to capture complex se-
quential patterns and address noise in user interac-
tion data. While advanced neural networks have
enhanced sequential recommendation by modeling
high-order item dependencies, they typically as-
sume that the noisy interaction data as the user’s
preferred preferences. This assumption can lead to
suboptimal recommendation results. We propose
a Variational Graph Auto-Encoder driven Graph
Enhancement (VGAE-GE) method for robust aug-
mentation in sequential recommendation. Specifi-
cally, our method first constructs an item transition
graph to capture higher-order interactions and em-
ploys a Variational Graph Auto-Encoder (VGAE)
to generate latent variable distributions. By utiliz-
ing these latent variable distributions for graph re-
construction, we can improve the item representa-
tion. Next, we use a Graph Convolutional Network
(GCN) to transform these latent variables into em-
beddings and infer more robust user representations
from the updated item embeddings. Finally, we ob-
tain the reconstructed user check-in data, and then
use a Mamba-based recommender to make the rec-
ommendation process more efficient and the rec-
ommendation results more accurate. Extensive ex-
periments on five public datasets demonstrate that
our VGAE-GE model improves recommendation
performance and robustness.

*Corresponding author

1 Introduction

Recommender systems are extensively utilized in e-
commerce, social media, and content streaming to satisfy the
users’ requirements. On these platforms, understanding the
temporal patterns of user interactions can significantly im-
prove the quality of personalized recommendations [Liu ef
al., 2023a; Ma et al., 2024; Liao et al., 2023]. For the sequen-
tial recommendation task, the essential problem is how to u-
tilize sequential patterns of user interactions to provide users
with recommendations that satisfy their dynamic preference
needs. In the past, a number of attempts [You et al., 2024;
Wu et al., 2024] have been made to develop powerful sequen-
tial models based on deep learning. Many works [Hidasi et
al., 2016; Yue et al., 2024] utilize Recurrent Neural Networks
(RNNSs) to capture the sequential patterns among user inter-
action sequences. Additionally, some works [Qi er al., 2022;
Ahmed et al., 2023] combine RNNs with attention mech-
anisms to focus on important information within the inter-
action sequences. Although above methods have achieved
significant results, however, they primarily focus on the se-
quential patterns of user interactions and fail to capture the
more complex item transition patterns in user sequences.
Furthermore, user interaction behavior can be influenced by
many factors (e.g., benefit incentives, accidental clicks, over-
recommendation of popular items, etc.), it can result in us-
er sequences containing some noise. RNN-based methods
[Yue et al., 2024; Bach et al., 2020; Ahmed et al., 2023]
typically assume user interaction sequences as the primary
indicator of user preferences, which may lead to suboptimal
recommendation results. Recently, Graph Neural Network-
s (GNNs) [Scarselli et al., 2008; Nguyen and Tran, 2023;
Okamura et al., 2023] have attracted attention for their a-
bility to capture higher-order interactions. In addition, some
simplified GNNs (e.g., NGCF [Wang er al., 20191, LightGC-
N [He et al., 20201, PriGCN [Liu et al., 2023b]) reduce the
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model complexity by omitting linear transformers and acti-
vation functions and are becoming popular in recommender
systems. However, these methods still face the challenge of
data noise. Directly utilizing all user interaction sequences
and performing multi-loop embedding propagation can wors-
en the noise effect, leading to skewed results.

To address above challenge, recent methods attempt to
use self-supervised learning techniques to enhance the noise
robustness of recommendation models [Wu et al., 2021;
Liao et al., 2023]. These methods create contrastive views
for self-supervised learning but rely heavily on the laborious
trial-and-error process for selecting augmentation methods.
In this paper, we propose a Variational Graph Auto-Encoder
driven Graph Enhancement method (VGAE-GE) for robust
augmentation in sequential recommendation. We first con-
struct an item transition graph to capture the higher-order in-
teraction information between items. Then we use the in-
ference model of Variational Graph Auto-Encoder (VGAE)
to obtain the latent variable distribution of items. The dis-
tribution distance between items with interactions should be
closer, while those without interactions should be farther a-
part. Then we use the generative model and latent variables
to reconstruct the item transition graph. Finally, we employ
a Graph Convolutional Network (GCN) to transform the la-
tent variables back into node embeddings. By combining the
reconstructed item embeddings with user embeddings, we u-
tilize a Mamba-based model for sequential recommendation.

e We propose a novel method called VGAE-GE, which
can convert item embeddings into potential vectors and
capture higher-order information in the potential space.
To enhance the noise immunity, we reconstruct the graph
structure by using generative model.

e We propose to use GCN to revert the reconstructed graph
structure to embedding, and then input the user inter-
action data into a Mamba-based recommendation mod-
el. By combining the basic Mamba blocks with various
techniques such as layer normalization and feed-forward
networks, the sequence modeling capability is further
improved without sacrificing inference efficiency.

e Comprehensive experiments on five public datasets con-
firm the effectiveness of our VGAE-GE model.

2 Related Work

2.1 Graph-based Sequential Recommendation

Prominent works, such as SR-GNN [Wu et al., 2019], GCN-
GNN [Wang et al., 2020] and ITGCN [Liu et al., 2022], uti-
lize GNNSs to model user-item interaction sequences, demon-
strating significant improvements in recommendation accu-
racy. Simplified GNN models, such as NGCF [Wang et al.,
20191, LightGCN [He et al., 2020] and UltraGCN [Mao et
al., 20211, have also become popular in sequential recom-
mendation by reducing model complexity through the omis-
sion of linear transformers and activation functions. In addi-
tion, some works have utilized graph-based methods for se-
quential recommendation based on multiple aspects to over-
come multiple challenges [Zhu et al., 2021]. Peintner [Peint-
ner, 2023] attempts to reduce the recommendation bias prob-

lem when utilizing graph-based models for sequential rec-
ommendation. Focusing on the continuous time modeling
problem in sequential recommendation, GDERec [Qin ef al.,
2024] proposes a new GNN based on ordinary differential
equations to simulate implicitly the time evolution. Some
works utilize GNNs combined with Graph Masked Auto-
Encoder to combat data noise and sparsity, such as MAERec
[Ye et al., 20231, AutoCF [Xia et al., 2023] and S-CIEE
[Wang et al., 2025b]. Despite these advancements, these
methods still face challenges related to data noise. Direct-
ly using all user interaction sequences and conducting multi-
layer information propagation can amplify noise effects, lead-
ing to biased recommendation results.

2.2 Variational Graph Auto-Encoders

VGAE has proven effective for learning latent representation-
s of graph-structured data, providing a probabilistic approach
to encoding graph information. MVGAE [Yi and Chen,
2021] is a model that utilizes VGAE to generate represen-
tations of nodes (i.e., mean vectors for semantic information
and variance vectors for the noise level of the corresponding
modality), which are then applied to recommender systems.
However, MVGAE overlooks the temporal relevance of user-
item interaction. Similarly, Altaf et al. [Altaf et al., 2019]
simply apply VGAE to a dataset recommendation system.
SCVG [Ding et al., 2021] is a semi-deterministic and con-
trastive VGAE for item recommendation. STR-VGAE [Zhu
et al., 2023] uses VGAE to learn travel packages that contain
users’ implicit preferences from their behavioral sequences
to make travel packages recommendation. In addition, there
are many models such as DR-VAE [Wang et al., 2025a] and
MVDGAE [Zheng et al., 2021] that try to utilize VGAE to
exploit the latent distribution for enhancing robustness and
accuracy, but currently these methods do not consider both
the latent distribution and the embedding representation, and
ignore the application in sequential recommender systems.

3 Methodology

Let U = {uy,uz,...,up} and V = {vi,vo,..., vy} de-
note the set of users and items, respectively. Each user
u € U is associated with a sequence of interactions with
items over time. We denote historical check-ins for user u
as S* = {s%, sY,..., s}, where m is the length of u’s item
sequence S*, si* € V represents the item accessed by the user
at t-th, and ¢ denotes the corresponding timestamp of interac-
tion with 1 < ¢ < m. Our goal is to predict the item s;;, |4
that the target user w is most likely to interact with.

3.1 Item Transition Graph Construction

To obtain item dependencies, we use user behavior sequences
to generate an item transition graph G = (V, £) with N = |V
nodes to represent the transition relationships between differ-
ent items. e;; € & indicates that there is an edge between
the i and j'" items. A = (a;;) € RV*Y is the adjacency
matrix of G and it indicates the implicit relationships between
items. D € RV*Y is the degree matrix of A. For the edge
set £, we construct it by the following form:

5:{(5?,5?) :ueu,|i—j|§c,1§i<j§m}. (1)
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Figure 1: Overall architecture of our proposed VGAE-GE. (a) Item transition graph construction. (b) Variational Graph Auto-Encoder driven

graph enhancement. (c) Mamba4Rec as the sequence recommender.

Here, we create an edge between each item and its c-hop
neighbor across all user sequences, computing duplicated
edges only once. Thus, a;; = 1if (v;,v;) € £and a;; = 0
otherwise.

3.2 VGAE-driven Graph Enhancement

To encode interaction patterns among items, we map them
into a d-dimensional latent space. Specifically, we create an
embedding vector e; € R? for each item v;. Additionally, we

use EV) € RV*9 (o represent the embedding of items and
map the input graph to low-dimensional representations:

ZW = A.EM, 2)

Here, A is calculated by A=D"1/24D-1/2, Next, multiple
embedding propagation layers are used to aggregate the node
neighborhood information of the item:

= Z(U7l) + Z Z(U/vl)7 (3)

v’ €N,

L(0,041)

where z(“"+1) and z(¥"!) denote the the embedding represen-
tations of item v at the (I + 1)-th and [-th layers, respectively.
N, denotes the neighboring item of item v, >, N, PACRD)
denotes the neighbor aggregation information for item v at [-
th layer. We aggregate the embedding representations of each
layer of the item and get the representation.

L
2(1},1) — ZZ(U,Z)’ (4)

where Z(*!) is the final representation of an item v. Subse-
quently, we utilize Z to represent the embedding representa-
tion of all items.

After obtaining each node representation and the graph
structure of the item transformation graph G, we designed a
VGAE-based encoder to convert the node representations in-
to a distributed form. The encoder consists of two encoding

= freLU (Z AW 0))
finear (Z(l),A \ W;Sl)) c RNxd 7z

heads, represented as follows: Z (!

zP =

FLinear (Z(l),A | W(gl)) € RN*d Here, WP(LI) is the train-
able parameter matrix used to generate each node’s mean,

Wél) is the trainable parameter matrix used to generate each
node’s variance.
Inference model. The inference model is defined by the dis-

tribution ¢(Z | Z, A) parameterized by two encoding layers:
~ N ~
i=1

N N
with Hq (zZ | Z,A) = 1_[./\/(2Z | psy;, diag (O’i)) ,
i=1 i=1
. ®)
where ¢(Z | Z, A) denotes joint distribution of latent vari-
ables for all nodes, ], ¢ (z2 | Z ,A) denotes the prod-
uct of the distribution of latent variables for each node z;,
q (zl | Z , A) denotes the distribution of latent variables for
node z;, pt,, = Z,(f) [i,:] is the mean vector of a multivari-
ate Gaussian distribution associated within z;, and agi =

Z§2) [i,:] is the corresponding variance vector.
Generative model. In the generative model, we use the latent
variables Z to generate the distribution of A.

HHp 5 | Zzazj>

1=17=1 (6)
withp (a;; = 1| 2;,25) =0 (Z:ZJ) J

p(A|Z) =

where p(A | Z) denotes the probability of generating a con-
nection between each a;; given the latent variable Z, a;; are
the elements of A.

After completing the design of the inference model and the
generative model, consistent with [Kipf and Welling, 20161,
we formulate a variational lower bound on the log-likelihood
of the input graph as: Lieco = Lpos +Lneg- Here, Lieco denotes
the reconstruction loss, which consists of the cross-entropy
loss for positive (i.e., Lpos) and negative (i.e., Lneg) samples,
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respectively. Here, the positive sample reconstruction loss
calculates the binary cross-entropy loss between the predicted
values of the positive sample edges and the true labels:

ﬁpos = — Z [yij log O'(Zl' . Zj)
(i,7)Epos (7)

+ (1 —yij) log(1 — a(z - 2))];

where (4, j) denotes the edge between item v; and vj, y;;
is the true label of edge (i,j), o(z; - 2;) is the probabili-
ty of the existence of the predicted label, z; and z; are the
potential representations of the items v; and v;, respective-
ly. The potential representation z; can be computed using
mean and variance: z; = u; + o © ¢;, where ¢; ~ N(0,1)
is the noise matrix generated by the standard normal distri-
bution, © denotes the Hadamard product. Considering that
yi; = 1 for positive samples and y;; = 0 for negative sam-
ples remain constant, the reconstruction loss for positive and
negative samples can be simplified as:

Lpos = — Z log(p(a;; =11z, z;))

(i,5)€Pos

~ Y toa(olai ).

(i,5)€Pos

Z log(p(ayw = 0] 2, 2;))

(4,j)ENeg

= - Z log(1 —o(z; - 25)).
(i,)€Neg
In addition, we utilize the Kullback-Leibler Divergence
(KLD)_to measure the difference between the distribution
q(Z | Z, A) generated in the variational auto-encoder and the
prior distribution p(Z), so that the distribution is as similar

as possible to the standard Gaussian in the hypothesis. The
KLD loss is as follows:

Lir =KL[g(Z | Z,A)|p(Z)]
W (10)

Z (1+1Og (012) _'ugi _Ugi) :

i=1

®)

Eneg — Q
©))

N[ =

After considering the KL.D, the reconstruction loss can be up-
dated as follows:

£reco = L:pos + Eneg + [fKL
N
= Z Ez,;,zjwq(.|Z,A) [lOg (p (a’ij | Ziy ZJ))} (11)

ij=1
+KL(q (=1 2,4) Ip ().

3.3 Mamba4Rec as Sequence Encoder

After obtaining the reconstructed graph structure, we encode
the generated graph using GCN to obtain the item embed-
ding. We still ignore the weight transformations and activa-
tion functions in the message passing process. The represen-
tation of item is generated as follows:

e(v,lJrl) :e(v,l)+ Z e('u',l)’ (12)
v’ €Ny

L
é(v,l) _ Ze(v,l)7 (13)
=1

where N, denotes the 1-hop neighborhood of v, e(*") and
e(v1+1) denote the reconstructed embedding representations
of item v at the [-th and (I 4 1)-th layers, respectively. &(“:)
is the final reconstructed representation of a item v. Here,
we design a reconstruction rate hyperparameter 3. We get
the probability of existence of the edge based on the hidden
variables, if the probability is greater than or equal to 3, then
this edge is retained in the reconstructed graph; otherwise,
this edge is eliminated from the reconstructed graph.

In the user’s interaction sequence, we add positional em-
bedding p; to enhance the temporal information of the se-
quence:

Eu = [(ési‘ +p1) ) (és"2J +p2> )T (ésiﬁl +pm)] : (14)

With the user representation and item representation al-
ready obtained, we utilize the user interaction data E, as in-
put data into the Mamba4Rec model and perform sequence
recommendation.

E..m = Convid(E, WD + pM), (15)

where W) and ™) are the weights and biases of the lin-
ear projection, the Conv1d(-) is a 1D convolution operation.
Next, the output E,, ,,, is obtained after State Space Model
(SSM) and residual connection:

Eym = (SILU(Ey ) + )W 0@ a7

where ]:3%m is the is the intermediate value processed by the
SSM, r,,, denotes the residual connection, SiL.U(+) is the ac-
tivation function. The final interaction probabilities are ob-
tained as follows:

= Bum &t (18)

Through the above stages, the Mamba4Rec model is able to
efficiently process the user’s sequential interaction data and
generate high quality recommendation results.

3.4 Model Training

We employ the cross-entropy loss function to optimize the
recommendation task. All subsequences of S™ are used as
training data, i.e., {(s¥), (s{,8%), ..., (s¥,..., 8% _1)}. The
main loss function L, for the recommendation task is giv-
en as follows:

Emain = - Z Z loga (Eu,t . ési‘f*l)

uelU 1<t<m (19)

+ log (1 —0 (Eu,t‘év;>) )

where Ew denotes the embedding of the sequence
(s¥,...,s%), and v; ¢ S" is the t-th item randomly sampled
from the negative samples. In addition, we use regularization
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Dataset | #Users #POlIs #Interactions Ave.len. Density
Books 93,043 54,756 506,637 545 9.94¢75
Retailrocket| 91,655 43,886 452,546 4.94 7.50e~°
Toys  [116,429 54,784 478,460 411 11274
NYC 1,083 9,989 179,468  165.71 1.66e2
TKY 2,293 15,177 494,807 215.79 1.42¢~2

Table 1: Statistics of datasets.

loss for preventing model overfitting, obtained by computing
the L2 norm of the model parameters:

»Creg = (Haencoder Hg + Hgdecoder ||§ + ||0recommender Hg) )
(20)
where Oepcoders Odecoder aNd Grecommender are the parameters of
the encoder, decoder and the recommender model, respective-
ly, and A is the regularization factor. Finally, the total loss £
is the weighted sum of the reconstruction loss, the main loss
and the regularization loss:

L= )\l'éreco + )\2£main + [frega (21)

where A; and ), are hyperparameters that control the
strengths of reconstruction loss and main loss, respectively.

4 Experiments

Our experiments focused on validating the performance of
VGAT-GE and answering the following key questions:

RQ1: Can our proposed VGAE-GE outperform the baselines
for sequential recommendation? RQ2: How does the VGAE
affect model performance? RQ3: How to demonstrate the
effectiveness of Mamba4Rec Recommender? RQ4: How is
the performance of VGAE-GE affected by different parame-
ter settings?

4.1 Experimental Setup

We consider five challenging recommen-
Amazon Books (i.e., Books) and
Amazon Toys (i.e., Toys) collected from Amazon
platform (https://www.amazon.com/), Retailrocket
(i.e., Retail) collected from an e-commerce website
(https:/fwww.kaggle.com/retailrocket/ecommerce-dataset/),
NYC and TKY [Yang et al., 2013] collected from Foursquare,
of which the statistics are shown in Table 1. We consider
items with fewer than three interactions in the first three
datasets as outliers and remove them, and similarly, check-ins
with fewer than five interactions in the last two datasets are
considered as outliers and removed.

Evaluation Metrics. We use leave-one-out strategy for eval-
uation and use two widely adopted ranking-based metrics to
evaluate the performance of all methods, namely Hit Ratio
(HR) and Normalized Discounted Cumulative Gain (NDCG)
with top 5/10/20 recommended candidates.

Baselines. We compare VGAE-GE with 9 competitive meth-
ods, including RNN-based methods like GRU4Rec [Hidasi et
al., 2016] (Abbreviated as G4REC in Table 2), NARM [Li et
al., 2017], Transformer-based methods like SASRec [Kang
and McAuley, 2018], BERT4Rec [Sun et al., 2019] (Ab-
breviated as B4Rec in Table 2), CORE [Hou et al., 2022],

Datasets.
dation datasets:
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Figure 2: Performance w.r.t. different hyper-parameters.
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Figure 3: Performance w.r.t noise ratio on Books and NYC.

GNN-based methods such as SRGNN [Wu et al., 2019],
attention-based methods like SINE [Tan et al., 2021], and
self-supervised learning models like CL4SRec [Xie et al.,
2022] (Abbreviated as C4Rec in Table 2), MAERec [Ye et
al., 2023].

Implementation Details. Our method is implemented in Py-
Torch and experiments are run on an NVIDIA 4090 GPU.
The Adam optimizer is utilized for parameter inference with
a learning rate of le-2. For the GNN component, we set the
number of layers to 2. The embedding dimension is fixed at
32, with a dropout rate of 0.3 to prevent overfitting. We apply
a regularization coefficient of 1e-6 to improve model general-
ization. The graph is constructed using a distance parameter
of 3. For the parameters of the Mamba block, the SSM state
expansion factor is 32, the kernel size for 1D convolution is 4,
and the block expansion factor for linear projections is 2. For
the Books, Retail and Toys datasets, we train the model for
150 epochs; the batch size is set to 2048; the reconstruction
rate is 0.3; the maximum user sequence length is restricted
to 50. For the NYC and TKY, we train the model for 300 e-
pochs; the batch size is set to 256; the reconstruction rate is
0.6; the maximum user sequence length is restricted to 200.

4.2 Performance Analysis (RQ1)

As can be seen in Table 2, our model consistently achieves the
best recommendation results. While other models with bet-
ter performance (e.g., NARM and MAERec) are also able to
achieve better results, their excellent performance cannot be
maintained on all datasets, and the robustness of the recom-
mendation is not good as the size of the dataset or the interac-
tion scenario changes. Due to the different sizes and features
of the datasets, the MAERec model can present better result-
s on datasets such as shopping platforms, where the average
user interaction sequences are shorter. However, its perfor-
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Datasets| Metric  G4Rec NARM SASRec B4Rec

SRGNN SINE CORE

C4Rec

MAERec Ours | Improv.

HR@5
NDCG@5
HR@10
NDCG@10
HR @20
NDCG@20

0.5732
0.4609
0.6754
0.4940
0.7787
0.5201

0.5958 0.5547 0.4759
0.4845 0.4541 0.3691
0.6942 0.6491 0.5824
0.5164 0.4846 0.4036
0.7901 0.7452 0.6933
0.5406 0.5089 0.4316

Books

0.5386
0.4346
0.6361
0.4662
0.7400
0.4924

0.5807
0.4587
0.6863
0.4929
0.7886
0.5188

0.5689
0.4550
0.6713
0.4882
0.7743
0.5141

0.6211
0.5133
0.7099
0.5421
0.7963
0.5639

0.7023
0.5803
0.7859
0.6075
0.8494
0.6237

8.72%
12.54%
4.41%
10.41%
0.54%
8.73%

HR@5
NDCG@5
HR@10
NDCG@10
HR @20
NDCG@20

0.7660
0.6689
0.8313
0.6901
0.8905
0.7051

0.7736  0.7578 0.6430
0.6853 0.6715 0.5398
0.8309 0.8167 0.7241
0.7039  0.6906 0.5660
0.8849 0.8728 0.8033
0.7176  0.7048 0.5860

Retail

0.6916
0.5828
0.7730
0.6091
0.8471
0.6279

0.7911
0.7026
0.8471
0.7208
0.8969
0.7334

0.7236
0.6241
0.7896
0.6444
0.8550
0.6597

0.8297
0.7552
0.8682
0.7677
0.9052
0.7770

0.8541
0.7870
0.8877
0.7979
0.9190
0.8059

0.74%
3.53%
0.38%
3.14%
0.39%
3.18%

HR@5
NDCG@5
HR@10
NDCG@10
HR@20
NDCG@20

0.4065
0.3090
0.5194
0.3454
0.6498
0.3783

0.4220 0.3642 0.3196
0.3264 0.2882 0.2352
0.5306 0.4575 0.4284
0.3614 0.3183 0.2702
0.6569 0.5770 0.5650
0.3933 0.3484 0.3046

Toys

0.3629
0.2713
0.4744
0.3072
0.6055
0.3402

0.4275
0.3250
0.5369
0.3604
0.6590
0.3912

0.4054
0.3123
0.5110
0.3464
0.6338
0.3773

0.4380
0.3492
0.5356
0.3807
0.6527
0.4102

0.5211
0.4030
0.6320
0.4389
0.7318
0.4642

7.84%
9.02%
6.54%
8.30%
3.11%
6.82%

HR@5
NDCG@5
HR@10
NDCG@10
HR @20
NDCG@20

0.7147
0.6583
0.7913
0.6829
0.8707
0.7029

0.7599 0.7276 0.7248
0.7058 0.6701 0.6660
0.7895 0.7775
0.6902 0.6829
0.8578 0.8476
0.7076 0.7005

NYC

0.7479
0.6891
0.8006
0.7058
0.8587
0.7204

0.6842
0.6224
0.7442
0.6416
0.8153
0.6595

0.7461
0.6911
0.8172
0.7142
0.8717
0.7280

0.5891
0.5115
0.6704
0.5378
0.7673
0.5623

0.7839
0.7265
0.8458
0.7462
0.8938
0.7582

3.16%
2.93%
3.50%
3.36%
2.53%
2.97%

HR@5
NDCG@5
HR@10
NDCG@10 0.7447

HR@20 0.9198 0.9315
NDCG@20 0.7587 0.8041

0.8055
0.7256
0.8644

0.8046 0.8064
0.7324 0.7300
0.8666 0.8561
0.7527 0.7463
0.9167 0.9154
0.7653 0.7614

TKY

0.8330
0.7659
0.8783
0.7805
0.9189
0.7907

0.7745
0.6976
0.8382
0.7184
0.8936
0.7322

0.7418
0.6465
0.8125
0.7850 0.6693
0.9289 0.8766
0.7948 0.6855

0.8439

0.7699
0.8901

0.8644
0.7915
0.9128
0.8120
0.9442
0.8203

2.43%
1.81%
2.55%
2.38%
1.37%
2.02%

Table 2: Overall performance. The best performing baseline and best performer in each row are underlined and boldfaced, respectively.

mance significantly declines when applied to check-in sce-
narios with longer average user interaction sequences. Con-
versely, NARM performs better in check-in scenarios. This
all reflects that the current approach is not stable enough to
consistently maintain better performance in multiple scenar-
i0s. In contrast, VGAE-GE has better performance and ro-
bustness and always maintains the best performance in mul-
tiple scenarios. On the other hand, our model mines the us-
er’s preference representation more accurately through distri-
butional transformation and combines with the Mamba4Rec
recommender to maintain good performance on all datasets,
which demonstrates that our proposed VGAE-GE model has
good robustness and excellent recommendation performance.
Performance Against Data Noise. We replace 5%, 15%, and
25% of user interactions with random negative items to test
robustness. Figure 3 shows that VGAE-GE consistently out-
performs state-of-the-art model (i.e., CORE and MAERec)
under all noise levels on two datasets, with lower perfor-
mance degradation, demonstrating strong noise resilience.
Ablation Studies (RQ2 and RQ3)

To better understand the contributions of different compo-
nents in VGAE-GE, we conduct ablation studies by removing
specific parts to form the following architectures: w.o. (with-
out) Graph Enhancement (GE), w.o. Mamba4Rec (mam)
and w.o. Position Embedding (pos). The results on the five
datasets are shown in Table 3. To evaluate the enhancement
effect of the graph transformation based on VGAE (RQ2), we

conduct ablation studies and propose a corresponding variant,
w.0. GE. From Table 3, it can be inferred that the performance
of the model significantly decreases across all five datasets
when the graph transformation module is removed. This evi-
dence strongly supports the effectiveness of VGAE-GE mod-
ule. To evaluate the effectiveness of our recommender (RQ3),
we proposed a variant, w.0. mam, in which we replace our
Mamba4Rec with a widely recognized strong recommender,
SASRec. The experimental results show a performance de-
cline across all five datasets. This also demonstrates that our
proposed recommender outperforms the widely used SAS-
Rec. Furthermore, to measure the role of position encoding
in the Mamba4Rec recommender, we remove the position en-
coding and propose the corresponding variant, w.o. pos. The
model with position coding removed still produces a small
degradation in performance relative to the VGAE-GE model.
This indicates that while the position encoding contributes to
improved performance, the core strength of our model does
not solely rely on it. Therefore, we retain the position encod-
ing in the Mamba4rec recommender.

4.3 Parameter Sensitivity Analyses (RQ4)

Mamba Layer. Considering that the number of Mamba lay-
ers in the recommender can affect the model’s performance,
we evaluate candidate values from {1, 2, 3, 4, 5} and conduc-
t experiments. The results for HR@10 and NDCG@10 are
summarized in subfigures (a) and (d) of Figure 2, respective-
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Datasets| Model [HR@5NDCG@5HR@10NDCG@10

w.o. GE |0.6859 0.5591 0.7710 0.4759

Books |w.0. mam|0.6697 0.5430 0.7634  0.5735
w.0. pos [0.6892 0.5612 0.7742  0.5889

w. all 10.7023 0.5803 0.7859 0.6075

w.0. GE |0.4989 0.3862 0.6010 0.4192

Toys |w.0. mam|0.4804 0.3719 (0.5838 0.4054
w.0. pos [0.5105 0.6198 0.3854  0.4249

w. all 10.5211 0.4030 0.6320 0.4389

.. | w.o. GE |0.8457 0.7582 0.8767 0.7695
Retail |w.0. mam|0.8364 0.7660 0.8658 7756
w.o. pos [0.8522 0.7831 0.8797  0.7925

w. all 10.8541 0.7870 0.8877 0.7979

w.o. GE |0.7553 0.6608 0.8310 0.6852

NYC |w.0. mam|0.7581 0.6835 0.8264 0.7065
w.o. pos |0.7747 0.7109 0.8412  0.7322

wall [0.7839 0.7265 0.8458 0.7462

w.0o. GE |0.8334 0.7620 0.8997  0.7804

TKY |w.0. mam|Q.8434 0.7644 0.9023 0.7836
w.o. pos [0.8561 0.7770 0.9075  0.7937

w. all 10.8644 0.7915 0.9128 0.8120

Table 3: Ablation study with key modules.

ly. For most datasets, the model performance improved when
the number of layers increased from 1 to 2, but subsequently
declined with additional layers. Therefore, to standardize the
model, we set the number of layers to 2.

Regularization Parameter. For the regularization param-
eter, we give the candidate values {0, le-6,le-5,1e-4,le-
3,1e-2}, and the experimental results of three representa-
tive datasets are selected and summarized in subfigure (b)
and subfigure (e) of Figure 2. There is an improvement in
the model performance when the regularization parameter
A=le-6, and the subsequent performance gradually decreases.
Therefore we set the value of this parameter to 1e-6.
Embedding Dimension. The embedding dimension is a cru-
cial parameter that affects the model’s performance. We con-
ducte experiments with candidate values {8, 16, 32, 64, 128}
across datasets of different sizes, and the results are summa-
rized in subfigures (c) and (f) of Figure 2. When the dimen-
sionality is too small, it is difficult to accommodate sufficient
feature information, and at this time, boosting the dimension
size is beneficial to increase the model’s information repre-
sentation capability. However, as the dimension is excessive-
ly raised, the computational cost of the model increases and
the performance of the model tends to stabilize. For most
datasets, the performance began to stabilize once the embed-
ding dimension reached 32. To balance computational cost
and performance, we set the embedding dimension to 32 for
the datasets used in our experiments.

Reconstruction Rate. The reconstruction rate relates to the
amount of information in the reconstructed graph. We spec-
ify candidate values {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} for the
reconstruction rate and then conduct experiments,visualizing
the results for two representative datasets: Books and NYC
in Figure 4. Since different application scenarios have their
unique characteristics, we need to select the best suitable re-
construction rate for different datasets. For the datasets with
larger scales (i.e., Books, Retail, and Toys), we chose 5 =0.3,
and for the datasets with relatively smaller scales (i.e., NYC
and TKY), we chose a reconstruction rate of 5 = 0.6.
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Figure 4: Performance w.r.t. different reconstruction rate.
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Figure 5: Performance w.r.t. different c-hop neighbor.

c-hop Neighbor. To select the optimal distance for construct-
ing the graph, we consider candidate values for c-hop from
{1, 2,3, 4,5} and conduct comprehensive experiments on all
five datasets. We visualize the results for three datasets and
summarize them in Figure 5. When ¢ = 3, the majority of the
datasets achieve the best performance. When the value of ¢
is other values, such as ¢ = 1 or ¢ = 5, the performance of the
model is not stable enough on different datasets. This indi-
cates that when the graph construction distance is too short, it
is difficult to capture higher-order information between items,
whereas an excessively long distance incorporates too much
noise. In most scenarios, 3-hop neighbors basically provide
sufficient neighbor information. And in order to ensure the
generality of the model, we make the same settings on all
datasets. Therefore, we set ¢ = 3 for all datasets.

5 Conclusion

This paper explores a graph augmentation method based on
distribution transformation, utilizing VGAE to enhance graph
structure information. The embedding is converted into la-
tent variables using VGAE, and then the hidden information
is mined and then reduced to the representation of embed-
ding using GCN. Finally, the embeddings are combined with
the Mamba4Rec recommender to enhance the sequential rec-
ommendation system. In future work, we plan to design
more adaptive graph structure augmentation criteria to fur-
ther improve the model’s adaptability. In addition, we will
explore capturing complex hierarchical information between
users and items in non-Euclidean space.
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